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The construction of a class of associative composition algebras g, on R * generalizing the well-
known quaternions Q provides an explicit representation of the universal enveloping algebra of
the real three-dimensional Lie algebras having tracefree adjoint representations (class A Bianchi
type Lie algebras). The identity components of the four-dimensional Lie groups GL(g,,1) Cq,
(general linear group in one generalized quaternion dimension) which are generated by the Lie

algebra of this class of quaternion algebras are diffeomorphic to the manifolds of spacetime
homogeneous and spatially homogeneous spacetimes having simply transitive homogeneity
isometry groups with tracefree Lie algebra adjoint representations. In almost all cases the
complete group of isometries of such a spacetime is isomorphic to a subgroup of the group of left
and right translations and automorphisms of the appropriate generalized quaternion algebra.
Similar results hold for the single class B Lie algebra of Bianchi type V, characterized by its “pure

trace” adjoint representation.

PACS numbers: 02.10. + w, 02.20. + b, 98.80.Dr

1. INTRODUCTION

Generalized quaternions were first employed in the de-
scription of a spacetime isometry group by Kurt Gddel in his
1949 paper presenting his famous cosmological solution of
the Einstein field equations.’ These “Gdédel quaternions™
(also called “split quaternions” or “antiquaternions”?) be-
long to a real subalgebra of the complexified quaternion al-
gebra which is not equivalent to the ordinary real quaternion
algebra. The equally historically important static Einstein
cosmological solution of 1917 provides a corresponding ap-
plication for the ordinary quaternions, as described in detail
by Ozsvath and Schiicking in their treatment of a generaliza-
tion of this solution.” Ozsvath generalized both the Einstein
and Gaodel solutions by considering spacetime homogeneous
solutions of the Einstein equations, leading to four classes I-
IV of solutions.** The homogeneity groups of the first three
classes have tracefree Lie algebra adjoint representations but
those of the class IV solutions do not. The quaternions are
relevant to the class I solutions which generalize the Einstein
static solution while the Godel quaternions are relevant to
the class II and III generalizations of the Gédel solution.>®

The quaternions and Godel quaternions are representa-
tions of the universal enveloping algebras™® of the two ine-
quivalent real three-dimensional semisimple Lie algebras,
namely the Lie algebras of the groups SU(2) and SL(2,R ),
respectively, both of which have tracefree adjoint represen-
tations. The construction of the present paper® extends this
representation of the universal enveloping algebra to all of
the real three-dimensional Lie algebras with tracefree ad-
joint representations, namely the class A Bianchi type Lie
algebras.'®!" In addition to the semisimple Bianchi types
VIII(8[(2,R )) and IX(8u(2)), these include the Bianchi types I
(abelian case), IT (Heisenberg Lie algebra of supertriangular
3 X 3 matrices), VI, (Poincaré Lie algebra in two dimen-
sions), and VII, (Lie algebra of the Euclidean group in two
dimensions). The corresponding Lie groups are the homo-
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geneity isometry groups of the class A spatially homogen-
eous spacetimes.”'” Taub and Misner made use of the ordi-
nary quaternions in their study of the Bianchi type IX Taub-
NUT spacetime.'? The same construction also applies to the
Lie algebras with “pure trace” adjoint representations in all
dimensions n > 1, which for n = 3 includes the single class B
Lie algebra of Bianchi type V.

The ordinary quaternion algebra Q (Bianchi type IX)is
a division algebra,® namely an associative algebra in which
every nonzero element has an inverse. The generalized qua-
ternions of the remaining Bianchi types are examples of “sin-
gular division algebras” which are associative algebras in
which almost every nonzero element (all but a set of measure
zero) has an inverse. This term was introduced by Illamed
and Salingaros,'* who studied the real and complex three-
dimensional division and singular division algebras which
possess a nondegenerate norm (Bianchi type IX and VIII
quaternions in the real case). Familiar examples of singular
division algebras are the general linear group Lie algebras
gl(n,R ), gl(n,C), and gl(n,Q) of real dimension n%, 2n% and
4n?, respectively. The cases n = 1, i.e., R, C, and Q, are well
known to be the only finite-dimensional real division alge-
bras.® The Lie algebra gl(2,R ) is in fact isomorphic to the
Godel quaternions. The » = 1 construction given below in-
volves a single real parameter y,, whose three inequivalent
values — 1, 1, and O lead to the complex numbers C and two
singular division algebras,” the nondegenerate case y,, = 1
having been discussed by Salingaros.'® For #n = 2 the pure
trace construction given below is the general case for a Clif-
ford-like multiplication. This case'should have been given by
Campbell in his classification of all three-dimensional real
associative algebras' but an error resulted in the omission of
a large class of examples. His discussion is apparently a
slightly different presentation of earlier work by Lie.'® In the
older literature, associative algebras are referred to as higher
complex numbers or hypercomplex numbers. A classifica-
tion of all hypercomplex number systems of dimension less
than seven was given by Pierce,'” but his results are not very
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transparent since he does not use bases containing the unit
element.

2. THE CONSTRUCTION

Consider a real n-dimensional Lie algebra g with basis
{e, 1, dual basis {&?}, structure constant tensor components
C%. = o%[esse.]) = C°,. ;> and adjoint matrices
k,=ad,(e,) = C*, €, which span the matrix representa-
tion of the adjoint representation'® of g with respect to the
basis {e, }. Here {e°, | is the natural basis of gl{#,R ) in terms
of which an 7 X n matrix is given by A = 4 “, e®,. Note that
the Jacobi identity C ¢, C*,,; = Ois equivalent to the ma-
trix identity [k,,k, | = C<, k.. For n > 1 define

(n—1)C, =C?, =Tradle,) =Trk,,
(n — Ny, =Tradlelad(e,} =Trk,k, ={n — )y,
(n—1)Cppe = (n — 1)y, y €% =Trk, [k, k. ]

— (1 — 1)Clper. 2.1)

(n — 1)y, are the components of the Killing form of g,
while the antisymmetry of C,,,. follows from the properties
of the trace operation Tr. Note that by taking the trace of the
Jacobi identity in matrix form, one obtains the relation
c,c?, =0.

Define an algebra on R " * ! with natural basis
{e,} = {ey,e,} by introducing the following Clifford-like
multiplication of the basis elements:

€€, =€,8==¢,, €, =%V, e +C e, (2.2)
or, in a more uniform notation,

e.8; =Vope + C7 s, =M7 ze ,

Yap=0"40% + ¥0,8°, 6%,

C%,=6%8%6°,C% =M. (2.3)
The unit element of this algebra is e, and the multiplication

of two arbitrary elements a = a%¢, andb = b %e, of R"*'is
given by

ab=M7" za°b%,. (2.4)
Then in the following three cases this is an associative alge-
bra:

(i) n=1, 7,€R,
i) n>1, C%,.=C, ‘;caEZCdﬁj[b &,
(iii) =3, C,=0. (2.5)

For an associative algebra, the associator®

(e..e5.,)=(e e5)e, —e,(eze,)
= (M 6aﬂM e67/ - MeaéMsﬂy)ee (26)

vanishes identically. Since this vanishes if any index is zero
due to the properties of the unit element, it is sufficient to
consider only (e, e,,e.).

In the case (i), C';, = 0 and (e,,e,,e,) trivially vanishes.
In the remaining cases using the Jacobi identity and antisym-
metry of C,,, one easily finds

(€,,€5,€.) = (C dbececa - 27/b[c6da ])ed' (2.7)
In the case (ii), use of the relation y,, = C,C, leads immedi-
ately to the vanishing of this expression.
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For n = 3 one has the well-known decomposition'®!!

Co = €n™ + 0,54, a,=C,,

VYap = 0,8y — %eacd ebfg anndg' (28)
The vanishing or nonvanishing of the Lie algebra representa-
tion Tr ad:g—R (i.e, a; = 0 or a, #0) divides all three-di-
mensional real Lie algebras into two classes called class A

and class B, respectively. To show that (e,,e,.e.) = 0 when
a, = 0, assume that the structure constant tensor compon-

ents are in standard diagonal form,'? i.e., n=n%e®,
= diag(n'",n®,n"¥), in which case y,,e*, = — diag
(@0 pnD p @) and €4, = n') = — C4, for each

cyclic permutation {4,B,C} of (1,2,3) are the only nonvanish-
ing components. The class A identity k2 = y,,(1 — e°,) (no
sum on a) shows that (e, ,e,,e,) = 0 = (¢,,e,,€,} (N0 sum on
a). Since e e,, = 0 for a#b, this implies left and right alter-
nativity,” and since in an alternative algebra the alternator is
totally antisymmetric,>® it suffices to examine (e,,e,,e;),
which is easily seen to vanish.

In what follows only #n = 3 will be considered. Denote
the algebra on R * resulting from case (iii) by ¢, and call its
elements generalized quaternions. It is sufficient to consider
only a canonical set of values of the structure constant tensor
components for each Bianchi type Lie algebra. The follow-
ing canonical values of (n",n,n") for the class A Bianchi
types will be assumed here: IX(1,1,1), VIII(1,1, — 1},
VII,(1,1,0), VI (1, — 1,0), I1{0,0,1), 1{0,0,0). When these val-
ues are understood the quaternion algebra will be denoted by
9z, where Z is the Roman numeral Bianchi type, and will be
referred to as the canonical Bianchi type Z generalized qua-
ternion algebra on R *. Thus g,x = Q and gy, is the Godel
quaternion algebra while gvy;  has been called the “semiqua-
ternions.””” In the nonabelian case, again letting (4,B,C ) be a
cyclic permutation of (1,2,3), at least one component, say
n“*), is nonzero, in which case the algebra q,(Z #17) is iso-
morphic to the Clifford algebra generated by e, and e..*°

Case (11) for n = 3 yields generalized quaternions for the
single class B Lie algebra of Bianchi type V whose canonical
structure constant tensor components may be taken to be
n=0and a, =& sothaty, =§&°,8,. Denote the corre-
sponding algebra by g, and let g denote all of the canonical
generalized quaternion algebras for n = 3.

Define quaternion conjugation* {an involutive antiau-
tomorphism?) by

a = g%, —a* = d%, — a’e,,
(ab)* = b*a*. (2.9)
The real valued quaternion norm and trace are defined by
N (a)e,=|a|’e, = a*a = aa*,
N (@) = (a°) — ypa’a®=y* ga%d’,
(2.10)

These appear in the characteristic equation satisfied by every
quaternion,”’

Tr(a)e,=a + a* = 24d°%,,

a’ — Tr{a)a + N(aje, = 0. (2.11)

For canonical structure constant components one has in the
class A case
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|a|2 — (00)2 + n(2)n(3)(a1)2 + n(3)n(l)(02)2

+ nOn@g32, (2.12)
and in the type V case
a]* = (@ — (@} (2.13)
The norm satisfies the relation
N (ab) = N (a)V (b), (2.14)

i.e., is an algebra homomorphism into the real numbers. An
algebra with such a norm is called a composition algebra.?!

The generalized quaternions with vanishing norm are
called singular quaternions. If |a|?0, then a is called non-
singular since it has the inverse

a~'=|a|%a*, ala=aa '=e, (2.15)

Because of (2.14), the open submanifold of R ? consisting of
nonsingular quaternions forms a Lie group which is generat-
ed by “the Lie algebra™’ of the quaternion algebra g, namely
g with the Lie bracket given by the ordinary commutator,
denoted by gl(1,q). This four-dimensional Lie group
GL(1,9) = {aegq| |a|*#0} has a natural three-dimensional
subgroup SL(1,q) = {aeq| |a]> = 1} of elements with unit
norm whose Lie algebra consists of tracefree quaternions
8l(1,q) = {asg|Tr(a) = 0} = spanf{e, }. This latter Lie alge-
bra is isomorphic to the original Lie algebra g with which the
construction began since the basis {e, ] satisfies

[Le,.de, ] = C<.le,. (2.16)

Thus e, —1e, is a Lie algebra isomorphism and g is a repre-
sentation of the universal enveloping algebra of g.”®
GL(1,q) and SL(1,q) will be called the general and spe-
cial linear groups in one generalized quaternion dimension.
This terminology arises from the fact that the natural action
of GL(1,g) on ¢ by left or right multiplication is linear, while
the subgroup SL(1,g) leaves the quaternion norm invariant
under this action due to (2.14).2* Let GL(1,g) " and SL(1,¢)"
be the identity components of these Lie groups. Locally
these are the images of their Lie algebras by the generalized
quaternion exponential map
expa= Y (n)7'(a)", (a)’=e,. (2.17)
n=0
In fact using the identity a“a’e e, = y,,a°a’e,=ue,, one
may easily obtain the formulas
exp(la®e,) = ¢"""*"'(e, coshiu'’?

—1/2 1/2)
’

+ ae,u
N(exp a) =e™®. (2.18)

1 1
sinhiu

The second formula shows that exp maps 8[(1,g) into SL(1,g).
The first formula reflects the natural isomorphism
GL(1,4)* = R XSL(1,9)%,

2eGL(1,g)*—(In|a|?|a| " 'a)eR XSL(l,¢)*. (2.19)

The matrix representations with respect to the basis
{e, } of the left and right regular representations of ¢ which
are obtained by letting ¢ act on itself by left and right multi-
plication are two mutually commuting four-dimensional su-
balgebras of gl(4,R ) with bases {M, } and {M }, respective-
ly,
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Ma = Mﬁayeyﬁ, Ma = Mﬁme"ﬁ,

MM, =M",M,, MM, =M",M,,

[IM, Mg ] =C75iM,,

M, My ] = — C75iM,,

[M,,M;] =0. (2.20)

These are all equivalent to the associativity condition that
(2.6) vanish together with the relation C%;, = M %, of
{2.3). If a = a”e, g, then the left multiplication L, and right
multiplication R, are represented by the matrices

L,—a°M,=M(a),

R,—a"M,=M(a). (2.21)
Some of the properties of these matrices are

Tr M{a) = Tr M{a) = 2 Tr a = 42°,

det M(a) = det M(a) = |a[*,

{M(a),M(b)} = 2y,zab? =1= {M(a),M(b)}. (2.22)

The matrix groups generated by these two matrix algebras
are both isomorphic to GL(1,9).

Suppose {a”} are now interpreted as the Cartesian co-
ordinates on R* associated with the natural basis {e, }, and
set d, = d/0a*. Then the right and left action of GL(1,g4) on
g = R *is generated by the Lie algebras {e, } and {2, }, re-
spectively, of generating vector fields

e, =M75,d°3,, &, =IM7",d%3,,
[eares] =CTopeys [Carts] = — C70pé,,
[ear8y] =0. (2.23)

In fact when restricted to the Lie group LG(l,g), {e, } and
{e, 1 are bases for the Lie algebras of, respectively, left and
right invariant vector fields on the group. The corresponding
dual bases of left and right invariant 1-forms on the group
are given, respectively, by
w® =2|a| Mg a*da’, @ =2|a|’M° za*’da’,
(2.24)

which may be written in terms of quaternion valued 1-forms
as

=%, =2daa~'.  (2.25)

The present notation identifies the original Lie algebra g hav-
ing basis {e, } with the Lie algebra of left invariant vector
fields on the Lie group SL(1,q).

The exponential formula (2.18) may be used to parame-
trize GL(1,4)* in R ? using various types of canonical coordi-
nates on this group. Define the real valued functions

l/Z%XL C, =¢, (xa),

w=w, = 2a~ 'da,

¢, (x) = cosh((y,,)

So(x) = (Vo) ~3sinh((ya0) M), s, =5.0x),  (2.26)
which appear in the formula
exp(ixe,) = eyc, (x) + e,5,(x). (2.27)

When y,,, = 0, these formulas are understood to hold in the
limit y,,—0,i.e., ¢, = 1,5, = 1x“. A parametrization involv-
ing canonical coordinates of the second kind on GL(1,g) is
obtained by expanding the product
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a"e, = exp(ix’eolexp(ix'e, Jexp(ix’e,Jexp(ix’e;), (2.28)
leading in the class A case to the result

3
515253),

{1}
1€2C3 + 7'7°C18,83),

2 1/2)x°, 2
a* = &'V (c,5,¢5 — nPs,0,8,),

¢
aO — e(1/2}x (01C2C3 _ n(l)n(2)n

al — e(l/Z)x"(s

a® = eV (c,0,8, + n%s,5,¢5), (2.29)

and in the type V case

0 O
a° = oll/2> s a® = ell/2 55,

a' =x'e" (e, —55), &% = % V(c, — 55). (2.30)

A parametrization generalizing the Euler angles of the
type IX case is valid in the class A case as long as n® #£0.
exp{bx”es)exp(ix'e; Jexp(ix’es), (2.31)

aaea — e( 1/72)x°

or

0
aO — e(l/z)XOCIC:;(xz + x3)’ al — e(l/Z)x slc3(x2 _ x3)’

0 0
(Z)e(l/Z)xslS3(x2 _x3)’ a3 — e(l/Z)x CIS3(x2 4 x3).

{2.32)
These apply only in the nonabelian class A case, although if
one assumes the canonical components #n'¥ = §?, in the Bian-
chi type II case, one must cyclically permute the above for-
mulas so that they apply to the case n'* #0. Similar formulas
hold for the class B type V case.

In each of these parametrizations {x*} may be inter-
preted as local coordinates on GL{1,g) " for certain ranges of
their values. These coordinates are adapted to the direct pro-
duct structure (2.19), with x° = In|a|? being a homomor-
phism onto the additive group of real numbers and {x°} be-
ing local coordinates on the factor manifold SL{1,q)". Note
also that

@’ =w’=Tra 'da=dIn |aj* =dx° (2.33)

The manifold of SL(1,¢) is a certain quadratic surface in
R * given by the equation y*;a%” = 1. For Bianchi type IX
this is just the unit sphere S, and so all of the coordinates
{x?} must be restricted to finite intervals {integral multiples
of 7 depending on the exponential parametrization). For
Bianchi types VIII and VII, one sees that the canonical coor-
dinate of the second kind x* must be restricted to an interval
of length 44 since exp(2me,) = ey, i.¢., SL(1,¢)* has one com-
pact direction, being the hyperboloid
(@%)? + (@®)? — (a')* — (@?)* = 1 for type VIII and the cylin-
der (@°)* + (@°)* = 1 for type VII,. In these two cases
SL(1,4)* = SL(1,q)is not simply connected but has a simply
connected covering group®** SL(1,g) obtained by extend-
ing the range of the canonical coordinate of the second kind
x? to the real line. The same extension yields the simply con-
nected covering group GL(l,g}*. For Bianchi types V and
VI, SL(1,4)" is one sheet of the hyperbolic cylinder
(@)® — (@*)? = 1 and for Bianchi types I and II it is the hyper-
plane a°® = 1, all of which are simply connected.

The group Aut(g) of automorphisms of the algebra g is
that subgroup of GL(4,R ) acting naturally on R * which
leaves the group multiplication invariant. In particular, the
identity must remain fixed, while the Cliffordlike multiplica-
tion requires that an algebra automorphism be an automor-

a=n
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phism of the Lie algebra 8I(1,g), i.e., the algebra homomor-
phisms coincide with the automorphisms of the Lie algebra
from which the quaternion algebra is constructed. This is to
be expected since g is a representation of the universal enve-
loping algebra of this Lie algebra.

The geometry of the generalized quaternion algebra is
related to the quadratic form y*

7*(@,b) = y*,a%b” = | Tr(ab*). (2.34)

Using the trace symmetry Tr(ab) = Tr(ba), it is simple to
show that this quadratic form is invariant under the indepen-
dent left and right translation action of SL(1,g). Similarly one
may introduce the following bi-invariant symmetric tensor
field on GL(1,g),

Y=t e8P =1Troeo=Trded. (2.35)

where the final equality follows from the trace symmetry and
the definitions (2.25). For the semisimple Bianchi types this
is nondegenerate and therefore a metric tensor field. Its re-
striction to SL(1,g) is the metric induced on SL({1,q) by the
inner product space (R *,7*); in fact the submanifolds of con-
stant nonzero quaternion norm are all isometric due to the
bi-invariance of the metric ¥*. In the Bianchi type IX case of
ordinary quaternions, the inner product space (R *,7*)is Eu-
clidean space and the Riemannian manifold [SL(1,q),7*] is
the 3-sphere S 3 with its natural metric.?

It is worth pointing out the fact that the generalized
quaternion aigebras ¢y, gy, and ¢;x = @ {(asis well known
in the latter two cases) have matrix representations in two
dimensions as real subalgebras of gl(2,C). If { @, } are the
standard Pauli matrices, then the quaternion basis {e, } cor-
responds respectively to {1,e?,,ie*,,05}, {1,05,0,, — ig,}],
and {1, — io, }. The latter two bases generate the matrix
subalgebras gl(2,R )= R & 8[(2,R ) and u(2)=R & 3u(2), re-
spectively.

3. HOMOGENEITY GROUPS AND SPACETIME
SYMMETRIES

The spacetime homogeneous cosmological models with
simply transitive isometry groups may be defined as space-
times (M,g) whose manifold M is that of a connected four-
dimensional Lie group M and whose metric g is a left invar-
iant Lorentz metric on this Lie group.?®* Solutions of the
Einstein equations with a dust source were studied by Ozs-
vath,*® Ozsvath and Schiicking,’ and Farnsworth and
Kerr,?® while the results for a general perfect fluid source are
quoted by Ryan and Shepley.® Of the four classes of solu-
tions, the four-dimensional homogeneity group M is GL(1,g)
of Bianchi type IX for class I solutions and the simply con-

nected covering group GL(1,g)" of Bianchi type VIII for
class IT and 111 solutions. The class IV solutions have groups
M which have three-dimensional subgroups of the class B
Bianchi types and so do not involve quaternions except in
certain degenerate cases.

The Einstein static solution (class I) and the Godel solu-
tion {classes II-IV) are the only solutions with additional
continuous symmetry. The Einstein static solution may be
written g = #29,,0" ® @, with 7,5¢”, = diag (— 1,1,1,1)
and Z a constant. This is bi-invariant under the action of
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SL(1,9) as well as under the scaling of the quaternion norm so
the full isometry group is GL(1,g), XSL (1,g)x
=R XSL(l,q); XSL(1,9)g =R XSO(4,R )X Z,. Here
Z, = { + e} is the discrete parity subgroup associated with
reflection of R * about the origin, while the subscripts L and
R refer to the left and right actions of GL(1,g) or its sub-
groups on g. The action of SL(1,g), XSL(1,9)z =0 (4,R ) is
equivalent to the natural action of the orthogonal group on
R4,

The Godel solution may be written®

g=RY -0’00’ + o' 00 + v’ @)
+w0®(uO]) (31)

where {©“} is understood to be extended to the simply con-
nected covering group GL(1,g)*. If the factor of | were not

present the full isometry group would again be GL(1,g),
X SL(1,g)g, but its presence limits the additional symmetry

to local rotational symmetry, the full group being GL{1,9};
X exp(span{e,})z. However, SL(1,g), Xexp(span{e;})g
contains an SO(2,R )-parametrized family of three-dimen-
sional subgroups G,;; of Bianchi type III = VI_ |, which act
simply transitively on SL(g,R ) and hence identifying the
group manifolds of SL(g,R ) and Gy, one may express the
metric in terms of left invariant 1-formson R X Gy [identi-
fied with GL(1,4)7 %’

g=A - (0 +)8(@+)+lo' e+ e

+ 0’2 w?,

do'=0=do’, do*=a'No’. (3.2)

These 1-forms are given explicitly by (A4) in canonical co-

ordinates {y°} of the second kind on G, while

@° + dx° = d In|a|. The Appendix clarifies this point.
Equation (3.2) is the form of the metric originally given by
Godel," apart from an interchange of x° and y* and a scaling
of x° y° and y® by /2.

The spatially homogeneous cosmological models
whose homogeneity isometry groups act simply transitively
on spacelike hypersurfaces may be defined as spacetimes
(M,g) whose manifold M is that of the four-dimensional Lie
Group R X G and whose Lorentz metric g is invariant under
the natural left action of the connected three-dimensional
subgroup G, the copies of which in the product manifold
R X G are assumed to be spacelike. For the Lie groups of
class A Bianchi types as well as Bianchi type V, the space-
time manifold may therefore be identified with
GL(1,9)" =R xSL{l,q)* with G = SL({1,q)*. For Bianchi
types VI, and VIII one must use the simply connected cover-
ing groups if simply connected spatial slices are desired.

The quaternion norm parametrizes the family of spa-
tially homogeneous hypersurfaces. The coordinate
x° = In|a|? is a homomorphism onto the additive group of
real numbers, which is relevant to the Lie group isomor-
phism GL(1,9)" =R xSL(1l,4)". For all but a special class of
spatially homogeneous spacetimes with whimper singulari-
ties,?® this coordinate is timelike on the entire spacetime. A
spatially homogeneous metric on GL(1,g)™ is of the general
form
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g =gpx0" 8 o, (3.3)

with {, } a basis of Killing vector fields. Provided x° is al-
ways timelike one can always choose the simpler form

g= — N(xVdx’0dx® + g, (x"Jo* ® 0" (3.4)

The additional continuous spacetime symmetries possi-
ble for these spacetimes which act within the homogeneous
hypersurfaces are local rotational symmetry for all Bianchi
types except VI, and isotropy for Bianchi types I, VII,, V,
and IX. The local rotational symmetry for Bianchi types
VI1,, VIII, and IX corresponds to a one-dimensional iso-
metry subgroup of the group of inner automorphisms of ¢

acg—AD (bja=bab~', beGL(l,g). (3.5)
The complete isometry group (ignoring discrete symmetries)
of these three types is SL(1,q)*; X H, =SL(l,q)*x, AD(H ),
where H is any one-dimensional subgroup of SL{1,q) for
Bianchi type IX and the one-dimensional subgroup
exp span{e,} for the other two types. Here “x,” denotes the
semidirect product group and the inner automorphism sub-
group AD(H } is the isotropy group at the ‘“‘identity line”
{teo|teR }. For Bianchi types I, II, and V, this subgroup is
replaced by a one-dimensional subgroup H of the group of
automorphisms of ¢ (not an inner automorphism subgroup).
In the case of isotropy the identity component of the iso-
metry group for Bianchi type IX is SL(1,q), X SL(1,9); cor-
responding to bi-invariance of the metric with respect to the
subgroup SL{1,q), while the quaternion conjugation map* is
a discrete reflection symmetry. For Bianchi type I, the one-
dimensional automorphism subgroup H of local rotational
symmetry enlarges to a three-dimensional automorphism
subgroup, but for Bianchi types VII, and V, the additional
two dimensions of the three-dimensional isotropy subgroup
are not related to automorphisms of the quaternion algebra.®
Most of the discrete symmetries possible for these spatially
homogeneous spacetimes are also directly related to auto-
morphisms of the Lie algebra 81(1,¢) and hence of the quater-
nion algebra itself.>* Schmidt has considered a special class
of such examples.>°

APPENDIX

Consider the following SO(2,R )-parametrized family of
parametrizations of SL(1,¢y,,,) due to Ozsvath®
a = exp( — 10e;)[4 %!V (sin § y*(e, — e)

+cos § (e, + e3)) + exp(4 y'e,) exp(4 ’e;) Jexp(iBe;).

(A1)

This is the sum of a unit quaternion and a null quaternion
which is orthogonal to it (with respect to the quadratic form
7*) and represents a 2-parameter family of straight lines in
SL{1,gv;;1) C R * foreach value of the additional parameter 6.
Computing the basis {@®} of left invariant 1-forms on
SL(1,gyyy; ) using the restriction of (2.24) to the group (i.e., set

®° = 0) and the constructing the basis { e, } using duality one
finds
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o' =cody' + s,e”dy?,

e, =cyd, +55(e '3, — 93),
ey = — 5,0, + cole "0, — Jy),
e, =ds, (A2)

wherec, = cos(x® + 6)ands, = sin(x’ + 6. [Itis helpful to
use the isomorphism with SL(2,R ).] Similarly one finds the
right invariant basis

E, =9,—y*9,=¢,

E, =y, + e ¥ — (p*))0, —e¥'d, =] — &),

E,=9,=¢] +¢, (A3)
where & = cos @&, — sin 8 &, and &5 = sin 8 &, + cos 8 é,.

Introducing the Bianchi type III = VI_, invariant
fields

o' =dy', o?=e"dy’, o =dy’,

6,=0, 6=¢3, €6=0,=§&=e,
82 = 82, (A4)
which depend on § through the parametrization {Al), one
sees that any locally rotationally symmetric left invariant
metric on SL{1,gy;; ) may be written as a left invariant metric

on a Bianchi type III Lie group Gy;; with the same base
manifold,

€ =0, —)’232,

g=gpl0'®w' + 0’ ®0?) + g0’ @ 0°

=g,l0'®o" + o7& d)

+ 83(0” + o) @ (0® + o). (AS5)
The SO(2,R )-parametrized family of coordinates {y“} on
SL(1,gvy) provides a corresponding family of identifica-
tions of the manifold of G,,; with that of SL(1,gyy); these
coordinates are global coordinates on the manifold R * of the
simply connected covering groups of both types on which y°
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W. M. Fairbairn

University of Lancaster, Lancaster, England

T. Fulton
The Johns Hopkins University, Baltimore, Maryland

(Received 2 February 1982; accepted for publication 28 May 1982)

A recently published set of finite subgroups of SU(3) is shown to contain some groups which are
not subgroups of SU(3). The others are subgroups of one of the dihedral-like family of SU(3)
subgroups 4, of order 3n% Some comments are made also on the structure of other finite

subgroups previously listed.

PACS numbers: 02.20 + b

I. INTRODUCTION

In a recent publication, Bovier et al." (BLW), it has been
claimed that a new class of finite subgroups of SU(3) has been
obtained. This new set of subgroups is said to exist in addi-
tion to those listed in Fairbairn et al.? (FFK). Their structure
is that of the semidirect product z,, &Z; of two cyclic groups
Z,, and Z,, of order m and 3, respectively, where m must
contain at least one prime factor of the form (3k + 1), with &
a positive integer.

If m contains a factor ¢ which is the product of powers
of primes which are equal neither to 3 nor (3k + 1) then the
subgroup of order 3m can be written as the direct product
(Zaf,, &Z;)® Z,, where m = 3’pq with r equal to zero or a

positive integer and p is the product of powers of primes of
the form (3k + 1). Because the direct product of subgroups is
automatically a subgroup and because Z_ is a trivial finite

subgroup of SU(3) we need concentrate only on the semidir-
ect products (ZJ,p &Z,) of order 3"+ 'p. BLW claim that this

group is a finite subgroup of SU(3) for all integral r. We assert
that it is a finite subgroup of SU(3) only forr=0and r =1
and, for these values of 7, it is a subgroup of 4 {377 for an
appropriate value of n. The groups 4 are defined in FFK,
who call them ‘““dihedral-like,” while BLW refer to them as
“trihedral”.

11. DISCUSSION

A. For r = 0 the subgroup is isomorphic to (Z, *Z,). A
three-dimensional defining (and irreducible) representation
of this group is generated by the 3 X 3 unitary matrices

0 1 O
0 0 1
1 0 O
and
e*m/p 0 0
0 £2mia/p 0 ,
0 0 ezmaz/p

where (1 + a + a?) = 0, mod p. This is the representation
[0,1] as defined by (2.3) of BLW.

The three-dimensional matrices which generate the
subgroups given by FFK are enumerated in Table I of that
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paper. The generators for 4 (3n%) are
E(0,0), 4 (2—” o) and 4 (o, 2_”)
n n

where E (0,0) is identical to the first (3 X 3) matrix listed above
and

e 0 0
Aa,B)=]| 0 €* 0
0 0 e—i(a+8)

Thus, the second generator of (Z, & Z,)is 4 (27/p, 2wa/p)and
isan element of 4 (3p°). The subgroup isomorphicto(Z, &Z,)
is therefore a subgroup of 4 (3p°). The values of the number a
for some smaller integral values of p of appropriate form are
given in Table L.

B. For r = 1 the appropriate subgroup is isomorphic to
(Z,®Z,;) ® Z;. The generators of this group can be represent-
ed by (3 X 3) unitary matrices using again a positive integer a,
which in this case satisfies (1 + a + a*) = 0, mod 3p. This
three-dimensional representation of the group (Z;, &Z;)
then contains the center of SU(3), which has three elements,
and the group can be factored into the direct product
(Z,&Z,) @ Z,. The smallest example of such a structure is
the group (Z,,&Z;) of order 63. Here p = 7 and a = 4. The
generatorsare E (0,0)and 4 (27/21,87/21), withboth4 ” and
A "* diagonal and equal to e>™/* and *"?, respectively, times
the three-dimensional unit matrix.

These SU(3) subgroups are in turn subgroups of 4 (27p%)
and are therefore subgroups of the set of groups 4 (3n%) where
nis amultiple of 3. It was noted by FFK that such groups did
always contain the center of SU(3).

Other similar finite subgroups of not too large order
have p = 13, a = 16 (order 117) and p = 19, a = 7 (order

TABLE I. Appropriate value of the integer a for some small values of the
integer p.

? 7 13 19 31  S1={(7x13) 133 =(7x19)

a 2 3 7 5 9 11
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171). Both are of the type (Z, ®Z,) ® Z, and both contain the
center of SU(3).

C. For r> 1t is claimed by BLW that a faithful three-
dimensional representation can be found which defines a fin-
ite subgroup of SU(3) of order 3"+ 'p. They denote this sub-
group by G (37p, 3, a) and its defining representation is
[0,a — 1], where the number a satisfies the condition of their
Lemma 3.

One of these conditions is that o® = 1, mod 3p, and the
other is that a{a — 1) (a — 1), mod 3’p. Because
(@ —1)=(a—1)(@* +a+ 1) = 0, mod 3’p and because
(@* + @ + 1) can have at most one factor 3 we can deduce
that if > 1 then (@ — 1) contains at least one factor 3. It
follows that the representation [0, ¢ — 1] is not faithful be-
cause the factor ™ " #, where w = exp(27i/3'p), will be
identical for values of B differing by 3"~ 'p. There will, in
fact, be greater duplication of matrices if > 2. Since the
defining representation of the proposed subgroup must be
faithful, we see that the class of finite subgroups of SU(3)
constructed in this way for r > 1 does not exist. The smallest
such subgroup would be of the order 189 = 33 7. Possible
values for a would be a = 4 or a = 58, for which (@ — 1) = 3
or (@ — 1) = 57; in both cases (@ — 1) is divisible by 3. The
orbits, of length three because the representation is three-
dimensional, are 3, 12, 48 and 57, 30, 39, respectively. Again
we notice that all of these numbers are divisible by 3 and only
63 distinct matrices are obtained to define a group of order
189. Similarly for r = 2, p = 13 (a group of order 351) an
appropriate valueisa = 16 and the orbitis 15, 6,96; only 117
distinct (3 X 3) matrices are generated.

D. More recently Bovier and Wyler® have shown that
the Hessian group of order 216 and its subgroups of order 72,
36, and 18 can be written in the form of semidirect products.
For all of these groups the appropriate normal subgroup is
(Z5 ® Z,} of order 9 and for the group of order 216 the other
factor is the double tetrahedral group T’ (see FFK, p. 1043);
for the group of order 72 the other factor is Q, the quaternion
group of order 8. This group can be generated by the permu-
tations (1234), {5678), {S) and (1537}, (2846), {9) on nine sym-
bols,* and the character tables (VII and VI in FFK) show
explicitly the elements 147 and 12* of this type contained in
these two finite subgroups of SU(3). Note that T’ = Q&Z,.

Because the other three subgroup (of orders 36, 168,
and 360) listed by FFK are simple, it is not possible to ex-
press them as either direct or semidirect products.

1748 J. Math. Phys., Vol. 23, No. 10, October 1982

The 4 (6r°) groups can be expressed as semidirect pro-
ducts. For even n, as stated by BLW, the order of the group is
6n* and it is isomorphic to (Z, ® Z,)&S,, where S, is the
symmetric group on three symbols of order 6. However, for
odd n, as mentioned by FFK the group is of order 24n% and it
is isomorphic to (Z, ® Z,)&W, where W is a group of order
24. This group is isomorphic to the semidirect product
V&S;, where V'is the well-known four-group. For both even
and odd #, §, consists of the six elements {4 (0,0), C(0,0),
E(0,0), B (m,m), D (m,m), F (m,m)} and for odd n, V = {4 (0,0),
A(0,7), A (m,0), A (m,7)} where E (0,0) and the 3 X 3 matrices
A (a, B) have been defined previously, and the others are giv-
en in Tables I and VIII of FFK.

CONCLUSIONS

The finite groups G (m, n, a) with n = 3 and m = 3'pg,
with p and g powers of appropriate primes (see Introduc-
tion), can be divided into two categories. Whereas all groups
of this type have been proposed by BLW as a new class of
finite subgroups of SU(3), we have shown that the first cate-
gory, those with » = 0 or 1, are subgroups of an appropriate
A (3n?), in the notation of FFK. (It is of interest that the
smallest such group of order 21 is a subgroup also of the
group Z(168) listed by FFK.) The second category (r> 1)
does not define finite subgroups of SU(3).

It must be remarked that the analysis by BLW of the
structure of the irreducible representations of both 4 (377
and A4 (6n°) is a new and considerable achievement and ena-
bles one, as they show, to write down the Clebsch-Gordan
coefficients for these groups. Using these methods, it should
also be possible to find the coefficients for the various sub-
groups of the “dihedral-like” 4 groups.

Note added in proof: It has been called to our attention
that an erratum to Ref. 1 had been submitted by its authors,
referring to the preprint version of this paper, and accepting
the conclusions of Sec. C, above.
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In this paper we establish some spectral properties of an elliptic complex introduced by Kostant in

the context of geometric quantization.
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I.INTRODUCTION

Kostant'and Souriau?® independently developed a the-
ory of geometric quantization. One seeks to associate differ-
ential operators with functions on a symplectic manifold so
as to preserve as much as possible of the Poisson bracket
structure of the functions. The Kostant-Souriau quantiza-
tion is usually made in three steps

() Prequantization: Let (M,0) be a symplectic manifold,
L” aline bundle over M having a connection V¥ whose cur-
vature is 27iw and such that for any section s of L and any
pair &, of vector fields on M the following relation is satis-
fied:

[VE,Vels — Vi, s = 2miwlén)s.

This is only possible when  is integral which means has
integral periods over integral homology cycles in M. It is in
fact the famous Weil lemma® modified by Kostant.’ In the
case when this condition is satisfied the set of isomorphism
classes of such bundles can be identified with H '(M,S").
(Here S ' is the group of complex numbers of modules one.)
The prequantization of C (M )is constructed on the space
I' ( L?) of smooth sections of L* as follows. With each func-
tion peC (M) we associate a first-order operator 6 (@):
I (L®)y—~I( L”) by setting

b (p) = Vg + 2mip,

where £, is the Hamiltonian vector field associated to ¢ (i.c.,
i p? = dg ). & is a homomorphism of Lie algebra where the

operators on [ { L} are given their usual commutator
bracket Lie algebra structure.

(b ) Polarization: Let (M,w) be a symplectic manifold. A
polarization of (M,w) is a maximally isotropic involutive
complex subtangent bundle F. If L* is a Hermitian line bun-
dle on M as above, we denote by I'r( L ) the space of polarized
sections of L (i.e., the space of smooth sections of the bundle
L = L” ® N }/* covariant constant along F, and where N }?
means the bundle of 1/2 forms normal to F.

(¢) Quantization: Let C . be the Lie algebara under Pois-
son bracket of all functions on M whose Hamiltonian vector
fields are infinitesimal automorphism of F. There is a natural
Liederivative action of £, in I" (N }?) (see Ref. 4). Combining
8 () with this Lie derivative gives a differential operator
S8p(@): ' ( L )T (L )whichpreserves I'z( L ). This action of
Srl@)on I'y( L)is known as quantization and is defined for
anyginCL.

Other extensions of these notions can be founded in:
Kostant,? Onofri and Pauri,%’ Rawnsley,*® Renouard, '°
Simms,''~!? Spiatycki.!*+'°
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In connection with the geometric quantization, Fischer
and Williams'” introduced the notion of “complex foliated
structure” and in a particular case they refined the Kostant
complex.

In this note using this complex foliated structure we
shall make some remarks on the spectral properties of the
Kostant complex.

Il. THE KOSTANT COMPLEX

Let M be an orientable, smooth ( = C ) paracompact
manifold in n + m dimensions. C (M) shall denote the space
of smooth functions on M, T (M ) shall denote the tangent,
space of M, and T (M ) its complexification.

Definition 2.17: A “complex foliated structure” of Misa
complex subbundle FC T (M ) satisfying the following
conditions:

(1) FnF is of constant rank;

(2) F and F + F are integrable.

We shall suppose in all that follows that rank (F) = n.

Choosing a direct summand F* of Fin T (M ). with re-
spect to some Hermitian structure on 7' (M )., we obtain

TM).=FeF"

Examples: (1) If T (M ), = F & F, then, defining
JeEnd(T (M) as — i on Fand i on F, M becomes a complex
manifold.

(2) if M is a symplectic manifold and Fis a polarization
of M, then M is a K&hler manifold.

def

Let 2% = £2'°9 be the space of differential forms on M
of the type (0,g). The “exterior derivative along F,” d, is
given by

dp:aen t—dac it
where for any vector fields along F, X,,....X, , ,, we take
dra(X,,...X, , 1)

= 3 (= " X (aXyy Ko

i=1

;X'q+l”

+ Y al[XX X KK X, )
t<y
Definition 2.2: The sheaves of forms {£2%} and d, now
yield a sheaf complex which we shall call the Kostant
complex.
It yields a fine resolution of the sheaf .&§ =
d}

i dr
= kerd ?.- CQ 0,,-,0—-»&_[(,),—»\@ g—nq ;,.—».!2 =0
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This result was pointed out by Kostant.' In a more gen-
eral context it was obtained by Fischer and Williams’ and a
somewhat different proof may also be found in Rawnsley.?

Hereafter we shall assume that M is an orientable com-
pact manifold and the complex foliated structure of M is
elliptic (i.e., see Ref. 17: T(M ). = F + F).

We choose a Riemannian metric on M and extend ittoa
Hermitian structure on T (M ), . Then the operator d,. has an
adjoint d ¥ defined using the given Hermitian structure and
the Kostant complex is an elliptic complex.

It is known that under these conditons the Hodge-De
Rham theorem'® guarantees that the cohomology groups
are finite-dimensional. In particular, it makes sense to define
the Euler—Poincaré characteristic associated with F:

xeiM)=

q
where 4§ =d %" 'd¥ +d%d$ and #% = ker(d4 %)

For any 0<g<n, 4 { is an elliptic, autoadjoint positive
operator. Then the F-spectrum of M denoted by Spec.(M ) is
the set of eigenvalues of A £, i.e., A ’s such that there exist an
we2 {, w#0, with 4 o = Aw. We write

Spec‘}(M): {O</{O<ﬂ,]<..._,+ oo},

(= 1y dim{F%),

M=

o]
1

+ 0

each A being written a number of times equal to its multiplic-
1ty.

It is easy to see that the F-spectrum of A depends only
on the foliated and Riemannian structure of M:

Let Vi{l)={we{|d tw = dlw}
and m{(4 ) = dimV (A4 ) be the eigenspace of A and the mul-
tiplicity of A, respectively. It is easy to see that dim{#°%)
= m%(0). We will adopt the convention m%(4 ) = 0 if
A #Spec(M).

Proposition 2.1 (F-télescopage of McKean—Singer): Let
M be a smooth manifold as above and F an elliptic complex
foliated structure on M. Then

.  [xeM) ifA=0
2= e 0

Proof: The first equality follows immediately from the
Hodge-De Rham decomposition theorem. If 4 > 0, then we
can verify that the following identities hold:

ViAdd s '0)= VA )nde 2571,
Viandr = '0)=VHA)d r2 4+,
Setting

def

At =ViAnd £ 0),

def

Bi=ViA)d (0}

we obtain in a natural way the orthogonal decomposition of
the V44 ):

Vid)=Al)eBLA).
On the other hand, d:B %™ '(1 }—>A4 %(4 ) is an isomorphism
and therefore

$ (= 1ymia) =o0.

g=0
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Proposition 2.2: For any A >0, 1<g<n — 1, we have

() mE A )+ mE YA )>mEA)

(2) mp(A)>mp(d).

Proof: Let Z ¢ be the space of d --closed g-forms,
{w,,..,w,}beabasisfor ZinV (1), and {w, , |,...0, ] bea
basis for the orthogonal complement of Z $nV 4(A )in V 4(4 )
so that m%.(A ) = k; since 4 § commutes with d ¥,
{d¥w,,...,d *o,} is contained in V%~ '(1). In fact, it is
claimed that it is a linearly independent set. Therefore,

mé= A )>r.

A similar arguemnt shows that

mit A ) >k —r.

Adding these inequalities yields immediately the desired
result. Q.E.D.

Proposition 2.3: Let M be as above and n = 2k. If, for
any g, 0<g<n, we have

Spech(M ) = Specy.~ ‘M),

then m%(4 ) is an even number.
Proof: Using Proposition 2.1, we have

0= 3 mid)— 3 mid)

g, even g, odd
and then
g<k g<k
méw=(—1)"+‘2{ S mit)— Y m%(i)].
g0 q>0
q, even g, odd
Q.E.D.

In view of the general theory of elliptic complexes the
Minakshisundaram-Pleijel theorem'® can be extended in a
natural way to Spec%(M ). More precisely, setting

def
Zi(t)= =2 ,e ", wehave

Proposition 2.4: For any ¢ = 0,1,2,...,.Z %(t ) has the fol-
lowing asymptotic development:

Z gt} ~ () "Ha§(F) + 1@l {F )]

—0,

As a consequence of this propositon and of the F-téles-
copage formula, we can prove:

Proposition 2.5: Let M be as above. Then y (M) = 0if
and only if for any / we have

S (— 17at(F) =0,
g=0
Proof: Indeed we can write

S (= 1pz L) = z[ $ (- 1meid )]e""=xp(M).

g=0 A g=20

Therefore,

xelM) ~ o) S apik)+ -

g=0

vi 3 (- 1)+ -]

q9="0

from which the announced result. Q.E.D.
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lll. KOSTANT COMPLEX OF A LINE BUNDLE L

In this section we shall make some remarks on complex
line bundles in view of their applications in geometric
quantization.

Let M be an orientable, compact smooth manifold with
a Riemannian metric, F an elliptic complex foliated struc-
ture on M, and L a line bundle over M such that it is F-
holomorphic and Fis compatible with the linear connection
of Lfi.e., Vs =0,foranysel"( L)]. Wewrite I'r( L} for the
F-holomorphic sections of L, and
N9(L)forN°(L)=104%® (L) (see Refs. 8, 13).

Under these assumptions the sheves of bundle values
forms {2 %( L)} yields an elliptic sheaf complex, which we
shall call the Kostant complex of a line bundle L. It yields a
fine resolution of the sheaf &% (L )= {sel" (L )|Vs

= 0}0—»4{ (,’,F(L 2 (L )->_>.()_ L 1-0.

Some spectral properties of this complex can be found-
ed in the following propositions:

Proposition 3.1: Under the above restrictions we have

,,Z,,“”"’"?*“'“—[ o itdzo

Proposition 3.2: For any ¢, 1<g<n — 1 we have
() mE*YAL) + mE 'A,L)>mEA,L),
(2) mp(A.L)>m3(A,L),

where m%{A,L ) =dim{weR {(L)|A to = Aw}.
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Remark: There is an open and very tempting problem,
to see if the geometric quantization is completey determined
by the spectrum of the Kostant complex?
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Analytic continuation from data points with unequal errors
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The problem solved in this paper is that of constructing zero-free holomorphic functions which
will (a) assume specified values at a set of discrete data points in a data region I, inside the
holomorphy domain, and which at the same time will (b) provide the optimum solution to various
stabilizing (boundedness or smoothness) conditions on the boundaries I . The immediate
motivation to this problem arose from the need to renormalize data with unequal errors by using a
holomorphic weight function to bring all the errors to the same value: this was a preliminary step
before making an analytic continuation off the data region I';. Since a stabilizing condition has to
be imposed on the boundaries Iy, the weight function must be chosen so as to introduce the
minimum additional instability on Iz . Although this was the specific motivation, other
interesting applications suggest themselves and some of these are discussed. The stability
conditions on ", which are treated may all be expressed in terms of the real parts, or of the normal
derivative of the real parts. I', is taken to be on the real axis and the functions considered satisfy a
reflection principle which means that the data values are real. It follows that the results obtained
may be expressed in terms of the real parts alone—in other words the problem solved here, is in
fact that of obtaining harmonic functions which take specific values inside their harmonicity
domain and which satisfy the appropriate extremum condition on the boundary.

PACS numbers: 02.60.Ed

1. INTRODUCTION

We shall consider extremum problems of the following
type: A finite set {z,] of data points is given on the interval
( — 1,1). Real values a; are assigned to each of these points. It
is then required to construct a complex function X (z) which
will have the following properties:

(i) it will be holomorphic in the unit disk |z| < 1 and will
satisfy X (z) = X (2);

(ii) it will assume the specified values a;: X (z;) = a;;

(iii) it will satisfy some extremum requirements on the
unit circle |z| = 1, namely either

(Problem A ):

% J:WIRC X (€*)°0(p ) dp—least,

where o{¢ ) is some given positive and even function of ¢, or

(Problem B):

L 2”l 4 Im X (¢”)|%0(¢ ) dp—least

27 Jo  d¢ '

Such extremal functions could be valuable tools in
strong interactions phenomenology or theory, in quantum
chromodynamics, or in other branches of physics where one
wishes to construct scattering amplitudes, form factors,
vacuum polarization tensors,' or any other function of inter-
est with known holomorphy domain, either from experi-
mental or theoretical® data available at some given points z;
inside the holomorphy domain.

However, from a mathematical point of view such a
continuation is highly unstable, both because of the finite
number of the data points and of the uncertainties—theo-

*Present address: School of Theoretical Physics, Dublin Institute for Ad-
vanced Studies, Dublin, Ireland.
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retical® or experimental—of the data. Indeed, it is well
known that in continuations off open contours, the errors
propagate in an explosive and extremely anisotropic way in
the function space under consideration,* as they are en-
hanced by factors which grow progressively (usually expon-
entially) in the far dimensions of this function space. There-
fore, to make the extrapolation stable, we have to add some
supplementary information such as boundedness or smooth-
ness, which mainly has the effect of confining the output
function to a region of the function space which is progres-
sively flattened along the higher dimensions. In this way, the
number of dimensions of the function space which really
matter is very much reduced; this effectively counteracts the
instabilities of the extrapolation, provided of course that one
uses at the same time an adequate continuation technique.
The method of accelerated convergence expansions
(ACE) introduced by Cutkosky and his collaborators>® pro-
vides such a continuation technique. The ACE are polyno-
mial expansions P ¥)(w), in some special variable
w(s) = (W (s) + 1/ W (s5))(see Refs. 5and 6) whichischosen to
optimize the convergence of these polynomials along some
given (open) curve I', to functions F (s) analytic in the cut s
plane. The cuts will be denoted by I'g; in the z = z(s) plane
Iy is mapped onto the unit circle. A data function D (s) re-
presenting F (s), together with its associated errors €ls), is giv-
en on I'; notice that the exact expansion polynomials P (w)
of F (s) are as unknown as the exact function F'(s) itself is. The
unique analytic functions at hand are the computer-con-
structed polynomials P'? () which best fit the (error-affect-
ed)data D (s)on I',. It can then be shown® that one can find an
upper bound E, for the deviations of these polynomials
P'P)(w) with respect to the unknown function F (s) at any
point s = s,. If the errors of the data D (s} on I, are constant
[if e(s) = €], and if %, is the rate of convergence on the cuts
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Iy of the unknown expansion P{)(w) to F (s), then the error
bound E, consists of two terms

E, =3,(pls)/R)" + 2&p(s)" (1)

where pls) = |W (s,)| depends on the position 5 = s, of the
point where the extrapolation is carried out. Since the opti-
mal variable W (s) maps the analyticity F (s) onto an annular
region such that the data region I"; maps onto the circle
|W| =1 and the cuts Iy onto the circle |W| = R, p(s) is in
general greater than one, and hence the second term of Eq.
(1) explodes when n increases too much
The optimal polynomial extrapolation P’ (w) is ob-

tained’ for precisely that n = n, for which E, reaches its
minimum,; it is obvious that the value of n,,, depends strong-
ly both on the magnitude of the imprecisions € of the data on
I, and on the error-bound 7, which measures the way in
which the exact polynomials P 7w} converge to the func-
tion F (s) on the cuts I'y. It is clear that the smoother the
function F (s) on 'y, the more rapid will be the convergence
of the PF(w) there, and hence the smaller 7, will be. Since
according to the theory of maximally converging polynomi-
als on I', we have |P"(w) — F(w(s))| -, <7./R ", it follows
that for a smooth F (s) one should be able to approximate the
data D (s) on I, with low-order (with low n) polynomials
P'PYw). Hence the exploding term é(s)" of Eq. (1) may also
be kept small, and thus one takes full advantage of the opti-
mality of the variable w(s): Indeed, the latter is optimal only
for n greater than some N,,,,, since the optimality of the
P F)(w) expansion of F (s) is proven only in the asymptotic

case. . ) .
The value n = N,,,,, where this asymptotic behavior

begins depends in an essential way on the smoothness of F (s).
In the following we shall refer to the situation when

N > Noomp s the “near asymptotic situation” (NAS), to be
contrasted with the “far asymptotic situation” (FAS) to be

discussed later.

Let us begin with the NAS case, when, as shown, one is
able to take full advantage of the qualities of the accelerated
convergence expansions. One should, however, remember
that the ACE, as well as the theory of maximally converging
polynomials® on which they are based, were primarily meant
for the constant error case. The theory, as it stands, may be
extended also to the nonuniform error case, but this involves
some loss of information since the error propagation is gov-
erned by the maximum modulus theorem® and by other'®
maximum principles. It is important, therefore, to be able to
reduce the nonconstant error case to the constant one with-
out loss of information, by means of a suitable holomorphic

and zero-free weight function.
The main motivation behind the present paper was to

solve this problem.

Case a (NAS case): An important use of the functions
X (z) which will be constructed in this paper will be to provide
the zero-free weight function

C(z) = exp{X (z)} (2)
which will transform a set of data with unequal errorsinto a
new set D {z) = C(z)D (z) with a constant error &, while the

boundedness/smoothness condition on the cuts, which pro-
vides the stability of the whole approach, is altered as little as
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possible. Note that Problem A means in fact a condition for
the modulus |C (z)| = exp{Re X (z)} on the cuts,'! while
Problem B limits the variation of the phase of C (z). Notice
alsothat C (z) = exp{ X (z)} hasnocutsatallin thedataregion
I', and does not alter the analyticity domain of the initial
problem.

If the function F (s) has a lot of “‘structure” so that the
asymptotic behavior of 7, is reached only for n> N,
where N, is large, then, in order to get n,,, > N, (i-€., to
have the NAS case again), one has to have extremely precise
data (very small €’s). If this condition is satisfied then one can
proceed as above and use the function C(z) in the standard
way, (case ) to bring the errors to a constant value.

But this might not be the case. The FAS situation will
arise if, on the one hand, the data have quite a lot of structure
{for instance if they appear to have an exponential-like for-
ward peak] so that it is obvious that they could not be ap-
proximated satisfactorily by a low degree polynomial
P'PYw), and if, on the other hand, € is not small enough to
prevent €p" from becoming exceptionally large. In this case
one way to proceed would be as follows:

Case 3 (FAS case): A weight function C_ (z) could be
constructed to contain as much of the structure of the initial
data as we choose to remove, leaving a relatively smooth
weighted data function D, (z) = C,,.(z)D (z), while preserv-
ing as far as possible the boundedness or smoothness on the
cuts in order to make 7,, fall as quickly as possible. Again,
the role of the conditions A and B is obvious. Notice also
that, in contrast with some factors like plain exponentials
which we might have used to remove structure, the function
C,: = exp{X (z)} has the advantage that it does not intro-
duce any spurious singularities (in particular essential singu-
larities) which might be theoretically unacceptable. On the
contrary, by its very method of construction, it is the most
bounded or smoothest function on Iy, which one can find
having the prescribed structure in the physical region I',.

A few words upon other possible applications of the
solutions of the problems A and B will be given. Because
X (z) = X {2), the conditions X (z,) = 4, are in fact conditions
satisfied by the harmonic function Re X (z). Moreover, we
may use the Cauchy equations in Problem B to make the
replacement

dlmX(z)  JReX|(z)
¢ or
on the boundary I, and hence both Problems A and B are
in fact extremal problems for the harmonic function ReX (z)
alone. The solutions of these extremal harmonic-functions
problems are likely to be of value in potential theory or in

dealing with the types of inverse problems which arise, for
example, in geophysics and in heat-transfer theory.

2. USE OF DUALITY

In this section we show how the duality theorem, which
is a direct consequence of the Hahn-Banach lemma, enables
us to reformulate and solve the extremum problems A and B.
A derivation of the duality theorem is given in Appendix A.
We shall apply this procedure initially to Problem A, as this
is the easier of the two cases to handle.
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A. Notation

Weshall use capitals, e.g., X (z), Y (z), M (2)---to represent
analytic functions, and correspondingly subscripted sym-
bols Xy, (2),Xi, (2),-+, to denote their real and imaginary
parts. z' will be used to denote points on the unit circle
2’ = ", and we shall frequently write

Xr.(2')=Xg. (e )=x(¢ ), (3)

using the lower case letter to denote real functions of ¢ ob-
tained as shown. The functions x(¢ ) will always be periodic
sothat x(27m — ¢ ) = x( — ¢ ); since X (z) = X (2), x(¢ ) is even,
x(¢) =x(— ¢). Further, {z;} = {Rez,} is the set of given
points on the real axis and {a; ] the real values specified.

It will become apparent as the calculation proceeds that
the boundary value functions x(¢ ) are of central importance
both for defining linear functionals and also norms for X (z},
each chosen in such a way as to suit the extremum problem
under consideration. For instance, one may define a norm
for F(z) related to the L ? norm of f(¢)

R U PR
IF@ll = - | ¢@1rote)de, @)
where, following the above notation,
f(@)=Fr.(e®) =Re F(e?), (5)

and where o{¢ ) is a real, positive weight function satisfying
the condition

olg)=o{— @) (6)
In Sec. 4. we shall also consider spaces of analytic functions
whose norms are related to the (tangential) derivative of the
boundary values of their imaginary part, as these are rel-
evant for problems in which solutions of maximum smooth-
ness (least phase variation) are sought.

We shall also have to deal with linear functionals ¥ *
acting on the analytic functions X (z). Since the functions X (z)
may be expressed linearly in terms of their boundary values
x(¢ ), the functionals ¥ * may be seen as functionals y* acting
on these boundary value functions. The Riesz theorem {see
Appendix A) may then be used to associate each linear func-
tional y* with a real function y{¢ } (even in ¢ ] as follows:

(X, ¥ *)=(x, y*) = —2‘—f Ve pdlod)ds, (1)
T Jo

where we have introduced the following notation for
functionals,

Y*=(.Y*).

For more details, the reader is referred to Appendix A.

B. Formulation of Problem A; Duality

The objective is to construct a function X (z] with the
properties

(i} X (z,) = a; where the points z, are real and the values
a, are also real; _

(ii) X (z} is holomorphicin the unit disk, and X (2) = X (z);

(iii) subject to (i) and (ii) above, X (z) should satisfy the
condition that ||X (z)|| should have the least possible value.
Here the norm ||X || is defined according to which of the
conditions A or B we wish to implement.
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We shall first solve Problem A and return later to Problem
B, which will be solved in Sec. 4. The procedure we adopt is
the following. A particular function X '”(z) is constructed to
possess properties (i) and (ii); this is really an easy task. For
instance we may make the choice

(z —z))lz — zy)(z — 2;)(2 — 2,,)

(8)

with the convention that the factors marked ~ are to be de-
leted. Now if M (z) is any function which has value O at each
of the points z,, is holomorphic in the unit disk and satisfies
M (2) = M (z), then the function X (V(z) — M (z) also possesses
properties (i) and (ii); conversely, any function with those two
properties may be represented in this form. So the function
X Yz) possessing properties (i), (ii), and (iii), (which gives the
solution to our problem) is

X(O}(Z)EX(H(Z) _ M(O)(Z), (9)

where M (z) is the solution to the minimization problem

Xz =Ya

i i (2 — z,)(z; — 2)+2, — Z)+(2; — 2,,)

8, = infllX "z) — M (2] (10
the minimization being with respect to the class of functions
M (z) which satisfy

M (z) holomorphic for |z| < 1,

Mz = M), (11)

Miz;)=0,

The duality theorem (see Appendix A}, when applied to
this minimization problem reads

i=1,.,n

8, = inf| X'V — M| = sup(X ", Y *), (12)
M v

where the functional (.,Y *) is as defined in Eq. (7) and the
extremum problem is now with respect to the class of func-
tionals {.,Y*) which satisfy the conditions

O , _
@ o | b6 IFets)ds =1, (13a)
(b) (M, Y*) =0, (13b)
for all M (z) satisfying the conditions (11},
) yg)=y—9) (13c)

C. An explicit representation for the functionals <.,Y*>

We need to identify the class of functionals satisfying
conditions (13), but before doing this it is necessary to look
more closely at the class of functions M (z). Associated with
each holomorphic function M (z) thereis areal function m(¢ ),
which, following the notation we have established, is

m($) = Mg (e”?)=Re M (e”). (14)

Conversely, once m(¢ ) is specified {any real, even [i.e.,
m(¢) = m( — ¢ )] square-integrable function on [0,27]}, the
analytic function M (z) is completely'? determined and may
be expressed as

2T _id
Ma)= = [ X mig)ds. (15)
2 Jo €% —z

Equation (15) is the Schwartz—Villat formula, which is sim-
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ply the complex extension of the well-known Poisson inte-
gral by means of which harmonic functions My (z) are con-
structed from their boundary values:

21
Mule)= = [ Plezimig)d. (16a)
277' 0
Here P(z,z') is the Poisson kernel
s 1P
Plzz)=Re| & “): _(16b
(2.2) Re(ew__ B e L

Consider now the set of functionals {.,Y *) defined by
the following special functions:

Vo) = zyiP(ZneM)(UW ))—1’ (17)

where the y, are arbitrary real constants. We first observe
that

MY*) == S, [Plz,e)otd )~ m(g Joip ) do

=EyiMR(zi) (18)
=0
since Mz (z,)=Re M (z;) =0.
We have thus shown that any functional (.,Y *), constructed
by means of the functions y(¢ ) defined in Eq. (17), automati-
cally satisfies the requirements (13b). We shall prove at the
end of this section that conversely, any linear functional
(.,Y *) satisfying (13b) can be expressed in terms of a function
y(¢ ) having the form (17). But before doing this consider first
the normalization (13a), which becomes

zaijyiyj =1, (19)
=
where the constants ;; are
2
a, = LJ P(z,,¢*)P (z,.6%)0t¢ )~ d8. (20)
27 Jo

To enable us to evaluate this integral explicitly we first intro-
duce a holomorphic function § (z) whose real part has the
value (o{¢ )~ ! when z’ = ¢. This may be done immediately
using the Schwartz-Villat formula

se= L[ ‘¢+z———d¢ 21)

2r —z ol¢)
The weight functlon o(¢ ) was restricted to be a positive func-
tion so that {o{¢ )) ~ ' is bounded. It is also required to satisfy
the condition a{¢ ) = o{ — ¢ ) [Eq. (8)] from which it follows
that

S =Sl2),
and in particular we note that when z is real so is S (2), so that
for each of the points z,,5(2;) is real. Again because
ol¢) = o — ¢ ), we may write

1 et 4z

S = -1 ”[ ‘ e‘f¢+z] 1
2 Jo L % —2 old)
17 (1=2 1

= — dg. 22

T 1—2zcosd +2* old) ¢ 22)

For real z with |z| < 1 the integrand is positive since o{d ) is
positive and it follows that S (z) is positive too.

dé
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As an alternative to Egs. (21) and (22), S (z) may be con-
structed by expanding 0~ }(¢ ) in a Fourier series (only the
cosine terms are present, since o~ '(¢ ) is even),

) =so+ isn cos(ng),

s, = 2— 5"" f dg cos(ng o '(4), (23a)
and then wrltmg S(z) as
S(z) = Ss,e. (23b)

From Egs. (20) and (21) we obtain
= —1— 7 . id ié ld
L [Pl IPl e ot )~ b
— _1_ a ) id ol — id
—Re[ 277,[) P(z;,e®)P(z;,e”)S (z'=e )d¢]. (24)

Now,
Z'+2z z'+ 2z Z'+z
P(zi,z')=Re( , ) _;[ + — ] (25)
Z' —z 2 -2z Z'—z
since the z, are real. Further, since 2’ = €”, Eq. (25) becomes
2'+ 2z 1 +2'z,
P2 = 5( — 4 — ) 26]
z'—z 1 -2z

Substitution into Eq. (24) yields
a, = IRe [ ! j(z'“" + 1+z’z")
27i z' -z 1-272
' 4z 142z !
x( — + = )S(Z’) 2—] (27)
'~z 1-27 z

Deforming the contour C around the poles and noting that
the residue at z' = 0 vanishes we get

Sz + 2z 142z,
=§Re( ( )22,»(2 ks + + 1)
z; z; — 2 1 —2zz

S(z) (z, +2z 1422 ))
z; z; — 2 1l —2zz
A}

Sz, .z,
=£[M(z +2)+(S(z) + Sz ))(.ii)]
z; —z 1— .
(28a)
For i =j the result of the integration is (S'=dS /dz)
a; =2,5'(z;) + S(z)(1 + 21 — 2])). (28b)

Note that if the weight function o{¢ ) were a constant, which
we would set tobe 1 sothat S'(z;) = S(z;) = 1, we would have
for all 7 and j,

a; = (1 +z,z;)/(1 - z,z)). (29)
In this case, all the coefficients a;; are clearly positive; in fact,
since 2a;y,y; is a norm and hence cannot vanish unless all y;
are identically zero, the matrix a; is always positive definite
and Za,y,y; = | represents an ellipsoid.

We shall now show that Eq. (17) includes all possible
functionals satisfying Eqgs. (13b) and (13c¢). For if this is not
so, suppose that {.,I" *) is a functional which is not included
in the set defined by Eq. (17) but which none the less satisfies
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(13b), that is,

<Mr*>——— f 116 Imid Joid) d = O (30)

for all M (2) satisfying the conditions {11).

Since all z; occurring in Eq. (11} are real and hence the
imaginary part of M (z) vanishes there identically, and re-
membering that My (z) may be expressed in terms of m(¢ ) by
means of the Poisson integral (16a), it is equivalent to say that
the integral from Eq. (30) has to vanish for all m(¢ ) satisfying

1 21

5 m(g)P(z;,e?)dp =0, i=1,2,.,n, (31)
m Jo
m(@)=m{—@).
Now define
7= o [ HBIPEe d (32)
T Jo
and
P8)=19)~ 3 7l Pl lold) (39
=) — Sv,PlzeNoip) ",
where

Y, Ezk:?;k (@™ l)kj' (34)

In order that the function (¢ ) should have a form different
from that of the y(¢ )’s, (Eq. 17} it is necessary that 3 (¢ )
should not be identically zero. But from Eq. (33) one sees that
for any z = z, [cf. also {32)],

o f"riw P (20,6 o
=7 — Z?i(a_l)ij —I“J ”P (2;,€® )Pz, € ;::)
=¥ — 27,(a Dy@u =0, (35)

i
so that the function ¥ ‘(¢ } satisfies all the necessary require-
ments [see Eq. (31); note also that ¥ '{¢ } is even] “to be an
m(¢ )’ defining a holomorphic function M (z) satisfying all the

conditions (11). Hence, putting m (@ )=v"(¢ ), we get
1 2

M1 = 5 | HoImiiblotd) do
1 2
=EL Y6 (6 )l ) do
1 21 N i
ZEL (m,( ol ) d > O; (36)

[unless ¥ (¢ ) is identically zero] a result which is in direct
contradiction with the conditions (13b). Hence ¥ *(¢ ) has fo
vanish identically. We have thus shown that the set of func-
tionals {.,Y *) defined by Eq. (7) and (17), is precisely the set
of functionals satisfying Eqgs. (13b) and (13c).
3. EXPLICIT SOLUTION OF THE
EXTREMUM PROBLEM A

We wish to determine §,, where

Sy=inf|l X" — M|, (37)
M
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(0}

FIG. 1. Theellipsoid 2a;y,y; = 1 and the vector y!
is largest.

whose projection on a;

and we also want to know the function M  giving the mini-
mum, so that we will have obtained the function
X9=x" - M© Wesaw from Eq. (12) that the extremum
problem (37) could be replaced by

8o = sup(X ", Y'*), (38)
Y‘

where the supremum is taken with respect-to the set of func-
tionals satisfying Eqs. (13a)—(13b). We have been able to
specify this set of functionals and to show that it can be
represented by the set of functions y(¢ ), defined in Eq. (17).
When we substitute for {.,Y *) in Eq. (38) we see that

So=——sup 3y, f (21 ot ))& ot )8

2r v 5

= sup2y,a;, (39)
i

since the integrals appearing here yield by definition the val-
ues of X "(z) at z = z,,i.e., the constants a,. On the other
hand, the coefficients y; must satisfy also the condition

zaljyiyj =1, (19)
i

where the constants a; are given by Eqgs. (28a) and (28b).
In geometric terms the problem is illustrated in Fig. 1.
Since a; is positive-definite it represents an n-dimensional
ellipsoid, and we look for that vector y; on the ellipsoid
whose component in the direction a is a maximum.
We can solve the problem analytically using Lagrange
multipliers. We put

P=>ya -4 (Za,-jyiy, - 1) (40)
i 7
and differentiate to get

aP
—=a,—2U%a;y, =0. (41)
; JZ Y

It follows that

= 57 Sl ey )

Ais determmed from Eq. (19) by substituting from Eq. (42)
for y,; the result is
172

A= %['zj(a_‘),.ja,.aj} . (43)
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The required vector y, is
yl((» = E(aQl)ijaj/{z(a—l)ijaiaj}ln» (44)

and so the corresponding optimal functional (.,y ") is de-
fined by the function

y) =2y, OP(z,,€”)olg )" (45)
Substitution from Eq. (44} into Eq. (39) gives the value of §,:
8, = {Z(a* 1)ijaiaj }1/2- (46)

The fact that we have already an explicit form [Eqs. (44) and

(45)] for (¢ ) allows us to determine also the optimal func-

tion M 9(z): indeed, if the extremum is realized with M ” and

y©, we simply have

50 — ||X(I) _ M(O)H —_ (X(I),Y10)'> — (Xlll _ M(O)’Y{O)‘>,
(47)

where the last step follows from Eq. (13b). But [put

x%¢ )=x"'(¢) — m°¢ )] from Schwarz’s inequality we have
usually [see also the definition (A3)]

0% <l I =l1x°ll (48)
(the norm of |[)°||=1) unless x°%¢ ) = const-y”(¢ ), when
equality occurs. Hence, Eq. (47) tells that x°(¢ ) and y°(¢ )
should be “aligned”’; further, since [again (47)] ||x”|| = &,
and ||y = 1, const equals &, and hence,

xVg) — mp )=xg) = 6oy ). (49)

So the optimal function x‘”(¢ ) can be written in terms of
known entities alone :

X)) = (@ ");a,P(z,e?)ofd )" (50)
77
Finally, the corresponding complex function X ”(z) is

X(O) — L T,
(2) iZJ(a )i o

xf( CE) PeeNote) do. (s1)

o \e?—z
We can immediately verify from Eq. (51) using Eq. (24}, that,
as must be the case, X ‘?(z,) does indeed have the value g;.

A modified extremum problem (Problem A’)

InSec. 1 wereferred tothe function C z)=exp{X (z)}.In
specifying the values of C (z) at the points x; we are often only
concerned with the ratios of the values C (x,),C (x;),--, that is,
we may replace C (x;) = ¢; by C{x;) = yc,. For X (2) this
means that the value @, of X (z) at x; may be replaced by
a; + a. This modified extremum problem takes the form

So=inf| XV —a — M| =sup(XV,Y*), (52)
a,M Y*

where the functions M are defined as before and « is a con-
stant. The infimum is with respect to all the functions M and
all possible constants a. Since the set of functions M (z) + a is
larger than that of problem A, in evaluating the supremum
the functionals {.,¥ *) must satisfy a further restriction in
addition to Eqgs. (13a}{13b), namely,

(@, Y*)=0. (53)
If we take the set of functionals defined by Eq. (17) then the
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additional condition (53) becomes

Sy =0. (54)

This may be treated as an additional auxiliary condition and
as such is incorporated through a second Lagrange multipli-
er u. We write, in this case,

P = z)’iai —4 (zaijyiyj —1) ",Uz)’r (55)
i iy 7
Then
— =aq, —p—MZa,-jyj =0, (56)
which gives
1 _
Y= E/{— ]Z(a ])ij(aj —ul) (57)

Equation (54) may be used to eliminate y; substituting from
Eq. (57) yields

H= Z(a_l)ijaj

If we introduce the vector a; = a; — u, with the constant u
given by Eq. (58), then Egs. (43) and (44) give us A and y,”
provided that we replace a; by a;. To evaluate §, we write,
using Eq. (54),

50:2)"(0) P = . i(O)air’ (59)

(e~ (58)

Y

and substitution for y,® gives
172
8, = {Z(a_l)ija{aj'] . (60)
g

Proceeding as before we obtain the results

x%g) = Y@ ");a;P(z;,€”)o(d)) ", (61)

7
1 (Fet4z .

X9%) =Ya"Y,a— | ——Pz,e* ~ldg.

(2) ‘Zj( ),,27 S { Noig)~" dé

(62)
Again we observe that Eq. (62} gives

XOz)=ai=a;, — Y (0 )pn/ 30" )s- (63)

1t is, of course, clear that the relaxation of the original
problem introduced here, and the corresponding restriction
of the supremum problem, must lead to a value of §; as given
by Eq. (60) which is less than that in Eq. (46}. This result may
also be seen from a direct comparison of the right-hand sides
of the two equations. Equation (54) allows us to write

Z(a~l)ijaiaj = E(a—_l)sja«{af +#2Z(a_l)ij‘ (64)

Since a; is positive definite, sois (@~ );» and hence, the sec-
ond term on the right of Eq. (64) is positive and will only be
zeroif u = 0.

1V. THE NEUMANN BOUNDARY CONDITION

In this section we consider the alternative problem
where the selection criterion A, is replaced by B (see the
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Introduction). The integral, taken over the unit circle, which
we wish to minimize is

(e isy]?
o, g im x| ete)an (65)

Now the Cauchy-Riemann relations imply that
19X, _ dXg e( dx 8z>

r d¢ ar dz Jr

where z = re”. Equation (66) allows us to write the optimiz-
ation condition B as
Xy (re®) |2
2 or
In order to proceed we need to be able to construct a
complex function X (z) which is holomorphic in the unit disk,
when the radial derivative of the real part, Xy /97, is speci-
fied on the unit circle. This Neumann type problem may be
solved in terms of a Green’s function analogous to the Pois-
son kernel of Eq. (16b). The Neumann kernel is derived in
Appendix B where we see that a subtraction is required. If we
introduce the following notation

id
Halre?) =f.é) (68)
ar r=1
using /(¢ ) to denote the radial derivative of the real part of
the function F (z) at the point z = ', the required result takes
the form [Cf. Eqgs. (B8)—~(B10}]

27

ZTR (X (z)2), (66)

1 2
.- —least. (67}

Fr{z) = Falzo) + — L@Wegze*) s, (69)
2
where
N (zg;z,6%) = —2In e:r —Z
e’ —z,
id _
=_ 2Re[ln( ; _zzo)] (70)

Further, the complex function F(z) is given by

F{z)=F(z)-%

em 5=

e’ — 2z,

)d¢ {71)

If we are to proceed in analogy with the Dirichlet case,
the next step should be to try to define a norm for F(z) by
means of the boundary function f, (¢ ):

?) 2m 1/2
1P ={ [ ot | (12

The difficulty which immediately faces us is that because of
the subtraction in Eq. (71), the right-hand side of (72) does
not define a valid norm for F (z) since the latter might be # O
even if the right-hand side of (72) is zero.

Fortunately we can circumvent this difficulty by re-
stricting ourselves to the space'® { F(z}} of F(z) vanishing at
z = z,. Moreover, we choose one of the points z; at which the
values a; of X (z) are prescribed as subtraction point z,; to be
specific we take z,=z,. Indeed, we may immediately see that
the optimization condition, Eq. (67), is not altered if we re-
place the initial function X (z) by X (z) — a; that is, if we re-
place the set of values a,,--,a, by 0, ¢, — 4,,--,a, — @,. Fur-
ther, the functions M (z) will be required, as usual, to be zero
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at all the points z,,--,z,,. In this way we have a unique func-
tionF (z) associated with each real radial derivative function

£6):
27 i¢
Fio)= — [ rism( S5 ) as 73)

T Jo -2z
and the integral from the right-hand side of Eq. (72) is now
indeed a norm for the F(z)'s.

We proceed as before and we start with a function X ?/(z)
defined to be holomorphic and to take the values
0,a, —a,,~a, — a, at the points z,. Specifically we choose

X?z) = XVz) - a,, (74)

where X "(z) is defined in Eq. (8). We then want to solve the
infimum problem

5ozi2ﬂlx<2’ —-M|. (75)

where the norm is defined as in Eq. (72). The infimum is with
respect to the set of functions M (2) defined in Eq. (11). The
function M (z) which gives the least value of § will be denoted
by M ©(z), and the corresponding X (z) by X ““(z);

X (0)(2) — X(z)(z) (O)(z) (76)

As before we use the Duality theorem to replace the infimum
problem by a supremum one

Sy=infllX ¥ — M || = sup(X ?,Y *). (77)
Yl

The supremum is with respect to the set of functionals {., ¥ *)
defined by Eqs. (13a)-{13c). We shall show that in this case
the set of functionals satisfying Eqs. (13a)—(13c¢) is precisely
the set defined by

V)= Zy, N(zyzi,eolg )~ (78)

i=2
where the constants y, are real and take all possible values
subject to the normalization condition {13a). The summation
is from 2 to n since

Nz, ;zl’eid,) =0. (79)

To show that the set of functionals with respect to which the
supremum is to be taken, is that defined by Eq. (78] we pro-
ceed in much the same way as in Sec. 2. Some care is needed
however, particularly in view of the effective elimination of
the point z,. We first observe that for any y{¢ ) given by Eq.
(78),

MY*) = Ty~

i=2

= };y,MRm (81)
(=2
=0.
Now consider the normalization condition {13a). When
we substitute for y(¢ ) from Eq. (78), Eq. (13a) becomes

zvN (zzi€*)m (9} d¢  (80)

2 a;yy; =1, (82)
ij=
where
1 21
== Nz;2,6%)
XN (z,;2;,¢ )o18 )" d. (83)
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Note that a,; = a;; =0. The constants a,; are evaluated in
Appendix C. Since

I
$ e = 5[ veiiets)as 84

it follows that the n — 1 by n — 1 matrix a; (where / and j
range from 2 to n) is positive definite and the surface given by
Eq. (82) is ellipsoidal.

Following an argument similar to that from Sec. 2 [Egs.
(30)—(36)], one can show that the set of functionals defined by
Eq. (78) is precisely the set of functionals satisfying Eqgs. (13b)
and (13c).

Explicit solution of the extremum problem for the
Neumann case

The extremum problem expressed by Eq. (77) may now
be written as

8o = sup Z Vi

i=2
= sup 2y.~(a.- ~a,).
The coefficients y, must satisfy Eq. (82):

2 ayy; =1, (82)

ij=2
where the coefficients a; are constants whose values are giv-
en by Eq. (C11). In geometric and analytic terms this prob-
lem is completely analogous to that described by Eqgs. (39)
and (19) (see Sec. 3) except that it is now n — 1 dimensional.
In Fig. 1 the ellipsoid is now in an (» — 1)-dimensional space
and the n vector a; is replaced by the (n — 1)-dimensional
vector (@, — a,), i = 2 to n. The extremum calculation, using
a Lagrange multiplier to take account of Eq. (82), yields the
value of 8, and the functional {.,¥ ©*) which gives the
supremum

”N iz (b)ds (85)

8y =sup(X D, Y *) = (X2, Yy O*), (86)
The results obtained are

8=( 3 (@ lla, —ala; —a)", 87)
and(., Y‘O”':; ;s defined by means of the function

PB)= 3 rON @z old) (88)

where the coefficients y,'” have the values

0= 3 (@ ),lg, —a))

ij=2

/ ([di;a-'»,(af ~alg, ~a,))”. (89)

The required function X %(z)=X ?(z)
now be determined. We observe that

50 —_ ”X(Zi _ M(O)“ — <X(2),Y(O)*> — (X (O),Y(OD*>, (90)
where the last step follows from Eq. (13b). Now the equality
between norm and functional

”Xm)” — <X(O)’Y(O)*) — 60’ (91)

together with the fact that the functional (.,Y ©*) has unit
norm implies, by the Schwarz inequality, that

— M 9(z) may
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x© (¢) =86 ).
So we have the following result:

x,(¢)= 2 (@™ ")yla; — @)V (z,;z,6® )(ofd )" (92)

0=
and the corresponding complex function X “(z) is

X0z = z(a Nyla, —ay)
)N(zl,z. o1 )" d¢}

X—J- {—21 (e —Zy
3

Equations (87), (92), and (93) represent the solution to
the problem with the Neumann type boundary condition.
Because of the choice made in the derivation, to single out
the point z,, this solution is not symmetic in form between
the points z;. It is clear, however, from the derivation that
this solution has no specific dependence on z, or a,; in other
words, if any other one of the points z; were selected instead
of z, the result would be the same, although this is not mani-
festly evident from the form of the solution given above.
Note that the matrix a; is also explicitly dependent on z,. It
is interesting and also of some practical value to recast this
solution in a form which involves each of the z; in an equiv-
alent way and is thus manifestly symmetric in form under
interchanges of the {z,].

We have seen that the set of functionals with respect to
which the supremum of Eq. (77) is determined, is defined by
Eq. (78) where the y; range over all real values subject to the
normalization condition (13a). We rewrite Eq. (78) as

el = Zy(l)iN(zl;zi!eM Joté )~ (94)
i#1
where the subscript (1) is inserted to indicate the special role
of z, in N (z,;2;,6”). The normalization condition (82) will
similarly be written as

2 ai‘})y(ljiy(l]j’ (95)
ij#1
emphasizing the fact that the coefficients |}’ depend in a
special way on z, [Eq. (83)]. We now mtroduce a point z, on
the real axis which does not coincide with any of the z;,. It
now turns out that each y(¢ ) given by Eq. (94) can be ex-
pressed in the form

V)= Z)’(op (z0:21,¢" ol )" (96)
i=1
This follows from the relationship
N(ziz;?) = Nz52;,6") — N(zg521,€”). (97)

When Eq. {97) is substituted into Eq. (94) the result takes the
form of Eq. (96), the coefficients y,,; being related to the Yoy
as follows:

Yoy = Vi foris1,

Yop = — ;J’(m- (98)
Equation (98) implies that
2)’10): =0. (99)

i=1
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This is an essential constraint on the y,,: it comes from the
fact that only n — 1 of the y;,; contribute, since y;); plays no
role, and hence only n — 1 of the y,,, should be linearly inde-
pendent. The normalization constraint Equation (95) comes
from

1 27

| v@)rope=1,
T Jo

and this may be expressed in terms of the coefficients y,, by
substituting from Eq. (96) for y(¢ ). The result is

(13a)

z a'ij'”)’(())i)’(oy =1, (100)

ij=1
where

af = LJZWN (2032;,6" )N (2032;,€ )(old )~ " dg. (101)
27 Jo

Equation (98) allows us to rewrite Eq. (85) in terms of the
coefficients y(o,;. Note the following equality

Z)ﬂoyiai = zyquiai + ( - 2)’11;:‘)“1
=1 ey =1
= vai(ai —ay).

The supremum problem of Eq. (85), where the y,,,;(i# 1) take
all real values subject to the normalization condition (95)
may now be expressed in terms of the y, as follows:

(102)

8, = sup'z Yoydis (103)

i=1
where the constants y,, take all real values subject to the two
constraints

2 Yo =0,

i=1

(104)

n
0
2 af‘j'y(on)ﬁov =1

=1

(105)

5. CONCLUSION

In this paper we have been concerned with the problem
of constructing zero-free holomorphic functions which as-
sume specified values at some finite set of data points. Defin-
ing the function on a finite data set is, of course, a nonunique
prescription, and further specification is required if a par-
ticular function is to be selected. The additional constraints
which have been considered here and which are of particular
interest, correspond to stabilizing conditions on the analytic
continuation process which typically are boundedness or
smoothness requirements. Hence, the following optimiz-
ation problems have been solved: Values are specified at a
finite set of points within a data region I'",. A boundedness or
smoothness condition is specified on the cuts /", and we look
for the holomorphic function which takes the specified val-
ues in I, and which best satisfies the stabilizing condition on
I'y. Since we are looking for zero-free functions we worked
directly with their logarithm. Minimal conditions involving
the real part of the latter or the tangential derivative of its
imaginary part, were treated separately. A solution ex-
pressed in closed form is obtained in each case.

The initial motivation for solving this problem was in
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connection with the method of accelerated convergence ex-
pansions (ACE) devices by Cutkosky et al.>- for construct-
ing optimum polynomial expansions in order to perform an
analytic continuation from a region I, to other points of the
analytically domain, subject to stability constraints on the
cuts ', . In order to apply this method to a set of data with
unequal errors, without incurring an unncessary loss of in-
formation, we need to construct a weight function which
allows us to renormalize the data so that the errors will all
assume the same value. This must be achieved however,
without introducing additional instability in " . The prob-
lem of constructing an appropriate weight function is pre-
cisely that which has been solved here.

An important by-product of the above procedure is an
explicit numerical expression for 8, the minimal distance (§ )
between some given function X " assuming the specified val-
ues a; at z = z, and the function m(z), vanishing at each z;. In
other words, depending on the norm in use (either problem A
or B), the value of §, represents the least L 2-norm for the real
part of X (z) or for the (tangential) derivative of its imaginary
part still compatible with the data and with the analyticity of
X (z). Hence this quantity (5,) could be a sensitive device for
detecting bumps due to resonances and for use in other simi-
lar problems. Cutkosky was the first' to recognize, ten years
ago, the importance of supplementing the usual y * test used
in fitting data by including a term which is related to the
predictive power of the continuation procedure under con-
sideration. This led to his well-known'* “modified y Z test.”
The quantity §, gives a measure of the quality of the func-
tions in terms of the stability criterion and we shall show in a
later paper how the results obtained here may be used to
solve the continuation problem, without involving an expan-
sion procedure.

Although the problem has been posed in terms of ana-
lytic continuation and the construction of holomorphic
functions, it is important to observe that the results could
equally well have been expressed in terms of harmonic func-
tions. This is possible because first of all the stability condi-
tions which have been considered may all be expressed in
terms of the real parts of the function on I . Then secondly,
the data region I', is taken to be a segment of the real axis and
the holomorphic functions are required to possess the reflec-
tionsymmetry X (z) = X (2), which means that the data values
are real. Consequently the results obtained for holomorphic
functions may be expressed in terms of the real parts alone.
These are real harmonic functions and so the problem which
we have solved is in fact that of obtaining harmonic func-
tions which take specific boundary values on I"; and which
satisfy various minimum conditions on I'.

APPENDIX A: THE HAHN-BANACH LEMMA AND THE
DUALITY THEOREM

The functional-analytic techniques used in this paper
depend on a theorem, a consequence of the Hahn—-Banach
lemma, which allows nonlinear optimization problems ex-
pressed in terms of norms to be recast into linear integral
form. This ‘“Duality theorem” states that

So=inf||x —m|| = sup (x,y*), (A1)
meM y*{liy*ll = 1and
{m,y*) = O for all meM }
S. Ciulli and T. Spearman 1760



where ||x — m|| is the distance § between the function x(¢ ),
not contained in the function subspace M, and the function
m(¢ ) from M. Here (.,y*) (we use the mathematicians’ way
of denoting linear functionals, which is the reverse of Dirac’s
one)is a linear functional which “annihilates™ every function
m(¢ ) from M. But, at least for the spaces in which we shall be
interested [the L © spaces, see below Eq. (A4)], such a func-
tional can always be expressed as an integral (F. Riesz)

we L [ :
(oy=r" [ db3ts) 10) (A2)

(replace the dot - by the name of any L * function). Hence,
in order to determine the functional y*, it is sufficient to give
the corresponding function y(¢ ).

The norm of a linear functional y* acting on some func-
tions n(g )eN is defined by means of the numbers'® (n,p*) as
follows:

IIy*||~E§gg{(n,y“>/||nlll, (A3)

where ||n|| is the norm of the function n(¢ ). However, in a
practical situation one does not use the definition (A3) di-
rectly, but takes advantage of some theorems which in some
cases (e.g., L © spaces, see below) provide simple formulae for
the computation of the functional norms (A3). Indeed, if the
function space N coincides with an L ? function space, i.e., if
the norm of the functions n(¢ ) are defined to be

e fdwn(esw’]“’l lep<m,  (A4)

the norm (A3) of the corresponding linear functionals y* is
then given by the simple formula

||y*||=[b—i;fd¢ |y(¢)|"]”" with§=1— % (AS)

Hence, if the functions m(¢ ) in (A1) are of class L %, the set of
functionals with respect to which the supremum in Eq. (A1)
istaken, is defined [see (A2)] in terms of functions y(¢ ), which
satisfy the two conditions

—L_[dgygmig)=0 l[foralimig)eM], (AS)

b—als

1 ’ q9 _
—[as o=t (A7)

& . The Hahn-Banach theorem

Before proving the duality relation (A 1), we shall sketch
here a proof of the Hahn~Banach theorem for a separable
space JX, i.e., for a space in which there exists a dense count-
able set of points.

The Hahn-Banach theorem states that, given a linear
functional y% defined on some subspace N of X [in other
words it is supposed that the number (n,y%) is known for
each function n(¢ ) in V], one can extend y¥, [i.c., define
(x,y*) for x(¢ )’s outside N ] to the whole space X in such a
way that its norm over X should not exceed!® the initial one,
over N. The construction of this “most economical exten-
sion” of y¥ is done by induction, adding one new dimension
after another to the subspace N.
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We can suppose without loss of generality that the ini-
tial norm of y¥ over Nis equal to 1;i.e., that [cf. (A3)] for any
n(¢ JeN we have

(ny%)<|in]|. (A8)

To extend y¥* to a functional y* acting on the space [x + N ]
of vectors ax(@ ) + n(¢ ) it is sufficient to give the value of the
constant c={x,y*). Since by definition the extension y* of

V% acting on elements n{¢ ) of N yields the same values as y¥
itself,

(ny*)=(ny%) [nld)eN], (A9a)
we have
((ax + n)y*) = alxy*) + (ny*) = ac+ {(ny%),
(A9b)

and hence the action of y* on vectors from [x + N ] is com-
pletely defined once the number c is given. For different ¢’s
we get, of course, different extensions of y%.

Our aim is to define the number ¢ so that the supremum
(A3) taken over all vectors ax + n should not exceed 1, in
order that the norm of the corresponding y* on [x + N]
should not exceed that of y% on N. We shall see that this is,
indeed, possible. To proceed we need the following inequal-
ity which comes from the linearity of y*, from Eq. (A8) and
from the “triangle inequality” of the norm:

(nyy%) + (moy%) = ((n, + nz)’yz‘s'/)(“nl + .|

=|n, +x +n —xl|I<lx + n,f| +llx -l (A10)

(in the last step, the usual properties of a norm were used).
Separating now the terms depending on n, from those de-
pending on n,, one gets
— (I = mall = eyt Y<lllx + mil| = Cmiy) .
{A11)
This inequality remains valid if one takes the supremum over

n, and the infimum over #n,. Then we choose a constant
c={x,p*) to satisfy

sup( — {|lx — )| — (myh) H<e<inf{lx + ) — (my8) -
(A12)
One can verify now that this choice for ¢ is a good one. For

a >0 and any neN, we see that [taking n, = n/a in Eq.
(A12)]

((ex + n)y*) =al{c + (n/ay%)
<a{|lx + n/all — (n/ayy) + (n/ayy)} = llax + n||.
(A13)

A similar inequality is obtained for a <0, using the second
side of Eq. (A12). But Eq. (A13) tells us that

s‘y’?{ {{ax + n)y*)/||lax + n|j}<1. (A14)

Actually in (A 14) we have equality since we have supposed
that sup{ (n,y%)/||n||}=|ly% ||y = 1. In other words, the
norm on the space [x + N] of this special [see Eqs. (A9) and
(A12)] extension y* of the initial functional y%, does not ex-
ceed (is equal to) the norm of y% on the space N:

”y‘”lx+N] = ‘LVI’.\II“N =1 (A15)

S. Ciulli and T. Spearman 1761



Now, since we have supposed that the large space X contains
a countable dense set of vectors, we first select from those an
independent basis, to which we extend our construction in a
recurrent way. Since our functional is now defined for any
vector in this dense set, we may extend it by continuity to the
whole space X, its norm always remaining equal to 1, the
norm of the initial functional y¥% defined on the subspace N.

% . The Duality theorem

The proof of the “duality” relation (A1) is now straight-
forward.

(a) First of all, let us remark that the word “inf” in (A1)
means that for any positive € there exists at least one element
m_(¢ )eM such that

Sy <|lx —m.|| <8, + €. (A16)
But since by definition

(m y*)=0 (A17a)
and

Ip*l = Lie,{(x — m)y*)<[x —m|| (A17b)
[see the definition (A 3) of the norm]), we have that

xp*) =Ax —m)y*)<|lx —m||<by+€.  (Al8)

Since this inequality is valid for any positive €, however
small, and since {x,y*) itself does not depend on €, Eq. (A 18)
means that

(x,y*) <8y, (419)

which is equivalent to the statement that sup(x,y*) from the
right-hand side of (A1) is smaller or at most equal to

8y(= inf ||x — m||). Actually these two entities are equal, and
meM

this will be proved by means of an effective construction
(using the Hahn—Banach lemma) of a functional y¥ saturat-
ing the inequality (A 19).

(b) This construction is done in two steps. First we take
into consideration the subspace N =[x + M] of functions
nig ) = ax(d ) + m(¢ )}, and here we define the linear function-

alyg, by

(ny§.) = (lax + m)ys, ) =ab,. (A20)
It is obvious that (putting a = 0)
(myg ) =0 forall m(@jeM, (A21)

and, moreover, that the norm (computed on the subspace NV )
is equal to 1:

g, Il
=sup| Ky M/ |Inll} = snl}"g{laléo/(lal-llx +m/al))}

= 8y/infl}x + m,|| = 8/8, =1 (A22)

Hence the functional y§  would have all the properties re-
quired by (A1) if it were possible to extend it to the whole
space X, without altering its norm. But this is exactly the
effect of the Hahn—Banach lemma described above!

Combining the conclusions of section (a) above with the
existence of such a functional y¥ saturating the inequality
(A19), we have proved that
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max  (x,p*).
Iy*Il =1
(my*) =0

The word “sup” has been replaced here by “max” in order to
point out that this maximal functional y¥ really exists.
This completes the proof of the Duality theorem.

Sp=inf|lx —m| = (A23)
meM

APPENDIX B: THE GREEN’S FUNCTION FOR THE
NEUMANN PROBLEM WITH THE UNIT CIRCLE AS
BOUNDARY

The problem is to construct a real function Xy, (z), har-
monic in the unit disk |z| < 1, when we are given the bound-
ary values of its radial derivative dXg /dr on the unit circle
|z| = 1. Clearly the function Xy (2} is determined this way
only up to a constant, and hence a *‘subtraction” is required.

Wesstart from Cauchy’s theorem for the (complex) Aolo-
morphic function X (z} = X (2} + iX,,, (2}, using C to denote
the unit circle:

Xz = = [ X&) g
2miJcZz —z
1

= — | X(z'/d (In(z' — z2))
2mi Je

[ =X (@i z)]c - Zim LX '(#)ln(z' — zo) dz,

(B1)

whereX '(z')=dX (z')/dz'. If wenow select a point z, inside the
disk as subtraction point, we write

X (zo) = ﬁ X (Z)Inz’ — zo)]c

— L X'(Z)n(z' — z,) dZ',
27i Jc

and when this is subtracted from Eq. (B1) we get the result

X(2) = X(z)) = — .LJX'(Z')m< =2 ) dz (B2

27 Je z'—z,

since

[——I—»X(z’)ln( 72 )] =0. (B3)

2mi ' —zy/lc

Equation (B3) follows from the fact that the logarithmic
term is single-valued: if we make a cut from z to z,, this cut
does not intersect C since both z and z, are internal points of
the disk (Fig. 2).

Now introduce the points Z and Z,,, the images of zand
zyin C:

Z=1/z,

Z,=1/z,

FIG. 2. The cuts of In((z' — 2)/(2' — 2,)); 2’ = €*, Zy = V/Zp, Z=1/Z.
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and notice that

1 f X'(z')ln( Z-Z ) d7 =0, (B4)
2mi Je 7 —-2Z,

sincebothdX (z')/dz' andIn((z' — Z)(/2' — Z,)) are holomor-
phic inside the unit 2’ disk.
Now, since on the unit circle Cwe havez’ = 1/Z, we see

that
A4

(B5)
-2,

/7 -1z _7-%
/2 —1/zy, 7 —1z,
so that (B4) may be written as

-1 f X’(z’)ln( z-Z ) iz (B6)
2mi Je ' —2z,
Equation (B6) may now be combined with Eq. (B2) to yield
the result

2'—z

dz'

’

' —z,

1 J‘ axX
= — — | =—=In
m Jc Or

where we have used 3X /dr = (dX /dz)(0z/r)=X 'é“.

If we take the real part of each side of this equation, and,
since on the right-hand side of (B7} only X /Jr is complex,
we find

Xz —X(zp) = % J;X "(z')In

2 —z

¢ (B7)

2 —2z,

e —z

dg,

1 27 IX. (eid')
XR<z)=XR(zo)—;L 2

et —z,
(B8)

which is the analog for the Neumann problem of the Poisson
formula (16) which solves the usual Dirichlet problem. So we
have shown that the Neumann-kernel, which we shall de-
note by N (zp;z,e*), is

Nizgz,e?)= — 2In|(e? — z)/(e" — z,)]. (B9)

Equation (B8) clearly implies the following representation
for the holomorphic {complex) function X (z) in terms of the
normal derivative of its real part Xy :

X(2)= X (z)) — ifﬂax';(rew)ln ( e~z )d¢

i¢
(B10)

Equation (B10) is the analog for the Neumann problem of the
Schwarz-Villat formula (15).

APPENDIX C: CALCULATION OF THE COEFFICIENTS
a; IN THE NEUMANN CASE

We have to evaluate the coefficients a; defined in Eq.
(83),

a; = % fﬂN (2052:,6" )N (2,32;,6% (ol )y~ dg, (83)
T Jo

where, from Appendix B and Eq. (70), and putting
¢ = 7/, the Neumann kernel is
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Nizz2)= —2n| Z—Z

z'— 2,

= efn(375)]
-l 7=) (3 0)

As in Sec. 2, we shall introduce the holomorphic function
S (z) [Eqgs. (21-23)], in order “to extend” the function 1/0(¢ )

defined initially on the unit circlez’ = ¢* also to points z with
|z| < 1.

_ L (et 1
St = - i ew_”_(md«t, (C2)
1/0(¢ ) = Re{S (e*)}. (C3)

Noticing that both N factors appearing in (83] are real, sub-
stituting this in Eq. (38) and changing the variable integra-
tion from ¢ to z' = e we obtain

1 z'—z 1 -2z
a; =Re— | {ln + In -
2 Jc Z'—z, 1 ~2'z
zZ—z 1—2zz\] Siz
X {ln( — ) + ln( —L)] —(,El dz', (C4)
Z'—z 1 -2, z
where the contour C is the unit circle taken in a counter-
clockwise direction. It is convenient toc choose the point z,
such that z, <z for r = 2,...,n, and also for the moment we

assume that z; <z;. Now the only singular factors in the inte-
grand which lie within the disk are:

(a) In((z' — z;)/(z' — z,)) with branch points z,,z;;
(b) In((z’ — z;)/(z' — z,)) with branch points z,,z;;
(P)1/2', a simple pole at z' = Q.

This means that a; may be written in the following form:
= {g@ (5) (ab) (P)
a; = {a,-, +a;’ +a” +a 1, {Cs5)

where o{'and ' contain either the factor (a) or (b) [see be-
low Eqgs. (C6) and (C8)], al*! contains both of them [see Eq.
(C9)], while af’ is the pole contribution. Since the residue at
Z =0ofIn{(1 — 2z, )/(1 — 2'z,)) is nil, only the term in (C4)
containing In((z’ — z;)/(z' — z,))In((z' — z;)/(z' — z,))
contributes to &’ [(C10)]. The term containing

In((1 —2'z;)/(1 — 2'z)))In((1 — 2'z;)/(1 — z'z,)) having no sin-
gularities inside the unit circle, vanishes identically.

By moving the integration contour we may write

1 z—z 1 -2z d
ol = — ln( : )m( . )S ) %2 (cs)
27iJc,, \Z'—z, 1 —22, z
C, . being a contour which encircles the cut fromz, toz; ina

counterclockwise direction. The discontinuity of
In((z' — z,)/(z" — z,)) across the cut is 277, so that

Z;
all = — Pf In
2,

The principal value of the integral is to be taken if Oc(z,,z;).

’
—sz

’

1 -2z,

si) % )
V4
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The second term in Eq. (C5) is

I_ . 1_ I
a® = [ 1 ZZ5 ) LS (2 )—
ij 27 f
miJc,, \Z —2z l—zz1

Z; 1_' I
= — fln

— Sz )— (C8)
The third term is

1—zz1

(ab) 1 zZ'—z z'—
af® = — In In Sz )
2miJc,, \Z'—1z z' —2z,
% z—z dz'
= —Pf In | — S(z’)—'
2, Z -2

1 zZ —z
* 3 ln( ) ( e
27iJc,, \Z' —z zZ'—1z

z
= — Jln s )
2; z' —Z,
% Z —z 2 —z /
_ j{ln,—' +In ———-z-’- }S(z’)ﬁ-
2, z'—2z, z'—z z

Z' -z d
275 s
¥4

= ——Pf iln

Z'—z
% z'—z, '

—Pf In| —= S(z')d—f. (C9)
2, z' —z, z

In evaluating the above integral we noted that the disconti-
nuity in In((z’ — z;)/(z’ — z)))In{(z’ — z;)/(z" — z,)) across the
cut form z, to z, is 27i(ln | (2’ — z,)/(z’ — z,) |

+ In|z' — z))/(z’ — 2))|) and 27iln | (2’ — z,)/(z' —2))|
across the cut from z;to z;.

The fourth term is the residue at 2’ = 0. A little care is need-
ed in defining this due to the presence of the cut. It is not
difficult to see that the correct result is

off! = {In(( — z,)/( — z,))ln(( — z)/( - 2,)}5 (0)
={In|z,/z|In|z,/z,| — 76 ( — 2,)6 (/)6 (z))}S (0),
(C10)

where the factor 6 ( — z,)6 (z,)0 (z;) is equal toone if z = Olies

between z, and min (z;,z;), and is zero otherwise.
We may combine these terms to get

; = {n|z./z,|In|z;/z,| — 76(—2)0(z,)0 (z; 1}5(0)

A, + Ay (c11)
where
A = —P Zi[In 1225 ) | 225 ]ﬂf’—)dz'
v 2, —2Z'z, zZ—z, z
(C12)

and where.S (z) is given by Eq. (C2). The symbol “‘Re” present
in Eq. (C5) is here unnecessary, since all quantities appearing
in (C11) are real. Nor is the restriction z, < z; any longer
necessary, since Eq. (C11) is symmetric in the variables
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z;and z;. It may also be shown that this formula gives the
correct result also in the case / =.

'See for instance R. Oehme and W. Zimmerman, preprint (University of
Chicago, 1980).

2Q.C.D. perturbative calculations are carried out in spacelike regions, but
in order to produce predictions also in the timelike region one might use
the spacelike information in conjunction with some adequate continuation
technique. See also I. Caprini and C. Verzegnassi, ICTP preprint (1980).
*For instance in perturbative calculations, there are uncertainties since any
practical computation takes into account only a finite number of graphs.

4See for instance the review paper S. Ciulli, C. Pomponiu, and L. S. Ste-
fanescu, Phys. Rep. 17, 133-224 (1975). A simple example of the explosive
propagation of error is provided by the analytic continuation procedures
(see Ref. 5,6) which make use of the mapping W (s} which maps the data
region I'; onto the unit circle |W(s)| = | and the cuts, I'g, onto the circle
|W(s){ = R (R is here a conformal invariant). A given point s, of the cut-
plane will then map at some point W (s,) on the circle I', of radius
Po=IWis,)l.

Now, on each of these circles the amplitude F(s) might be seen as a
function of 6 = arg W, i.e., the function F(s) is an element (a point) in the
function space spanned by the infinite basis {¢"¢ }. Hence analytic continu-
ation from I, towards I',,and Ik can be viewed as a flow inside this space of
functions. This flow is extremely anisotropic and divergent, as a spacing €
on two points along the n' dimension, atp = 1, willbecome ep;" atp = p, .

R. E. Cutkosky and B. B. Deo; Phys. Rev. Lett. 22, 1272 (1968) and Phys.
Rev. 174, 1859 (1968). R. E. Cutkosky, J. Math. Phys. 14, 1231 (1973); see

also next reference.

8. Ciulli, Nuovo Cimento A 61, 787 (1969); 62, 301 (1969).

7A rough estimate of this number is given by the minimal number of terms
in P, '® () necessary to approximate the data better than €.

8. L. Walsh, Interpolation and Approximation by Rational Functions, Vol.
20, 2nd ed. (Am. Math. Soc.,Providence 6, RI, 1956).

“The derivation of the expression (1} for the error bound is primarily based
on (Ref. 6) the computation of the bound (¢ + 7, /R ") for the deviation
between the exact but unknown polynomials P\/'(w) and the data-con-
structed ones P'?'(w) in the data region I",. One recognizes next the analy-
ticity of (P {w) — P\"Y(w))/ W " outside the unit disk (i.e., also in the cuts
region, | W | = R and even for W— o), such that one might use the maxi-
mum modulus principle.

WSee for instance Chap. V of Ref. 8. Here the weight n(z) is essentially 1/¢€(z).
There is a factor 1/N,==1/min(n(z)) = maxe(z) which appears in the right-
hand side of the inequality (5) {page 91 of Ref. 8), which worsens hence the
error bound 77, /R " of the P'/'(w) in the data region I"\(=c).

'"From now on it is assumed that the cut complex s plane has been mapped
onto the unit disk |z| < 1, by means of standard methods [see for instance
S. Ciulli and J. Fischer, Nucl. Phys. B 24, 537 (1970)].

'2An analytic function is determined by its real part up to a pure imaginary
constant, but the latter vanishes in our case because of the condition
M (z) = M (2). Strictly speaking, to ensure one-to-one correspondence be-
tween the functions M (z) and their boundary values m{¢ ), the interior
function M (z) must be restricted to the class A” (i.e. sup |Mglz = re® )||L P

has to be finite) for P> 1, when m(¢ JeL”. In this paper we have been con-
cerned with P = 2.

YThe set { F(z)} of analytic functions having a representation (71) but van-
ishing at z = z, indeed forms a space. Further, there is a linear one-to-one
correspondence between the elements of this space and the L ?spaceof the
functions f,(# ) (the boundary values of the normal derivatives), each lin-
ear functional over § F ] being a linear functional over {f,,} and vice versa.
As we have already stressed in Sec. 2, this is essential for the use of duality
in conjunction with the Riesz representation (which is valid for L ”
spaces).

MR E. Cutkosky, Ann. of Phys. (NY) 54, 350 (1969); see also R. E. Cut-
kosky, J. Math. Phys. 14, 1231 (1973).

157he effect of the functional {.,y*) on the function n(¢ ), is, by definition,
the number {n,y*).

15Since the supremum in (A3) is taken over the larger set X, it cannot be
smaller than that taken over the set N.

S. Ciulliand T. Spearman 1764



Initial-boundary-value problem for diffusion of magnetic fields into
conductors with external electromagnetic transients

H. E. Wilhelm

Michelson Laboratory, Naval Weapons Center, China Lake, California 93555
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The initial-boundary-value problem for the diffusion of an initially homogeneous magnetic field
into a slab of conductivity o < o« and width Ax = 24 is solved, under consideration of the
electromagnetic wave pulses generated at the surfaces of the conductor by its interaction with the
external magnetic field, which propagate into the surrounding vacuum. The analytical solutions
show that (i) the external electromagnetic transients are necessary in order to correctly satisfy the
boundary conditions for the tangential electric and magnetic field components, and (ii} the spatial
and temporal development of the electromagnetic field and electric current in the conductor is
quantitatively determined by a new dimensionless parameter group # = poaclc = (ue€,)~"/?).
This “magnetic Reynolds number of the vacuum” determines the coupling between the transient
fields in the conductor ¢ > 0 and the ambient space (¢ = 0}.

PACS numbers: 02.60.Lj, 41.90. + e

1. INTRODUCTION

Thediffusion of electromagnetic fields B(r, ¢ ), E(r, t }ina
conductor of finite conductivity o and normal surface vector
n(s), when the electromagnetic field By(r, ¢ ) and E(r, 1) out-
side of the conductor are known, is in general described by
Maxwell’s equations without displacement current, where
the tangential field components are assumed to satisfy the
boundary conditions’ n X [B(r, ¢) — By(r, #)] = 0 and
nX[E(r, t) — Eyr, t)] = 0. If the external electromagnetic
field is time-independent and electric potential fields are ab-
sent, then B, = By(r) and E, = 0 (since VX E, = — dB/
dt=0and E, = — V&,=0), so that the tangential bound-
ary conditions reduce to’? n X [B(r, #) — By(r)] = 0 and
n X E(r, r) = 0. These boundary conditions have found wi-
despread use in mathematical physics,’ electromagnetic the-
ory,” and the theory of magnetic flux compression (at the
outside surface of the liners).>* However, these boundary
conditions are questionable approximations, since they do
not take into consideration the wave fields B(r, ¢), E(r, ¢)
propagating away from the conductor into the surrounding
medium, which have their sources in the transient current
fields j = ug 'V X B of the conductor.

For a concrete illustration of the problematics, consider
the diffusion of an external (homogeneous) magnetic field,
B, = {0, B, 0} for |x| > a, into a conducting slab in the re-
gion |x| < a which is field-free at time ¢ = 0 (Fig. 1). Using
the conventional boundary conditions, the transient mag-
netic field B(x, 1) = {0, B (x, t), 0} in the conductor is deter-
mined by the parabolic initial-boundary-value problem®:

OB /3t = kB /0x%, |x|<a, t>0, (1)
B(x,t=0)=0, |x|<a, (2)
B(x= +a,t)=B, t>0, 3)

where « = 1/p40. By means of Fourier’s method, the general
solution of Egs. (1)—3) is obtained as a superposition of eigen-
functions®:
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4 o0 (_ l)n—l
Bix,1)=By1— 2 v =2 _
. 2) °[ 7,21 (2n — 1)
X~ Mn— 1i/4a 0 0g n—1 x|,
|x|<a, >0, (4)

with B (x,1 }»>B,in x| <afort— e .Since VX B = uyoE, the

electric field E(x, ¢) = {0,0,E (x, ¢)} in the conductor is

2B, & "
e Ny (=1t

Hooa <

2 2. 2nm—1
X~ *2r—1 e /4a’gn

Ex,t)=

X,

|x|<a, t>0. (5)

In accordance with the boundary conditions (3), the
space outside of the conductor remains unperturbed while
the electromagnetic field diffuses into the conductor,

Byx,t) =B, Eyx,t)=0, |x|»a, £>0. (6)
The transient currents j = V X B/u, in the conductor are
“eddy currents,” and, therefore, cannot produce transient
magnetic fields E,(x, t) = By(x, t) — B,#0in the outside re-
gion |x| > a. The net current 7 {t ) through any cross section
z = const vanishes, due to the boundary conditions (3):

I{t)/Ay = g f“ (8B (x, t)/dx] dx

B,
=,u0_1JB dB=0. (7)

-x %

FIG. 1. Magnetic field By(x) for t = 0.
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+x

e

FIG. 2. Diffusion field B (x,?) and transients B s Ixt)fort>0ands’'>0
(qualitative).

By comparing the conductor solutions (4) and (5) with
the vacuum solutions (6), it is seen that B (x = + a,
t)—By=0,butE(x = +a,t)— Ejx= +a,
t)=E(x = £ a,1)70! Thus, the conventional boundary
conditions '~ lead to a violation of the fundamental law of the
continuity of the tangential electric fields at interfaces.

The correct formulation of the boundary conditions re-
quires consideration of the simultaneous wave fields
B, (x,t),E (x, t)propagating with the speed of light ¢ into
the positive and negative half-spaces x> +eandx < —a
surrounding the conductor (Fig. 2), which are excited by the
transient current fieldsj (x, 2) = ug 'dB (x, t)/dx in the
{space-charge free} conductor. No matter how small the ex-
ternal transients B . bx, ¢)and E 4+ {x, ) are (in comparison
with By,#0 and E, = 0), they have to be taken into account
in order to rigorously satisfy the boundary conditions
n X [B] = 0 and n X [E] = 0 for the continuity of the tangen-
tial electromagnetic fields at conductor interfaces.

The quantitative assessment of the significance of the
external transients of the diffusion process leads to the dis-
covery of a new dimensionless parameter combination,
which has the physical meaning of a “‘magnetic Reynolds
number of the vacuum”:

R =ppoac, c=(uye,) " =3x10* m/s. (8)

In the following, the formulation of the initial-bound-
ary-value problem for diffusion processes with external tran-
sients and its analytical solutions for the transient electro-
magnetic fields inside and outside the conductor are
presented. The qualitative and quantitative importance of
the new boundary conditions and the external wave fields
are discussed in terms of .

The presented theory has important implications for
the evaluation fo the flux losses through the liners of magnet-
ic field compressors,** the electromagnetic acceleration of
conducting macroparticles,®’ the electromagnetic induction
in conductors moving relative to external magnetic fields,*®
and for the interaction of transient plasma shock waves with
external magnetic fields.'>!" The general significance for
theoretical physics is obvious.

2. INITIAL-BOUNDARY-VALUE PROBLEM

The subject of the following considerations is the diffu-
sion of the magnetic field into a conducting slab |x| < g,
which is initially embedded in a homogeneous magnetic field
B, = {0, B, 0}, under simultaneous emission of electromag-
netic waves from the conductor surfaces x = + a (Fig. 1).
The transient electromagnetic fields B, = [0,
B, (x,t),0}andE, = {0,0,E (x,¢)} in the infinite vacu-
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um half-spaces (0 = 0, 4 = py) x> + aand x < — g are de-
termined by the initial-boundary-value problems ( + ) for
the wave equation:

d°B, /Ot* =B, /9x*’, +x>a, t>0, (9)
B, (x,t=0=B, +x>a, (10)
B (x=+at)=B,+¢ (t), t>0, (11)

since
OE, /3t=c'dB_ /dx, JE, /dx=3B_ /o, (12)

by Maxwell’s equations with displacement current. The so-
lutions of Egs. (9){11) for the still undetermined boundary
values ¢ , (¢) are

B, (x, 1)

=B+ ¢, (t FIxFa)e), a< tx<a+et,

=B, a+ct< +x<ow, (13)
and
E, (x,t)

=Fcp, {t FxFa)e), a< tx<a+ct,

=0, a+ct< +x< . (14)

These solutions are typical for hyperbolic equations, i.¢., the
boundary values ¥, (¢) are “transported” into the half-
spaces + x > a with the speed of light ¢, so that discontin-
uous wave fronts result at x = + (a 4 ¢t ).

Let the external magnetic field B, be switched on at
t = O so that no electromagnetic fields exist in the conductor
for t < 0. The conductor has a finite conductivity o and
can, therefore, not carry surface current densities (Ref. 12),
j* =lim,, ,0EAx = 0for 0 < « and E bounded. Accord-
ingly, the boundary conditions for the tangential electric and
magnetic field components at the conductor vacuum inter-
faces are

Bix= ta,t)=B,+¢_(t), 1>0, (15)

E(x= ta,t)= Fecp_(t), t>0, (16)
where

Ex,t)=xdB(x,t}/3x, |x|<a, >0, (17)

by Ohm’s law is the electric field in the conductor, and B (x, ¢ )
is the magnetic field in |x| < a. Furthermore,

k= 1/uy0>0. (18)

(The boundary conditions n-[€E] = Oand n-[B] = 0 are satis-
fied since E and B have no normal components.} By elimina-
tion of the unknown boundary values E (x = 4 a, t) and
¥, (¢) from Eqs. (15)(17), boundary conditions involving
only the magnetic field B (x, t ) in the conductor are obtained:
JdBix= +a,rt) c

+ -Blx= +a,t)= +
Ix K

£B, t>0.

(19)

These are the new boundary conditions for the diffusion of
magnetic fields B (x, ¢ ) into conductors. They differ from the
conventional boundary conditions'? through the curl terms
JB (x = + a,t)/3x+#0, which consider the emission of mag-
netic dilution waves from the conductor surfaces x = +a
into the vacuum |x| > a.
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Within the conducting slab of finite width 24, the prop-
agation of the magnetic field can be treated in the nonrelati-
visticor diffusion approximation.">'? Accordingly, B (x, ¢ )in
the initially field-free conductor is determined by the para-
bolic initial-boundary-value problem:

OB /3t = kd*B /3x*, |x|<a, t>0, (20)
B(x,t=0)=0, |x|<a, 21)
dB(x= ta,t)/dx+hB(x= +a,t)
= +hBy, >0, (22)
where
h=c/k>0. (23)

The transformation
B(x,t)=B,+ B(x,t), |x|<a, 130, (24)
reduces Egs. {21}-(22] to an initial-boundary-value problem
with standard ‘“‘radiation” boundary conditions:
3B /3t = kd*B /3x%, |x|<a, t>0, (25)
Bix,t=0)= —B,, |x|<a, (26)
OBx= +a,t)/dx+hB(x= +a,t)=0, t>0.(27)
In accordance with Fourier’s theorem, the solution of
Eqs. (25}27) is obtained as a superposition of eigenfunc-

tions B, (x, ¢ ) for the region |x|<a which satisfy the bound-
ary conditions (27):

~ w© 2 kzk_l in k
Bix,t)= —2B, ¥ (h*+ky)k, 'sink,a
= [(hP+kla+h]

2
— kot
Xe "cosk,x,

|x|<a, 30, (28)
where
k.atglk,a)=ha, n=1,2,3,. (29)

gives the eigenvalues k,, associated with the boundary condi-
tions (27).

A. Conductor Solutions

For a compact representation of the field solutions, di-
mensionless independent (£, 7) and dependent variables are
introduced,

E=x/a, T=xt/a’, a,=k,a, (30)
B 1)=B(x,t)/B,, (& 1)=E|x,1)/(kBy/a),

(31)
/(g’ T) =j (x, )/(BO//*‘OG)

According to Eqgs. (24) and (28), the solutions for the dimen-

sionless fields #(&, 7), & (&, 7) = B (£, 7)/JE, and (&, 7) in
the conductor are given by

- 2 2y, — 1

BEr=1-2 3 T @l sna,

= [P+l + R

a27'
Xe Mcosa,£ |€|<1, 730, (32)

= (#*+)sina,
g, nN=
&7 2,.;1 [(#*+a2)+ #]

2
xe “Msina,£, |€|<1, 730, (33)
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/(f, T) = ?(é‘, 7), lg |<1’ 720, (34)
where
a,ga, =#, n=1273,.., R=ac/k=pyoac,

(35)

by Egs. (8) and (29). For sufficiently large times 7»a; 2, the
homogeneous magnetic field has diffused completely into
the conductor,

B 1)1, &, 110, 6 70, 7. (36)

In the hypothetical limit of infinite magnetic vacuum Reyn-
olds number #, Eq. (32) reduces to the known solution (4)
for the conventional boundary conditions,’

. (_ l)n 1

lim A& r=1-—
Jm #E7) 2'1 2n —1)

X @~ 2n— 1\imr/ag g 2n—1 €,
2
|&]<1, 70, (37)
since

lima, =2 —Lr n=1,23 (38)
R

Comparison of Eq. (32) with Eq. (37) indicates that the
% (£, 7) solutions with the new and conventional boundary
conditions differ not much if #»a, = 7/2.

B. Vacuum Solutions

In view of the boundary conditions (15), Eq. (32) yields
for the boundary values ¥, (1) = # (= +1,7)— 1. Ac-
cordingly, Eqs. (13) and (14} give for the electromagnetic
fields in the positive (£ > + 1) and negative (£ < — 1) half-
spaces the solutions

# (&)
=14+V¥ (TFEFIWZE), l<+é<l+Ar,
=1, 14Pr< +€<, (39)
and
L&)
=FRVrFEFIWR), 1< &<+ AT,
=0, 1+%17< +é<w, (40)
where
v (7 45

= (#*+ at)sina, cosa,
n=1 &, [(%24‘(13,)-{’-.@]

~allrFiE FIV/R)

(41)

Equations (39} and (40) represent electromagnetic wave
pulses which propagate with the dimensionless speed %(c)
from the conductor surfaces £ = + 1 into the vacuum
spaces + &> 1 with discontinuous wave fronts at

€= 4 (1 + A7). They are kicked on at 7 = 0 and their
emission lasts to the end (7— oo} of the diffusion process in
the conductor. The vacuum fields # _ (£, 7) are in the oppo-
site direction of By, i.e., they represent dilution waves {Fig.
2).
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In the case of large coupling numbers, #» 1, Egs. (39)

and (40) yield with Eq. (41)
B, =1 +0[R"], 1< +E<]+Pr, (42)

2,
R F

& @T)g:tZZe(

n=1
l< +€<1+ A7, (43)

since cos @, =( — 1)"~}(2n — L)z/2% for #> 1 by Eq. (35).

The magnetic field B, outside of the conductor remains
nearly unperturbed during the diffusion process, Z +
~% !, whereas the external electric transients & 4 #0are
of order %° behind the wave fronts, £ = + (1 + #7), for
A'> 1. However, since V X B =c¢ %dE, /dt,notonly &
~ Z° but also .@ ~H cannot be neglected for #» 1.

Thus, we havc shown how self-consistent solutions can
be obtained for the electric and magnetic fields in the con-
ductor and the surrounding vacuum, which satisfy the
boundary conditions for the continuity of the tangential
electric and magnetic fields at the conductor-vacuum inter-
faces. The conventional boundary conditions for electro-
magnetic diffusion processes,' ignore the external electro-
magnetic transients, violate the boundary condition for the
tangential electric field, and permit no Poynting vector
S = E X H outside of the conductor. As a result, the conven-
tional boundary conditions’-* make it impossible for electro-
magnetic fields to diffuse through conductors and to escape
into the ambient space.

For both the conductor and vacuum solutions, the limit
Z%—0, which implies 0—0 since a #0, is not realizable since
the conductivity of conductors is by definition large. For
insulators or extremely poor conductors (# « g—0), the
nonrelativistic or parabolic diffusion equation is inapplica-
ble.'? Therefore, the investigation of the limit Z—0 would
require solution of Maxwell’s equations with displacement
current in the slab |x| <a given elsewhere.'?

The generalizations of the theory required for conduc-
tors and external media (vacuum, gases, fluids) with different
permittivities € and u are trivial but complicate the notation.

3. DISCUSSION

It is known that Maxwell’s equations with displace-
ment current and the nonrelativistic Ohm’s law j = ¢E com-
bine to a hyperbolic diffusion equation for the magnetic field
Bir, ¢) in conductors,'?

2
08, 1B _oys, (44)
at? 1y Ot
where
o = €/0 (45)

is the field relaxation time, e.g., 7 =(10~°/361)/6 X 10’

~ 10~ sfor copper witho = 6 X 1072 ~!/m. Equation (44)

reduces to the parabolic diffusion equation in the limit 7

La/c:
JB
at

The parabolic diffusion equation is an excellent approxima-

= = 7x*V?B, rgp<alc. (46)
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tion, since the relaxation time of conductors is extremely
small, 75 €a/c. By Eqs. (45) and (46), the field relaxation
time 7 and the diffusion time 7, are interrelated by

75! =Tr¢*/a%, T =pg0ds, (47)
where a is the extension of the conductor. For conductors,
the diffusion time is relatively large if a is not microscopical-
ly small, e.g., 7p, = 47X 107" X 6X 10" X 107~ 1072 s for
a copper slab of widtha = 107* m.

Comparison of the neglected term 3 *B/J? 2 with the sec-
ond and third terms of Eq. (44) reveals the relation of the
parabolic diffusion approximation to the new coupling num-

ber # = pyoac:
/ |c*V*B|

82B/
_Eddq

,8B‘~}62B

ot?

~ R — A2 (48)
s} (#oa'a y
This result again confirms the validity of the parabolic diffu-
sion equation for conductors, for which # = poac» 1. E.g.,
R =47 X 1077 X6 X 107 x 10723 X 10® ~ 10® for a copper
slab @ = 10~2? m. More important, Eq. (48) demonstrates
that the neglected relativistic term d *B/3t * in the conductor
is small of order # ~% <« < < < 1, whereas the calculated
electromagnetic fields in the conductor are of order
B ~ & ~F° [Egs. (32)-33)], and the external electromag-
netic transients are of order # , ~%#~'and & , ~#°
[Egs. {39)-{40}], since in Eq. (41) for large #

lcosa,| = [1+ (#/a,)] *=a,/R~Y2n— \g R,
R>l, n=1,213, (49)

In conclusion, it is noted that, in conductors, magnetic
field diffusion is a nonrelativistic process (as in electric con-
duction, j = oE). The electric transients & , in vacuum
must be of the same order as the electric field & in the con-
ductors, & , ~ & ~ #°, since otherwise the tangential elec-
tric field is not continuous across the conductor-vacuum in-
terface. On the other hand, the external magnetic transients

# , are small of order Z ' = (i 0a)” 'c”' since the mag-

netic field energy flows with the speed of light towards the
conducting cavity. The deeper physical reason for these elec-
tromagnetic transients is to be seen in the conservation laws
for electromagnetic energy and momentum, which follow
from Maxwell’s equations.'*
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The tensor virial theorem is analyzed in relation to orthogonal linear transformations. The

physical implications are discussed.

PACS numbers: 03.20. + 1

I. INTRODUCTION

The tensorial generalization of the virial theorem (TVT)
was introduced in classical mechanics by Parker’ and it was
recently reformulated by Miglietta.? The corresponding
quantum tensor virial theorem was deduced by Pandres’ and
Cohen.*

The former author used a linear coordinate transforma-
tion plus the variational principles to make the demonstra-
tion. Such procedure allows one to obtain the equations that
have to satisfy the eigenfunctions of the Hamiltonian opera-
tor, and furthermore the conditions under which approxi-
mate functions satisfy those equations. Later, Cohen de-
duced the TVT from the Heisenberg equations of motion.
Recently, we have discussed the importance of the groups of
transformation in relation to the TVT.>¢

Pandres’ procedure® consists of the insertion of n* inde-
pendent parameters in the trial wave function, through an
n X n square matrix, and a posterior imposition of the extre-
mum conditions of the energy functional with respect to
such parameters. This method gives a set of n” independent
equations which compose the TVT.

Naturally, when the number of independent param-
eters is less than n?, the TVT will be satisfied in a partial and
incomplete way.

The purpose of this communication is to show which is
the class of equations that will be fulfilled when an ortho-
gonal matrix is used. The physical implications will be self-
evident.

Il. ORTHOGONAL MATRIX

An orthogonal matrix C,,, satisfies the well-known
relationships

'C CC _Inxn, (1)
CiC, =6,ij=12,..n, (2)

where C'is the transpose matrix of C,/ is the identity matrix,
and C, represents the /th column of the matrix C. Equation
(2) follows from Eq. (1) and it assures us that C contains just
n(n — 1)/2=sindependent elements. These independent ele-
ments will be denoted by z,,2,,...,z, .

From Eq. (1) it is deduced that the s matrices 4, defined
by the formulas

A.:(;fiag
! 4

i=1,2,..5 3)

are antisymmetric.
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lIl. TENSOR VIRIAL THEOREM AND ORTHOGONAL
TRANSFORMATION

Let us consider a system composed of N identical parti-
cles, whose Hamiltonian is

H=-L S S8+ V) @)

2m /= =
where m is the mass of each particle, and p,; is the conjugat-
ed momentum of the jth Cartesian coordinate x,; corre-
sponding to the ath particle. X represents the set of coordi-
nates of all the particles.
V (X ) takes into account internal as well as external po-
tentials, i.e.,

ViX)=V.(X)+V.(X) (5)

When V{X ) possesses a well defined symmetry, some rela-

tionships which constitute the TVT are trivial.”* In order to
be sure of the nontriviality of the relations that we will dis-
cuss, we assume that V(X ) is asymmetrical enough.

From a normalized well-behaved function ¢ (X ), wecan
define the variational function ¢ (Y'), where ¥ symbolizes the
set of variables { y,;} given by the following orthogonal
transformation

z Cp¥gs i=123. (6)

i=1
The value of the Jacobian of the transformation {6) is one, so

that ¢ (Y} is normalized. The derivative of ¢ {Y ) with respect
to the s-variational parameters z,(i = 1,...,5) is given by
3¢(Y) 3¢ (Y) Yy
= t v
g ; aya} azi 2 2 § k'¢
z Z (A0, — vy )P (), (7
t>k

where

- St ®)

X aj
Imposing the extremum conditions to the functional E,
E (z,2y,...2,) = (¢ (Y)|H$ (Y)), ©
with respect to the s parameters z,, we obtain at once
z 2 ([Hye — v ]>(Ai)tk =0. (10)
t>k

If L,. denotes the ith component of the angular momentum
operator of the system, then Eq. (10) is transformed into

([H’L1]> == 0’ l= 1)213- (11)
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Evidently, the set of parameters introduced via an orthogo-
nal matrix implies the conservation of the expectation value
of the angular momentum.
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For evolution equations which can be written in Hamiltonian form two ways, there exists a
relation between two functions Q " and @ @, both of which are gradients of conserved functionals.
The relation can be extended to define (recursively) functions Q . It is shown that the @
corresponding to the general evolution equation associated with the Zakharov-Shabat eigenvalue
problem are all gradients of conserved functionals. This in turn implies all these functionals are in

involution.

PACS numbers: 03.40. — t, 03.65.Fd

1. INTRODUCTION

Previously' we have seen that the simple properties of
most of the known completely integrable Hamiltonian sys-
tems follow directly from the existence of two Hamiltonian
formulations.

Specifically, we have the following situation in mind:
There is a nonlinear evolution equation of the form

u, = K (u),

Between any two functionals ¥;, F; two different Poisson
brackets of the form

— 0 <X< . (1)

F,F, —fw OF: 195
[FuF5) = —w Ou  Bu
and
© oF, @ 6F,
F.,F1 = — M4 2
[FiF)] J-_w ou ou * @)

are defined. (Naturally these must be antisymmetric and sa-
tisfy the Jacobi identity).

Further, there exist two constants of motion of Eq. (1)
(H,H ) such that Eq. (1) can be written as

u, = [u,H]
or

u = [uH']. (3)
If we define

QW =6H'/bu,

Q® =8H /bu,
these equations imply

LQ(Z) — MQ(I)_

More generally, we can define functions Q ' by the recur-
sion relation

LQ n+1) _ MQ {n), (4)
Now if the Q" are gradients, i.e.,
81
m . o 5
Q o ()

*Supported in part by the National Science Foundation under grant MCS
80-17781 and in part by the Office of Naval Research under Contract No.
NOO 14-79-0537.

* Permanent address.
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it follows"? that the 1, are constants of motion for Eq. (1) and
they are in involution, i.e.,

[£,H]=0=[I,L,]. (6)

Here we give a proof that the Q ™ arising from all evolu-
tion equations associated with the Zakharov—Shabat® eigen-
value equation are indeed gradients.

The method of proof is the following. First, it is shown
that a generating function for the Q ™ satisfies a set of three
linear coupled first order equations. The idea is then to show
that any solution of these equations is a gradient. This is
done by relating solutions of the third order system to bilin-
ear combinations of the Z-S eigenvalue problem. Using vari-
ational principles,* it is shown that these bilinear combina-
tions are indeed gradients.

A special case here is the Kortweg—de Vries equation.
Since, however, the mathematics for this case is possibly
more familiar to the reader, we treat this first in Sec. I1. In
Sec. I11, the gengral evolution equation associated with the
Z-S problem is introduced. The related hierarchy of evolu-
tion equations is discussed in Sec. IV. The proof of the gen-
eral gradient theorem is then given in Sec. V.

Il. THE K-deV EQUATION

Two Hamiltonian forms for the K~deV equation have
already been presented in Ref. 1. They are obtained from the
Poisson brackets defined by Eq. (2) when

V=u, (7)

L=34, (8)

M= —23 —4ud, —w,, (9)

o0 u3

H=f [? — (ux)Z] dx, (10)
and

H':j ju? dx. (11)
Then it is easy to verify that

du=[uH]l=[uH') = —2uu, —2u,_, (12)

which established the specific form of the K—deV equation to
be considered. The Q, are generated by the recursion for-
mula given by Eq. (4). It is to be shown that they are gradi-
ents.
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We now consider the linear eigenvalue problem for the
function defined by

v= 3 (_;T)Q (13)

Using Eqgs. {4) and (13), we obtain

MY =21LY, (14)
or specifically

AV, =¥, +u¥, +u, V. (15)

This last equation is a third order linear differential equation
for ¥ and has three linearly independent solutions.

The eigenvalue problem for ¥, Eq. (15), is of a some-
what unfamiliar form. This is readily remedied, as in Ref. 1,
by noticing that if ¥ satisfies the Schrodinger equation

(Z+L)i=23, (16)

W=y (17)
satisfies Eq. {15).

We find it more convenient to consider two integral
forms of the Schrodinger equation,

Pt =gt + I *vi, (18)
where the operators & * are defined by

(G+f)x) = — % f sink(x —x) f(x)dx,  (19)

(G~ f)ix) = -]1(- f sin k (x — x') f(x') dx, (19b)
where

k2= —1/4 (20)
and the ¢, * satisfy the equation

(0.2 + k2o * =0. (21)
Note that the substitution

u
__ 22
v p (22)

has been used. The + superscripts denote two related scat-
tering problems, each of which has two forms. Correspond-
ing to the + ( — ) superscript, we associate two functions ¢,

¥(¢,¢ ) defined by their asymptotic values at + o ( — o0),

v—e*, x>+ o, (23a)
17/——>e‘ik“, X— + o0, (23b)
¢ —e*, x> — w, {23c)
d—e ™, x—— . (23d)

We define reflection and transmission coefficients by the
asymptotic relations

1 R

1//—>7e”‘"—+—7e_”°‘, X— — o0, (24a)
17!—>Le_"kx+£e'kx X— — o0 (24b)
T* T* ’ :
Using the invariance of the Wronskian,
W(w(l),q/}(Z)) —_ '/}(1)'// 2} __ ¢(2)¢ (1) (25)
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for all mixed pairs of the functions ¥, ;ﬁ, é,and «Z, we find that

¢—>—%1—*e”‘"—£}e_”"‘, x— + 0, (26)
®
¢__,+_e~1kx_%eth’ x_’_*_ o, (27}
and
RR*4+TT*=1. (28)

Functional forms for the reflection and transmission
coefficients may be obtained from Eq. (18), thus

%:1—51_-]; " e Ry i) dx (29a)
I — o
_ _ﬁ " ey (x') dx’ (29b)
1 « ’ — a7z ’ 1]
- ‘ﬁf_w‘“" o —vF o (x)dx,  (290)
_RTZ: :-2:—ka e v(x')g(x") dx’ (30a)
=ﬁ f ¢ px')p (x) dx’ (30b)
=i | st =8 o) ax, (30c)
and
1;_:= ‘271-12 e ™ *oix'j{x') dx’ (31a)
_ _21_7( " e ®yx)d (x) dx’ (31b)
l —
1 < - ’ — AT [t '
= _ﬁf_wd}(x v — v ") (x') dx'. (31c)

In order to obtain expressions which are stationary with
respect to variations of ¥, ¥, ¢, and ¢, we define

S e ) dx' e e*ulx')p (x') dx’

A —
52 Yx)v — v "o (x') dx’
1
=2k|1—— 32
2ik (1 T)’ (32)
B __ff - eik“'v(x')tli(x') dx'(= e”‘“"v(x')¢ (x’) dx’
N £2 _$(xX)o— v Topix’) dx’
., R
= — 33
2k T (33)
and
p— 52 e~ *ox)p () dx' S e~ o )dix’) dx’

52 X —vF Tu)d (x') dx’
R *
= 2ik =—. (34)
T *
That 4, B, and B * are stationary as claimed may be verified
by direct computation. Therefore, the variational derivatives

of A, B, and B * may be computed by considering only the
explicit dependence on v. From Eq. (32) we have
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5A=f e~

— 7 oo i) ax

 Sv(x' Wix’) dx' + on e Su(x')p (x') dx’

+ Jw Yx)v(x') G v (x') dx

+ r Px'Wix') G ~ v (x') dx’'. (35)
From Egs. (18) and (23d) we have

G vp=¢—e ™, (36)
so that Eq. (35) reduces to

54 = f " ek Six')d (x') dx’

+ fm Yxwix')F v (x') dx'. (37)

The second term on the right-hand side of Eq. (37) may be
integrated by parts,

f [ f Yix(x)e™™ dx —

k
XJ — k" Sp(x" )b (x”) dx” ] dx’

-1

Xf;m e 8u(x")p (x") dx” ]dx

= f Yix)v(x)e ~** dx —2—:;

= f (9 HoW )(x")ov(x")D (x') dx'. (38)
Now, from Egs. {18) and {23a) we have

Grop =y, (39)
so that Eq. (37) becomes

64 = f z/;(x’)év(x’):} (x')dx’, (40)
and we conclude that
SA -
= =y 41
=y (1)
In a similar manner we find
6B
— = 42
5 Y (42)
and
6B* -
Y ¢Y. (43)

There are only two linearly independent solutions of
Eq. (16}. From the asymptotic forms (23a), (23b), (26), and
(27), and Eq. (28), we may write

_ 1., R-
b=l —7Y
and

=R+
$="Tz¥+

(44a)

1 -
T¥ (44b)
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Therefore, ¢ and ¢ may be eliminated from Egs. (41), (42),
and (43). If we let S denote some linear combination of the
scattering data, then 65 /6v will be a linear combination of
7, Y2, and ¢*. Now, ¥ and ¢? are solutions of Eq. (15) since
each of 1 and ¢ is a solution of the Schrédinger equation.
But, (f + ¥) is also a solution of the Schrodinger equation
and therefore ( + )? is a solution of Eq. (15). Thus, by the
linearity of Eq. (15), ¥4 is a solution. The three solutions 7,
¥, and ¢ are linearly independent since the Wronskian

;o
Phe W) (P

does not vanish. Thus, the general solution of Eq. (15) satis-
fies

¥= 5—S (46)
o

This last equation may be used to compare the Laurent ex-
pansion for .§ with Eq. (13). This yields the result that each
Q. is immediately seen to be the variational derivative of
some functional. By virtue of the discussion in Sec. I, we
have proved that the dual Hamiltonian structure of the K-
deV equation implies that the K—deV equation constitutes a

completely integrable Hamiltonian system.

IIl. EQUATIONS ASSOCIATED WITH THE ZAKHAROV-
SHABAT PROBLEM

Consider the system of two coupled nonlinear evolution
equations given by

axq = - a(qxx - 2q2r)’ (47’
a.r=alr,, —2ryg). (48)

Since there are two unknowns, we must extend our notation
for variational derivatives. Let

0 q)
V= .
G )
Then, for any functional F, define
5F (5F /6q)
8V~ \8F/6r) (50

We shall demonstrate that the eigenvalue problem asso-
ciated with the system of equations (47) and (48) is the Zak-
harov—Shabat problem. First, the dual Hamiltonian struc-
ture of the nonlinear system may be verified by choosing

()

anx _lq ax - anx ~
M= a(& —2rd, " g 2rd, " 'r )’ (52)
= —U wdx’ — f dx’), (53)
H=a f (@ers + ) dx, (54)
H'= —%f (g, — gr.) d, (55)
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()

so that
u=[uwH]=[uH] (57)

Here, the two Poisson brackets are the natural extention of
Eq. (2), i.e., for any two functionals F,,F;,

= (8F, &F, 6F,-/<Sq)
S fA ,,( 5q’5r) (51«;/& x (58)

and similarly for [}’ with L replaced by M.

We now define an infinite sequence of two component
functions, Q,,, by the recursion formula

LQ, ., =MQ,. (59)
Analogous to the K—deV case, we consider a two-component
function

oo 1 n
v— 53 (1)e. (60)
The linear eigenvalue problem for W is obtained from Egs.
(59) and (60),

MV = ALY (61)
or, in component form,

— 26, =23, '(q¥)) + 3. ¥, — 299, " (r¥,,), (62)

2iEW, =0,¥, —2rd, " (qW,) + 2rd, " (r¥,), (63)
where

The third-order character of Egs. (62) and (63) becomes ob-
vious when we define ¥, by

0¥ =q¥, —r¥, (65)
so that we obtain

-9, ¥, — 2V, =29V, (66)
and

.V, +22¥, =2r¥,. (67)

A second-order system of equations may be related to Egs.
(66) and (67) by the substitution

Y, = '2’227 Y, = — ‘2’12: and ¥; = '2’1'?’2: (68)
so that we find

3.9 + ik = gt (69)
and

8.8, — ikt =ri. (70)

These last two equations constitute the Zakharov—Shabat
eigenvalue problem for ¥, and ¢,.

IV. THE HIERARCHY OF EQUATIONS
If we choose

Q, = (;) (71)

and define
L =(a)"'L™'M, (72)
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then it is easy to verify that

SH'
LO = —— . 73
Qo 5V (73)
Using Eqgs. (57), (58), and (72), the system of equations (47)
and {48) may be written as
u, = —aL.Z?Q,. (74)

The recursion formula for the Q,, and the definition of .
lead us to consider a hierarchy of equations given by

U =(—alLLQy j=A+1A+2,... (75)

Each equation in this hierarchy is of dual-Hamiltonian form
and each has associated with it the same set of Q’s defined by
Eq. (59). The system of equations we started with corre-

sponds toj = 2. In that system, the substitution ¢ = — i,
r= —og* (o0 = + 1) gives the NLS equation
3,9 = ilg.x + 209*¢°) (76)
and its complex conjugate
d.q* = — ilg¥ + 2099*°). (77)
Other equations in the hierarchy are
Jj=3 a= -2, r=—1 g=uc—deV
[cf. Eq. (12)] and
ji= -1 a=} g= —r= ux/\/Z—»sine-Gordon.

These classic examples of nonlinear evolution equations are
well known to be completely integrable. However, the hier-
archy of equations considered here contains infinitely many
nonlinear evolution equations, each of which is completely
integrable provided we can prove that the Q,, are gradients.
Furthermore, these properties of dual-Hamiltonian form
and complete integrability would be shared by any system of
two coupled nonlinear evolution equations that can be putin
the form

v, = Lf(Z£)Q, (78)

where fis any entire function. In the next section we shall
prove that the Q, are gradients of the scattering data for the
scattering problem associated with the Zakharov-Shabat ei-
genvalue problem.

V.ZAKHAROV-SHABAT SCATTERING PROBLEM

The coupled system given by Eqgs. (69) and (70) may be
written in vector form as

b, + oy = Vi, (79)
where
1 'pl)
= (80)
b=
and
1 0 )
= . 8 1
7 (0 ~1 ®1)
There are two useful integral forms of Eq. (79) given by
Ve = b + I VT, (82)
where
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(90 = — rexp[iﬂx ~xjo,] fix)dx,  (83)

X

9 0= [ explicls—xlos] fiwax,  (84)
and g satisfies
@ + igaspbst =0. (85)

The + superscripts denote two related scattering problems,
each of which has two forms. Corresponding to the — (4 )
superscript, we associate two vector functions &,é(y,}) de-
fined by their asymptotic values at — oo ( + o),

¢ (é)e‘ Tty x> — w, (86a)
Y 0 itx__ 0 —(2)
é— —le =1, “, x> — o0, (86b)
0 icx__ 4 +(1)
b — 1) =", x>+ o, (86¢)
and
b — ((l))e —ir=hot Ox—s + o0, (864)

[Note that these asymptotic forms are solutions of Eq. (85)
and have been so indicated by additional superscripts.] We
define the scattering data by the asymptotic relations

— ifx
b (Ze,;x ) X+ w0, (87a)
e
_ T, — ikx
¢—»(b°’_. ) X— + . (87b)
— ge*”
Using the invariance of the Wronskian,
W07 = s — e, (88)
for all mixed pairs of vectors ¢,8,%, and ¢, we find that
b — iCX
b (b"’igx ) X — w, (89a)
ae
—  f[ae %" g
e P R (89b)
and
aa + bb = 1. (90)

Functional forms for the scattering data may be ob-
tained from Eqgs. (82), (86), (87), and (89),

a=1 +fjwe+'§"q(x)¢2(x) dx (91a)
-1 fjwe ~ Expxpp,(x) dx, (91b)
b = f :e—@wx)qsl(x) dx (92)
= [ e e ax (920)

0

a—1

_ 52 G ) - Véblx) dxs 7 (g Mx) - Vibix) dx

a=1 _r e~ “*rx),(x) dx (93a)
=1 —f_ 5 g(x)ilx) di, (93b)
b= rgnipn ax (94a)
- f _°° ¢S g(x)hnlx) dx. (94b)

Additional functional forms for the scattering data may be
obtained if we consider an equation for adjoint functions
defined by

B — Lot = — VT (95)
If Eq. (95) is written in component form, it is easy to verify
that the choice

W=t #=—4 (96)
returns us to Eq. (79). We will have need of integral forms of
the adjoint equation (95). The formula

[ g spmax= — [ T pwax 07

may be established by integrating by parts (here, &  is the
complex conjugate of & ). This suggests defining the inte-
gral form of the adjoint equations to be

o' = by M) — F V7, (98a)

&' =y ) — F V7§, (98b)

U= (g ) — FHVI, (98¢)
and

¥ =)~ FHVTN (98d)

We now observe that

fw PNV — VI V)b (x) dx

- —f Vx)Vs M) dx  [by Eq. (82)]

= - F Yi(x)rix)e ~“*dx [by Eqs. (86a) and (96)]
[by Eq. (91b)]. (99)

In an analgous manner, we find additional forms for the rest
of the scattering data,

=ag-1

a—1= r Px)- (V- VI V) (x)dx, (100)
b= — r $'(x) - (V — VZ *V)(x) dx, (101)
b= — f ’ o'(x) - (V— VI *Vhi(x} dx. (102)

We now combine the three forms for each ofa — 1,@ — 1, b,
and b to obtain

(103)

52 o ¥'x) - (V= VI V) (x) dx
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52 b @) - Vlx) dxs = (bg Px)! - Viix) dx

a-l= 1= _3'0) - (V— VI *Vigix) dx

b=

52 b ) VPx) xS (e Px) Vlx) dx

£ _Wix) - (V— VZV)é (x) dx

b=

52 o b M) - VB (x) dxs  (he Pix))’ - Vibix) dx

52 ¢'x)- (V= VZ+Vix) dx

The advantage of these seemingly more complicated expres-
sions for the scattering data [Eqgs. (103)-(106)] is that each
one is stationary with respect to variations of ¢, ¢, ¥, and ¥
[this can easily be proved using Eqs. (97) and (98)]. Therefore,
in order to compute the variational derivatives, we need only
consider the explicit dependence on V. We shall perform the
calculation for (@ — 1). First,

Sla— 1= (g e - 5Valx)
+ f (s )" - SViblx) dx
- f () - 5V(x)

+ r PH(x') - VG ~Voix) dx

+ r P'(x)- VI ~6Vd(x) dx. (107)
But, from Eq. (82) we have

G Vé=6—19", (108)
so that with Eq. (97) we find

Sla—1)= [ s e - 8Valx) dx

— f ) (Z+VTix)) - 6Vo(x)dx.  (109)

Now we use Eq. (98c) to obtain

Sla—1)= fj Vi(x) . 5Vd(x) dx; (110)
thus, using Egs. (96),

g—Z=¢z¢2 and 22— _yg, (111)
and from Eq. (50) we may write

ba _ v,

E_(—llflgtl)' (112)
Similarly, one finds

8a _ (¥t

a=(%53) w3

8b _ (¥

=("5s) )
and

b _ ( ¥t

Eﬁ(—%%)' (115)

Now, since 1 and ¢ are solutions of Eq. (79), the components
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» (104)

(105)

(106)

—
of the vectors,

% $3
YO 2| and P=]| —g2}, (116)
i, $.9,
are solutions of the system of equations (65}-{67). But, ¥ + ¢

is also a solution of Eq. (79). Therefore, by the linearity of the
system [Eqgs. (65)-(67)],

Yot
e =( - m) (117)
316, + 18]

is also a solution of the third-order system. Note that the first
and second components of ¥ [cf. Eq. (117)] are precisely
the first and second components of § (¢ — 1)/8V given by Eq.
(112). Therefore, for the purpose of discussing linear inde-
pendence, we will define

V.6, V.6,
v = “¢1¢1 y VALES _'/’1¢1 s
{d, + ¥d)) {4, + ¥.d))

'—}2‘;2 ~ 'I’zaz
o= _ _—_17’_151 g VARES = ![’1‘3_1 -
W¥14:1:61) Yhd: + ¥9)

Then, the Wronskian of any three of these vectors may be
computed. In particular we find

P, pe) pe)
¢2¢2 'Z2_¢2 ¢2<:b2
= — ¥ _ — ¥, _ ¢1¢1_
Whd, + a8 Mhd, + ) Aid: + ¥d))
a
== (118)
2
W(W‘“’,W',W(“):%, (119)
and
Y (ppe gty = —%. (120)

From Eq. (90) it is not possible for both a and b, or @ and b, to
be zero; thus we may always find three linearly independent
variational derivatives of the scattering data.

The general solution to the eigenvalue problem for ¥
[cf. Eq. (61)] may be written as a linear combination of three
of the variational derivatives of the scattering data. Then we
may write

w_5S

=9 121
% (121)
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where S is some linear combination of those three terms of
the scattering data. We expect the scattering data (and hence
S')tohave a Laurent expansion about A = 0. S'is a functional
since the scattering data may be expressed as functionals [cf.
Eqgs. (103}{106)]; therefore, each term in the Laurent expan-
sion of S may be regarded as a functional, and comparison
with Eqgs. (60} and (121) shows that each Q,, is the variational
derivative of some functional. As a consequence of the dis-
cussion in Sec. I, we have proved that the dual-Hamiltonian
structure of the coupled pair of nonlinear evolution equa-
tions, (47) and (48), implies that those equations and all the
equations in the related hierarchy are completely integrable
Hamiltonian systems.

Vi. CONCLUSION

It has been shown that the general evolution equation
related to the Zakharov-Shabat eigenvalue problem can be
written in Hamiltonian form two ways. This then implies a
recursion relation for functions Q. It is proved that these

1777 J. Math. Phys., Vol. 23, No. 10, October 1982

are functional gradients. This in turn implies that the corre-
sponding functionals are all constants and are in involution.
The key point in the proof'is the existence of variational
principles for the scattering problem for the Z-S equations.
A preliminary look at other completely integrable
Hamiltonian systems suggests that similar proofs of the gra-
dient property are also possible—and simple.

'K. M. Case, “Dual Hamiltonian Formalisms for Nonlinear Evolution

Equations” M.I.T. Press (to be published); K. M. Case and A. Roos, J.
Math. Phys. 23, 392 (1982).

’F. Magri, J. Math. Phys. 19, 1156-1162 (1978).

*V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972): M. J.
Ablowitz, D.J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math. LIII,
249-336 (1974). We follow the notation in this paper.
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Wigner approach to quantization. Noncanonical quantization of two particles

interacting via a harmonic potential
Tchavdar D. Palev®

Institut fiir Theoretische Physik der Technischen Universitat, Clausthal, Clausthal-Zellerfeld, West Germany

(Received 7 December 1981; accepted for publication 9 April 1982)

Following the ideas of Wigner, we quantize noncanonically a system of two nonrelativistic point
particles, interacting via a harmonic potential. The center of mass phase-space variables are
quantized in a canonical way, whereas the internal momentum and coordinates are assumed to
satisfy relations, which are essentially different from the canonical commutation relations. As a
result, the operators of the internal Hamiltonian, the relative distance, the internal momentum,
and the orbital momentum commute with each other. The spectrum of these operators is finite. In
particular, the distance between the constituents is preserved in time and can take at most four
different values. The orbital momentum is either zero or one (in units #/2). The operators of the
coordinates do not commute with each other and, therefore, the position of any one of the
constituents cannot be localized; the particles are smeared with a certain probability in a finite
space volume, which moves together with the center of mass. In the limit #—0 the constituents
“fall” into their center of mass and the composite system behaves as a free point particle.

PACS numbers: 03.65. — w

INTRODUCTION

In ordinary, canonical quantum mechanics the opera-
tors of the Cartesian coordinates g,,...,§,, and momenta
P1s--Dn, corresponding to a classical system with a Hamil-
tonian

2

2, Di
H= Ulgign) 1
,Z’;Zm,. + Ulg15-49x) (1)

satisfy the canonical commutation relations (CCR’s)

[Qpﬁk] = iMjk,

[4:4x] = [B;hx ] =0. (2)

The quantization with CCR’s can be applied to any
classical system, independently of the dynamics, i.e., for ev-
ery Hamiltonian, and in this sense it is universal. In 1950
Wigner (See. Ref. 1, hereafter referred as to I) pointed out,
however, that for a given Hamiltonian the canonical scheme
can be in principle generalized. In particular, he has shown
that the one-dimensional harmonic oscillator can be quan-
tized in several noncanonical ways, i.e., with position and
momentum operators that do not satisfy the CCR’s (2). In
the present paper we shall consider another example, quan-
tizing noncanonically a system of two nonrelativistic point
particles, interacting via a harmonic potential.

In order to motivate the definition of the noncanonical
quantization, which we shall follow, consider the canonical
quantum mechanics in the Heisenberg picture. In this case
the time evolution of a given system is described by the Hei-
senberg equations of motion?

A i.. = A I on 0
b = —7[Pk,H], 4= ‘;[‘Jk’H} 3)
The use of the CCR’s then yield*
i ~ a/(} F R o Px
—[P,H ] = , — G- H]= ——. 4
7 (B H ] 3G, p’ [-H ] m, (4)

®* Present address: Institute of Nuclear Research and Nuclear Energy, Boul.
Lenin 72, 1184 Sofia, Bulgaria.
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The relations (3) and (4) lead to operator equations, which
formally coincide with the classical Hamiltonian equations®
au . B

—, Q= (5)
9, my

ﬁk:“

Hence, the classical equations® are a simple conse-
quence of the quantum equations (3) and the canonical com-
mutation relations (2). The key point for a generalization of
the concept of a quantization comes now from the observa-
tion of Wigner! that the Heisenberg Egs. (3) and the Hamil-
tonian Egs. (5) have a more immediate physical significance
than the CCR’s. From this point of view the CCR’s appear
only as a tool to derive the Hamiltonian equations. There-
fore, it is logically justified to postulate from the very begin-
ning Egs. (5), instead of the conditions that lead to them,
namely the CCR’s.

On grounds of the above considerations, we define a
{noncanonical) quantization of a given mechanical system
with a Hamiltonian (1) as a replacement,

94> Pr—Pr> (6)
of the classical canonical variables by operators, so that the
Heisenberg Eqs. (3) and the Hamiltonian Egs. (5) will be si-
mulaneously fulfilled.

The first question that arises in connection with the
above definition is whether the new definition is more gen-
eral than the canonical one. This can be the case if the com-
patibility relations (4), considered as equations with respect
to the unknown operators §,...,4,,» D1,---,0»» also have solu-
tions which are different from the canonical solution (2). In I
Wigner has studied this problem in the case of a one-dimen-
sional harmonic oscillator with a Hamiltonian (fi = 1)

H=yp*+2) ™
The solutions he found are labelled by one arbitrary non-
negative integer E,, the energy of the ground state. The oper-

ators p and §, corresponding to different E,, are nonequiva-
lent; their representation spaces W (E,) are
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infinite-dimensional. If |Eg;n),n = 1,2,...,isabasisin W (E,),
then
GIEn) =%, _1.|Esn—1) +x,, 1 |Egn+1),
PlEgn) = —ix, _,,|Egn—1) +ix,, | Egn + 1),
(8)
where

Xpwi1 = (Eq+n/2)'* for even n,
Xpn+1 = (n/z + 5)1/2 for odd n.

Only in the case E, = § do the operators  and § satisfy the
CCR’s (2).

To establish some further algebraical properties of the
operators p and §, introduce the creation (§ = + ) and anni-
hilation (£ = — ) operators (CAQO’s)

af=7‘;@—i§m. o)
Then »
H=}la*a") (10

and the CAO’s transform the basis vectors as follows.

a~ |Eg2n) = (2n)'/?|Ep;2n — 1),

a” |Ey2n + 1) = (2n + 2E,)"?|Ey;2n),

a*|Ey2n) = (2n + 2E,)'?|Eg2n + 1),

a*t|Eg2n + 1) = (2n + 2)'?|Ey;2n + 2). (11)

By a straightforward computation one shows that for
every E, the operators a* and a~ satisfy one and the same
relations, namely

[{a,a"},a%] = (€ — £ )a" + (€ — ). (12)
Here and throughout the paper £,7,6,6 = + or + 1;

[x,y] =xy — yx and {x, y] = xp + px.

Thus, the solutions for different values E,of a* anda™
appear as different irreducible representations of operators
that satisfy the above equality (12). To every such representa-
tion there corresponds a self-consistent generalization of the
ordinary quantization with position and momentum opera-
tors that are not unitarily equivalent to the canonical § and p.

The results of Wigner can be easily extended to quantize
noncanonically also a system of 7 noninteracting oscillators
with a Hamiltonian

A i 1 ”10)2
H= pr4 —L2Lg ‘-2). 13
,-g’l(2mj pj 2 d { )
In terms of the CAO’s
m.w 1/2;\ . _ .
o = (22" —omanh, (14

Eq. (4), which is a compatibility condition for Egs. (3) and (5),
reads (£ = +)

LR o, f
Z 2 [{ar,a }ai] =& -

One solution (among others) of the above equation is
given with operators, which are a straightforward general-
ization of (12),

[{af.a]}.a] = Sule — &)ay + Byle — miat. (16)

The operators (16) are known in quantum field theory.
They were introduced by Green® as a possible generalization

as. (15)

1779 J. Math. Phys., Vol. 23, No. 10, October 1982

of the statistics of integer-spin fields and are called para-Bose
operators. The irreducible representations of the para-Bose
operators, corresponding to Hermitian position and mo-
mentum operators and a nondegenerate ground state |0),
are labelled by one non-negative integer p, the order of the
statistics,” which is defined by the relations

a”~|0) =0, a~a*|0)=p5;|0), p=12,.. (17)

Only in the case p = 1 do the position and momentum opera-
tors, corresponding to a¢, obey the CCR’s (2).

We see that the Wigner quantization of the one-dimen-
sional harmonic oscillator (withn =fi=w = 1)isin fact a
quantization with para-Bose operators. Therefore, it gener-
alizes quantum mechanics along the same line as the para-
Bose statistics extends quantum field theory. Different
aspects of the Wigner quantization of the one-dimensional
oscillator were studied in Ref. 8 and more recently in Refs.
9-11.

Since Eq. {4), which have to be satisfied by p; and g,
depend on the Hamiltonian, the properties of the position
and momentum operators may depend on the interaction.
This is a particular feature of the noncanonical quantization,
which is not of geometrical origin, but rather of a dynamical
one. Because of this propery we often refer to the noncanoni-
cal quantization as a dynamical one.

In the canonical case the mapping (6) defines uniquely
the quantum Hamiltonian H, corresponding to (1), and the
derivatives dU /dg; [this is the reason to write down the Ha-
miltonian in the form (1)]. This is also true for any noncanon-
ical operators, if the classical potential can be represented in
the form

Ulgitn) = 3 Ulg,) (18)

j=1
For an arbitrary interaction, however, since §,,...,§,, may not
commute, one has to give a rule for an ordering of the opera-
tors when passing from U (g,...,¢,, ) to the quantum potential
U. This procedure, which is also not unique for arbitrary
functions F ( §,g) of canonical variables,'?~'* has to be defined
for every interaction. Here we will not go into a discussion of
this important point. Instead, we shall consider another ex-
ample of noncanonical quantization with a potential of the
form (18), which exibits some new features and indicates that
the ideas of Wigner in this respect deserve to be investigated
further.

We consider a system of two nonrelativistic point parti-
cles, interacting via a harmonic potential. Assuming that the
center of mass variables are quantized canonically and com-
mute with the internal variables, we reduce the problem to a
quantization of a three-dimensional harmonic oscillator for
the internal degrees of freedom (Sec. IT1A). Then (Sec. IIB) we
quantize noncanonically a more general n-dimensional os-
cillator and study in more detail the two particle system (Sec.
IIC). Section IITis independent of the other part of the paper.
It contains a motivation for the quantization of the oscialla-
tor we consider, which is of the Lie superalgebraical origin.
Finally, we investigate the behavior of the system in the clas-
sical limit #—0 and give one possible interpretation of the
results.
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Il. DYNAMICAL QUANTIZATION OF TWO POINT
PARTICLES INTERACTING VIA A HARMONIC
POTENTIAL

A. Reduction of the problem

Consider in the frame of nonrelativistic mechanics two
point particles with masses m, and m, and a Hamiltonian
2 2 2
P1 P2 mo
H_ = + + (r, — r,) 19
o= o 2, 5 2) (19)

Introduce the center of mass (CM) coordinates

R+ mzrz,

m; +m,
and let u and m be, respectively, the total and the reduced
masses, P and p be the total mometum and the internal {the
conjugate to r) momentum, respectively; r = |r; — r;|. Then
the energy is a sum of the CM energy H,, and the internal
energy H,

r=r,—r, (20)

Htot =HCM + H, (21)
where
2 2 2
Hoo=Xo, g=P  mor 22)
2u 2m 2
Similarly, the angular momentum
M, =M, +M, (23)
with
My =RXP, M=rXxp. (24)

According to the definition we have accepted, to quantize
the system we have first to find simultaneous solutions of the
Hamiltonian equations, replacing in them the classical var-
iables R, P, r, p by operators, i.e.,
P=0, R=P/u, (25)
p= —mo%, t=p/m, (26)

and of the Heisenberg equations

A I A~ A i .an
P= _?[P’Htot]’ R= _;[R’Hw']’ (27)
A i A A i oty

= ——[p,H, ], T=—— i\’)Htot . 28
P 7 p t] ﬁ[ ] (28)

The operators ﬁ, ﬁ, t, p should be dlgtermined to give a solu-
tion of the above Egs. (25)-(28). By H,,, we denote the opera-
tor, obtained from the classical Hamiltonian after the re-
placement

R, P, r, p)—(R, B, £, p). (29)

Independently of the dynamics, Egs. {25)—(28) are satis-
fied with canonical operators. We wish to study some other,
dynamically dependent solutions. Our purpose is not the in-
vestigation of all possible operators {29} that satisfy the Egs.
(25)—(28). Rather than that, we restrict ourselves only to one
particular noncanonical solution for the internal variables #
and p and study its properties. To this end we first assume
that the CM observables can be measured simultaneously
with the internal observables. Thus, we accept

Assumption 1: The CM variables commute with the in-
ternal variables, i.e.,

Rl = [Rp]=[Pi)=[Pp)=0. (30)
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Under this assumption the quantization equations resolve
into two independent groups. The first one, consisting of
Egs. (25) and (27), depends only upon the CM coordinate
operator R and the momentum operator P. Here we make

Assumption 2: The center of mass coordinates and mo-
menta are quantized in a canonical way,

(R Bi] = iy,

[R,R,] =[P;,P, ] =0. (31)
Thus, we are lefg with the equations
p= —mo’, T=p/m, (32)
A oo A i A

= — — ,H , I'= —— f’H 33
P 7 (8.H] 7 [t.H ] (33)

for the operators f and p, which follow from Egqs. (26), (28),
and (30).

Equations {32)33) coincide with the Hamiltonian and
the Heisenberg equations of a three-dimensional harmonic
oscillator. We now proceed to quantize it noncanonically.
Since the generalization to the case of any dimension is
straightforward, in the next section (IIB) we quantize an n-
dimensional harmonic oscillator (n > 1) instead of a three-
dimensional one.

B. Noncanonical quantization of an n-dimensional
harmonic oscillator

Consider an n-dimensional harmonic oscillator with a
Hamiltonian

LA | mw?
H= (_ 2y Mo ,2) 34
,‘gl 2m P 2 ( )

To quantize it we have to replace as a first step the

classical phase-space variables (7y,...,7, ,Dy,...,2, ) With opera-

tors that have to satisfy the operator Hamiltonian equations
(i=12,..,n)

b = —mo%, 7 =%, (35)

and simultaneously the Heisenberg equations
A I A A I A
= ——[p,HY, ri=——[FH]. 36
p; 7 1PoH ] 5 ol ] (36)

These equations are compatible only if
[Hp, | = Hfima’?,,
~ . ifi,
[HF] = ——P (37)
m

Introduce in place of #,,p,,/ = 1,...,n new operators

&= =)

i _ (n — l)ma))l/Z; ; (n —1 )l/zA 38
% ( P A ) P Y
which will be referred to as creation (£ = + ) and annihila-
tion (£ = — ) operators (CAO’s). In terms of these operators

the Hamiltonian (34) and the compatibility conditions (37)
read

= n“’_”1 i;{aﬁ o) (39)
S [a a7 haf] = —£(n — 1. (40)
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As a solution of Eq. (40) we choose operators a{F,...,at
satisfying the relations

[{a*.a7 )6t ] =6pat —bya,

[{a*.a7 }ar ) = —bua7 + 6,07,

fatat}=1{a ", }=0 (41)

We recall that all considerations are in the Heinsenberg
picture. The position and the momentum operators depend

on time and they also have to satisfy the Hamiltonian Eqgs.
(35), which read in terms of the CAQO’s

ai(t)= — ikwdi(t). (42)
Hence,
aj(t) = exp( — ifwt )az(0), (43)

and, therefore, if the defining relations (41) for the CAO’s
hold at a certain time ¢ = 0, i.e., for a§ = a%(0), then they
hold as equal time relations for any other time ¢. One can
easily check that the Heinsenberg Eqs. (36) (written in terms
of the CAO’s),

ar) = —==[ (g (t)a;(1)},ak(0)], (44)
agree at any time with the Hamiltonian Egs. (42).

It remains to define the position and the momentum
operators 7, and p,, correpsonding to the CAQO’s (41), as a
linear Hermitian operators in a Hilbert space, which will be
the space of the states of the oscillator. In terms of the CAQO’s
this means that the Hermitian conjugate to a;" should be
equal to g, , i.e.,

@t =a;. (45)

One can find several spaces where the operators (41} are
linear and satisfy (45). Since a priori there exists no reason to
exclude any of the possible spaces, one has to determine and
study all of them and subsequently rule out those that are not
appropriate for physical applications, in other words, one
has to determine those representations of the CAO’s (41) for
which the condition (45) also holds. Here we shall consider
only representations which are obtained by the usual Fock
space technique. These Fock representations are labelled by
one non-negative integer p = 0,1,... . To construct them as-
sume (as in case of the para-Bose statistics) that the corre-
sponding space W (n;p) contains a single vector (up to a multi-
ple) |0), called a vacuum, such that

@, |0) =0 and @, a;* |0) =p6,;|0), ij=12,..n
(46)

Since (a;* )* = 0, from (46) one derives that the vectors

n

172
piu8) =0 (p— 3 8.)) (air)%ia 0N,
i=1
(47)
with 8, = 0,1 and 2 6,<p, constitute an orthonormal basis

i=1
in W (n;p) with respect to a scalar product, defined usually
with “bra” and “ket” vectors and (0]0) = 1.
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The CAO’s transform the basis vectors according to

a; | ...,Hk ’...)

=0, — 1)“"+"‘+“’*-'(p - 36+ 1)

172

|...’9k —1,-),

(48)
@ B er)

172
=(1-— 9:()( _ 1)6. PR 9k_|(p — 26‘) I...’Bk + 1,...)_

One can check that within any Fock space the relation
(45) holds, so that ?; and p, are Hermitian operators. The
Hamiltonian (39) is diagonal in the basis {47). To determine
its spectrum, call the vector |p;8,,...,6, YEW (n, p) an m state
and denote it by |p;m) if 27_ | 6, = m. Then from (39) and
(48) one obtains

H|p;m) = E,, |p;m), (49)
where
E, = ul (np — nm + m). (50)
n—1

Since m can run only through the values 0,1,...,min (n,p), the
energy of the n-dimensional oscillator for a statistics of order
p has min (n 4+ 1, p + 1) different values. The dimension of
the subspace W, (n;p) of all m states is

dim W, (n;p) = (:1) (51)

so that the different (linearly independent) states with energy
E,, are(%,). In particular, the state |p,0) with the highest
energy is nondegenerate. A given ground state |p,min(n, p))
is nondegenerate only if p>n.

C. Quantization of the two-particle system

Here we apply the results of the previous section to
quantize the internal motion of the two-particle system. In
this case #n = 3 and in terms of the CAO’s

a§ = (28) " Y¥{mw)" %%, + if 2maw#)~?p,, (52)
the internal Hamiltonian reads
~ 1 ma? ofi &
I{:—f\2 —A‘2=— a.+,a’-_ . 53
Bt f 22,1{, } (53)

For the operators of the squared distance between the
particles, i = # + 7 + #2, and the squared internal mo-
mentum, p* = p} + p3 + p3, one obtains

a2 i L

r = {a;" a7}, (54)
mao ;=1

.2 mofi _

p2=_;”__zl{a,.+,a,. }. (55)

Inserting in the classical expression (24) for the internal
angular momentum M the operators 7, and p, (in terms of
the CAQ’s), one obtains

-~ ifi -
M, = D) szzm {a/a, ). (56)
Lm

These operators satisfy the commutation relations for the
generators of the rotation group

[M; M, ] = — }ifie; M,. (57)
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We remark, however, that the angular momentum is mea-
sured in units of #/2.

As it should be, the position and the momentum opera-
tors transform as vectors under rotations,

[A{j’?k] = - %iﬁé}klil’
[Mvﬁk] = - %iﬁfjklﬁl- (58)

Itis a straightforward calculation to show that all oper-
ators

A~ A A

H)f-zy AZ’MZ!M:; b
commute with each other and, therefore, can be measured

simultaneously. If |p;k ) is a k-state in a representation for a
statistic of order p, then

H| pik) = Jofi3p — 2k)| pik), (59)
|5k ) = (Bi/2mo)3 p — 2k )| pik ), (60)
B2(pik ) = (mohi/2(3 p — 2k )| pik ), (61)
M?|p;k)=0 for k=03,

= 1#|p;k) for k=12 (62)

There is only one state, the state |p;0,0,0), correspond-
ing to the maximum distance between the constituents and
to the maximum of the internal energy,

172
rmax = ('_3—@) ’ Emax = %(Uﬁp (63)

2me

This state carries momentum zero. If p>3, then | p;1,1,1) is
the ground state; it is nondegenerate, with zero momentum,
and corresponds to the minimal distance and energy

3 _ 172

Foin = (M) y Emn=30f(p—2.  (64)
2mo

If, however, p = 1 or 2 then the ground state is degenerate;

there are three different states with the same energy and

orbital momentum 1 (in units #/2). In this case

172
on = (5) " Eun =5 p=12. (65
2me 2

We see that after the quantization the two particles are
bound to each other; they are movir ; together with their
center of mass in such a way that the distance between them
is fixed. The position, however, of any one of the constituents
cannot be localized in the space. The latter follows from the
observation that the operators 7, of the internal coordinates
do not commute with each other,

[;'ij'j] #0, i#£j= 1,2,3,
and, therefore, they cannot be diagonalized simultaneously.
Thus, trying to visualize the picture, one can say that the two
particles are moving as the ends of a massless ridged stick,
whose length depends on the internal energy and can take no
more than four different values. The stick itself is rotating
around the center of mass of the system; however, its orienta-
tion in the space cannot be localized.

Ill. QUANTIZATION, STATISTICS, AND LIE
SUPERALGEBRAS

The results, obtained in the previous section, were es-
sentially based on the properties of the creation and annihila-
tion operators (41). The latter appear as one possible way to
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satisfy the compatibility equations (40). The reason for selec-
tion of the CAQ’s (41) as a solution of Egs. (40) is of a Lie
superalgebraical origin; these operators generalize in a na-
tural way some known Lie superalgebracial properties of the
Bose and the para-Bose operators, which will be reviewed
now shortly.

To this end we recall that the set of operators 4 is a Lie
superalgebra (LS) with a product [, ] if"®

(a) the set 4 is a linear space (with respect to the usual
sum between operators and multiplication by numbers),
which is a direct sum of its subspaces 4,and 4,,
A=A, + A,. The elements a,€4,, are called homogeneous
even (@ = 0) and odd (a = 1) elements, respectively.

{b) for any two homogeneous elements ¢, €4, and
by, the product is defined as

ﬂaa ’bBB =4da, bB - ( - l)aBbBaa ’ (66)

and is extended by linearity to arbitrary elements from A.

(c)if a + B = y(mod 2), then

[a, ,bﬂ]]eAy. (67)

The algebra is simple if it has no nontrivial ideals. A
representation of the LS A4 is a linear map 6 of 4 onto another
LS 4, which preserves the product [,].

Consider now » pairs ¢t ,...,a;f of para-Bose operators
(16) and let (sum over repeated indices; i, j = 1,...,n;
&m = =+ ; C: complex numbers)

Ay = {ai{at,a?]|as"eC], (68)
A, = |atat|ateC), (69)
A = {afaf + ai"{aba]}|af, af’eCl. (70)

We now show that the set (70) of linear operatorsis a Lie
superalgebra. Clearly 4, 4,, and 4, are linear spaces and
A=A, + A,. Consider two arbitrary odd elements

a,=afdfed, and b =pfjaled,, (71)
and two arbitrary even elements
dp = ajyﬂa}lvai jedg, bo=Pp gb{axg’al&}eAO‘ (72)

From the definition of the product (66) one has

[a,b] = {a,b,} = a%ﬁ}'{aiaf}aw
The relation (16) yields

lapa,] = [apa,] = aﬁfaﬂia}’,ai },a,-g]

= ajaf(( — mbyak + (€ — €)6,af)ed,.
Finally, using the equality
[{aha}),fa5.a}) ] |
= (€ — £ )ou {a;,sa?} + (€ — 76 {ar,a7}
+ (6 —£)8ala)as) + (6 —mbylafail, (73)
which is a consequence of (16), one easily shows that

[ao.bo] = [@o,b01€4,.

Hence, 4 is a lie superalgebra. 16 A more detailed inves-
tigation shows that this LS is isomorpbhic to the simple ortho-
symplectic LS osp (1,2n)."” Since, moreover, the elements of
A—see (70)—are polynomials of the para-Bose operators, to
every (irreducible) respresentation of a*,...,a r there corre-

sponds an (irreducible) representation of osp (1,27) and vice
versa.
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The representation of the CAO’s (12), corresponding to
an order of the statistic p = 1in (17), is of particular impor-
tance for the quantum physics, since in this case the para-
Bose operators reduce to Bose creation and annihilation op-
erators,

[af.a}] = 4in — €16,
Inserting these operators into (70) one obtains an infinite-
dimensional irreducible respresentation of the LS osp(1,2n).
The canonical quantum mechanics is essentially based on
this particular representation. On the other hand, the non-
canonical quantization (p 5 1) of Hamiltonian (13) with para-
Bose operators (and in particular the Wigner quantization of
the one-dimensional oscillator) is a quantization according
to some other representations of the same orthosymplectic
Lie superalgebra. Having observed that, one may wonder
why among the several available Lie superalgebras the orth-
osymplectic one plays such a distinguished role in quantum
physics. One may also ask whether it is not possible to quan-
tize with position and momentum operators that lead to re-
presentations of other LS’s, and in particular [since
osp (1,2n)issimple] other simple LS’s. The example we have
considered gives a positive answer to this question. The oper-
ators (41) were chosen in such a way that when inserted in
(70)instead of the para-Bose operators, they give a simple Lie
superalgebra, which is isomorphic to the special linear LS
sl (1,n).'®

Since {@¢,af} = 0,6 = +, the even part (68) of 4 is
{i,j=1,...,n)

Ao = {a; (a7 ;" }]ayeC). (74)
If

e; = {a;".a; |, (75)
then one obtains from (41)

[e5:u] = bjeu — Buey;s (76)

which are the commutation relations for the generators of
the Lie algebra glin); A, = gl(n). The CAO’sa,...,at arethe
odd generators; they define the even generators (75) and,
hence, the whole algebra uniquely. Therefore, also in this
case to every irreducible representation of the creation and
the annihilation operators (41) there corresponds an irredu-
cible representation of sl (1,n) and vice versa. Thus, the quan-
tization of the n-dimensional oscillator, considered in Sec.
IIB, is according to a set of finite-dimensional irreducible
representations of the LS sl(1,n). The nonequivalent finite-
dimensional irreducible representations of this LS are la-
belled by 7 + 1 numbers (ag,a;,...., ), Wwhere a, is an arbi-
trary complex number and a,,...,a,, are arbitrary
non-negative integers.'® The representations (48) of the
CAO’s or, equivalently, of the position and the momentum
operators §,,...,4 0 1P, are labelled only with one integer
p and, therefore, described a small part of all possible repre-
sentations.

From (43) one concludes that the generators (75) of gl (n)
and, hence, the even part of sl(1,n), is preserved in time. The
Hamiltonian (39} is an element from the center of gl(n) and,
therefore, commutes with the even subalgebra (this is an-
other way to conclude that A, is preserved in time).
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Up to now we have not specified whether we consider
sl(1,n) as a real or a complex LS. One of the real forms of 4, is
given with the linear envelope of all operators {§,,4; },
{P:,P;},and {§;,p;}. Thelatter is isomorphic to the algebra of
the unitary group U (r) and commutes with H. Therefore, as
in the canonical case we obtain that U (r) is a symmetry
group of the oscillator. At the same time the odd generators
a? areshifting the energy so that, starting with a given ener-
gy state, one can obtain a state with any other energy from
the spectrum of H. Hence, the LS sl(1,n) appears as a spec-
trum generating algebra of the n-dimensional oscillator. In
the case of the two-particle system the internal symmetry
group is U (3) and since every irreducible U (n) representa-
tion is also SU (n) irreducible, the internal symmetry group
of the composite system is SU (3).

IV. A POSSIBLE INTERPRETATION AND FURTHER
GENERALIZATIONS

One of the interesting features of the example, consi-
dered in Sec. IIC, is that after quantization the initial two
particles are bound to each other, the distance between them
is bounded from above. The position of any one of the initial
constituent particles cannot be localized in the space and,
therefore, the particles are smeared with a certain probabil-
ity within a finite volume. The composite system exhibits an
internal structure, it has eight different states, characterized
completely by the internal energy, the orbital momentum,
and its third projection. If ¥ = 8, + 8, + 8, then, measuring
the energy E in units w#i/2 and the orbital momentum in
units /2, one has [k<min(p,3)]

number of
k the states E M M,
0 1 3p 0 0
1 3 3p—2 1 0,+1
2 3 3p—4 1 0,+1
3 1 3p—6 0 0.

Using a particle terminology, i.e., intepreting the inter-
nal energy as a mass (the picture is, however, nonrelativistic!)
and the orbital momentum as a spin of the composite system,
we may say that the quantized system behaves as a multiplet
of two spin zero particles and two spin one particles, all of
them with different masses.

The noncanonical and the canonical quantizations of
the two particles lead to essentially different pictures. In the
noncanonical case the internal state space is finite-dimen-
sional; as a result (contrary to the canonical one) the spec-
trum of the internal energy is finite and the composite system
occupies a finite space volume. The difference becomes even
more evident in the classical limit #—0. Since (k = 1,2,3)

P = B/2ma) " (ar +al),

P = imofi/2) Ya; — a;t), {17
in the limit %0 the internal position and momentum opera-
tors tend to zero. As a consequence—see also (62)—(63)—the

internal energy, the distance between the particles, and the
relative momentum converge to zero. Hence,

mE,,, =limr,,, =0 when#-0. (78)

The radius vectors of both particles coincide in the limit with
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the radius vector of the center of mass, i.e., if #—-0, then

1imf,=1im(ﬁ+—Lf)=ﬁ,

m; +m,

. . [ m, .\ &

limf,=lm{R————fF|=R. (79)
m;+m,

Thus, in the classical limit the composite system col-
lapses into a point. Since the equation of motion of this parti-
cle is (25), it moves as a free classical point particle with a
mass m; + m,. We remark, however, that the internal varia-
bles are zero operators in an {no more than) eight-dimension-
al space, i.e., every point of the space preserves in the limit
#i—0 its internal structures.

The above results hold only for the Fock representa-
tions (48). In he general case (we omit the proof, which will be
given elsewhere) the representation space L of the position
and the momentum operators §,,4,,§3,9 1,02, is a direct sum
of (at most) four SU (3) irreducible subspaces,

L=LI+L2+L3+L4'

Within every subspace L; the operators H , F, and p? are
proportional to the unity and, hence, the energy, the distance
between the initial constituents, the internal momentum
have as before (no more than) four different values, and the
composite system is smeared in a finite volume of space. The
orbital momentum of the system can take, however, arbi-
trarily large integer values and the SU (3)-irreducible sub-
space L; may contain states with different orbital momenta.

The present investigation makes no pretentions to being
a generalization of the canonical quantization for the case of
an arbitrary interaction. For certain potentials it could be a
difficult problem to find simultaneous solutions of the quan-
tum Eqs. (3) and the classical Egs. (5). To develop an ap-
proach, which can be applied for any interaction, one has to
define in addition a general rule for ordering of the position
operators, when replacing them in the classical potential
U(g:---4,) and to give a precise meaning to the derivates
dU /dg,. In order to interpret the states of the composite
system as a multiplet of particles one has, as a next step, to
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develop a relativistic analog of the present approach. In this
paper we have considered only an example of a noncanonical
quantization, which exhibits some new features and shows

to our mind that the Wigner ideas for generalization of the
ordinary quantization deserve further investigation.
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Starting from the axioms of quantum mechanics as formalized by the systems of imprimitivity for
homogeneous Riemannian manifolds, the classical theory is derived as a consequence, complete
with: its phase space realized as the space of pure classical states; a generalized version of the
Wigner—-Moyal correspondence rule; the Jordan and Lie algebra structures of functions on the
cotangent bundle, given by point-wise multiplication and Poisson bracket; and the momentum
map. A comparison is also given of the quantum and classical dynamics and equilibrium
statistical mechanics of free particles on compact manifolds of constant negative curvature.

PACS numbers: 03.65. — w, 02.40.Ky

1. INTRODUCTION

1. The purpose of this paper is to propose a solution to
the Dirac problem when the configuration space manifold M
is not flat. Briefly stated, the problem is to build up the classi-
cal and quantum theories from an identification of the fun-
damental observables, in such a manner that a correspon-
dence principle be established giving a phenomenological
meaning to the formal analogies between the Jordan and Lie
structures of quantum and classical mechanics. In quantum
theory both of these structures originate in the noncommu-
tative operator product 4B: the Jordan structure is obtained
by forming the symmetric product 4B = (4B + BA)/2 (or
[(4 + By — A * — B?]/2), whereas the Lie structure is de-
fined by the quantum commutator {4,B }, = [4,B)/ifi[i.e.,
(4B — BA )/ifi]. In classical theory the Jordan product is the
point-wise multiplication of functions on the cotangent bun-
dle T *M, whereas the Lie structure, defined by the canonical
symplectic form w (= 2¢ _, dp, Adg, inlocal coordinates)
on T'*M, is given by the Poisson bracket,

d
{f’g} = Z an f:aPkg - aqu.apk‘/:
k=1

Some serious objections to a straightforward mathema-
tization of the Dirac problem, and the associated putative
correspondence principle, have been raised" and formalized
as no-go theorems. To illustrate the essence of this type of
argument in the simplest possible case, we sketch the proof
of the following result.

2.Scholium: For M = R ¢,andd = 1, nolinear map can
exist between the classical observables ( £,g,...) and the quan-
tum observables (F,G,...) and sastisfy the following condi-
tions: (i) the classical Poisson bracket { f,g} corresponds to
the quantum commutator [F,G )/i#; (ii) the identity function
1 corresponds to the identity operator I; (iii) the operators P
(corresponding to the classical momentum p) and Q (corre-
sponding to the classical position coordinate g) together act
irreducibly on some Hilbert space $.

Proof: Suppose that such a putative correspondence
principle exists. From {g, p} = 1, we have [Q,P]/i#i = I, and
by recursion [Q",P™]/iti=m3Z}_, Q" kPm Q%!
=nX™ , P"/Q"~ P/~ abasic formula already noticed
in Ref. 2. This relation, together with the putative correspon-
dence principle and the irreducibility of the representation,
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would make Q" (respectively, P and [Q ",P "] /ifinm) the
quantum observables corresponding to the classical observa-
bles ¢” (respectively, p™ and ¢” ~ 'p™ ). Since

{q’, P} — 3{4*p.gp*} = O, this correspondence principle
would give[Q3,P%] — 3[PQ? + Q2P,P*Q + QP?)/4 = Oin-
stead of the correct value 3i#il.

Remarks: This proof generalizes immediately to
M = R “with 1 <d < «;and the no-go theorem still remains
true when one weakens its condition (iii) from irreducibility
to finite multiplicity.? It, however, breaks down when infi-
nite multiplicity is allowed, as shown by the existence of the
“prequantization map”*; in that case, however, the recovery
of the usual Schroedinger representation involves the ma-
chinery of the “geometric quantization programme.”> The
present paper shows than an alternate route can be travelled
in the opposite direction, thus providing under rather gen-
eral circumstances another, and perhaps more natural, solu-
tion to the Dirac problem.

3. An indication of what might have gone astray in the
assumptions of the no-go theorems alluded to above, is pro-
vided (in case M = R ?) by the Wigner-Moyal correspon-
dence principle, which attributes to the classical function

floa)= f f da dbFla,b Jexp( — ilap + b))

the quantum operator

F(PQ)= f f da db f(a,b )exp{ — i(a-P + b-Q)}.

The quantum commutator [F,G 1/i#i then induces the pairing

{FangeR* xR ' dz ¢ — 2imyles ),
with

a2l ) = [xal2.§) — xal(6:2)] /iR,

X#(2:6) = explio{z,§ }#i/2},

oiz,§)=aB — ba,
where

z=(ab),{=(aB)R?XR"

Clearly, { f,g] differs from the Fourier transform of the
usual Poisson bracket § f,g}, but converges toit as ##—0. The
reasons originally given by Wigner® and Moyal’ for their
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correspondence principle were merely its formal simplicity
and its convenience. Its phenomenological meaning in terms
of the convergence of expectation values has recently been
analyzed in Ref. 8. Itis argued there that classical mechanics
can be derived completely, with both its Jordan and Lie
structures, from the more fundamental setting of quantum
theory. This argument is generalized here, away from the
flat situation M = R 9, while the latter naturally still appears
as a particular case.

4. The classical geodesic flow on a compact surface of
constant negative curvature is a typical model® of an Anosov
flow which is a Kolmogorov flow and thus enjoys very
strong ergodic properties. These spaces being obtained as
quotient of the Poincaré half-plane by a discrete, nonabe-
lian, cocompact subgroup I" of SL(2,R ), we first discuss the
connection between classical and quantum mechanics on
their universal covering space. In a wider context, we first
consider models of space where M is a connected, simply
connected, d-dim Riemann manifold M on which a symme-
try group G acts transitively. M is therefore geodesically
complete'® and of constant curvature K. We restrict our
analysis to the cases where K < 0 and, for notational simpli-
city,d = 2.

Il. QUANTUM AND CLASSICAL MECHANICS ON
LOBATCHEVSKI SPACE

1. The formulation of the quantum theory of a particle
whose configuration space is a homogeneous Riemannian
manifold M, with symmetry group G, is based on Mackey’s
notion of an irreducible system of imprimitivity'' resulting
from the action of G on M. We therefore have a Hilbert space
£, a unitary representation U:G—U(9), and a projection-
valued measure Q:B(M }—P(H) based on the o-algebra B(M )
of the Borel subsets of M, satisfying

HUERQREAUE")=0(gld]) Vi(g.d)eG XBM),

(ii) &($) = {U(g),Q (4 )|geG,4eB(M )} ".

As usual Q describes the “position” observable on M; and
the generators of U (G ), defined for every one-parameter sub-
group T of G by

Ula) = exp} — iPa/#},
are identified as the corresponding “momentum’ observa-
bles. To assume that § = %M ) amounts then to restricting
one’s attention to particles with no internal degree of free-
dom (e.g., spin). The aim of this section is to derive, from this
framework alone, the corresponding classical theory, i.e., to
control the limit #—0, and to exploit systematically its con-
sequences to establish the correspondence principle which
will solve the Dirac problem.

We now specify the manifold M and the symmetry
group H we want to consider, and we describe them in a
parametrization which is convenient for our purposes (al-
though the final results are ultimately independent of the
coordinate system thus initially singled out).

2. Scholium: (i) For 0 < ¢ < o0, M, ={{ = (x,y)|x,yeR }
equipped with the metric

ds® = exp{ — y/c){dx* + (x/c)dx dy
+ [(x*/4¢?) + exply/c)ldy?}
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is a Riemann surface of constant negative curvature K,
= —¢72%

(i) Every connected, simply connected, geodesically
complete, two-dimensional, Riemannian manifold of con-
stant negative curvature K, is isometric to (M ,ds?).

(iii) For 0 <@ < oo, H,=={£& = (s,t}|s,2eR | equipped
with the composition law

Ya :(§I’§2)€Ha XHa

—(s1exp( — 1,/2a} + s,exp( + 1,/2a),t, + 1))
is a noncommutative Lie group extension 1 -R—H,,
—R—1, with Haar measure du,, (s,t ) = exp( — t /2a)ds dt,
and modular function 4 (£ ~') = exp(t /).

(iv) The map y,.:(&,¢ JeH, X M. —y (&, JeM . defines a
transitive, free, and isometric action of H, on (M, ,ds?).

Proof: To prove (i) and (ii), it is sufficient'? to verify that
(M, ,ds?) is isometric to the one-sheet hyperboloid

M. ={x'yt)eR*x?+y*—cHt?=

equipped with the Riemannian metric g obtained by restrict-
ing to M ! the Minkowski metric on R ? given by

(ds)? = (dx')* + (dy')* — c*dt ).

— %4> 0}

The natural symmetry group G of M is the homogeneous
Lorentz group of the linear transformation of R * leaving
invariant the quadratic form x'? + y'* — ¢% 2. Upon elimi-
nating ¢, M/ is identified with {{x',y’)|x’,)’eR } with metric

(ds') = (¢ + x4+ y') 7 H{(S? + y)dx')
_ h'yrdx:dyl + (C2 _+_ le)(dyl)Z } .
Upon identifying the elements (x’,y')eM | with the 2 X 2 ma-
trices of the form

’ - x’
X :(y, _ ((:2 + x' +y:2)1/2 x
G is identified with SL(2,R )/Z, by identifying the elements
AeSL(2,R )/ Z, with the Lorentz transformations
X'—AX'A . The Lie subgroup H |, of G, identified in this
manner with

s,teR ],

°T {(exp(t /2a) s/a )
- 0 expl — t /2a)
is clearly isomorphic to the group H, defined in (iii). More-
over, H ! acts transitively, freely, and isometrically on M /;
we can therefore use the parametrization of H | to define a
new coordinate system on M . A straightforward computa-
tion shows that the metric of M ., when expressed in these
new coordinates, coincide with the metric of the Riemann
manifold M, defined in (i). The reminder of the scholium
follows by immediate inspection. B
3. Remarks: (a) The proof of the scholium was presented
here in a manner which emphasizes the explicit connection
with the Lobatchevski plane in its usual presentation: The
parametrization chosen here happens to be more convenient
for our purposes. (b) In particular, in the limit a— oo (respec-
tively, c— o0 ), H,, (respectively, M, ) reduces to the transla-
tion group R 2 (respectively, to the flat Riemannian manifold
R 3 withiits usual Euclidean group structure and its invariant
Haar measure d£ = dsdt (respectively, with its usual Euclid-

’

yl + (CZ _+_x12 +y12)1/2)
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ean metric ds*> = dx* + dy?). (c) For c finite, however, H,
differs from R ? in at least two mathematically important
aspects: It is not abelian, and its one parameter subgroups
cannot in general be identified with geodesics in M_; in this
latter respect, 4 ={(0,¢ )|teR } C H, is an exception. One
should notice also that A normalizes N ={(s,0)|seR }, and
that H_ can be written as H, = AN. (d) The structures sin-
gled out in the scholium carry over to higher dimensions
[e.g., for d = 3, where G = SL(2,C), see the seminal work of
Mackey'®], where one can take advantage of the Iwasawa
decomposition theory, which is in fact what is going on al-
ready in the case d = 2 chosen here for its explicitness. (e)
Since H, (and not merely G ) acts transitively

on M_, we have already that { U (£),Q (4 )|éeH ., AeB(M )}
acts irreducibly on §, = & (M,,du_). Consequently, every
observable of the quantum theory can be obtained as a func-
tion of the position observables and of the momenta relative
to H, alone. This is in particular the case for the angular
momentum, thus generalizing to our curved configuration
spaces an essential feature of the theory of a spinless particle.
(f) For the passage to the classical limit, it is important to
concentrate on the functional dependence on the momenta P
rather than merely on the variables P /#. The parametriza-
tion of H,, introduced in the scholium, allows one to achieve
this by introducing, on the one hand, the unitary operators
[Ux(§) = Ulg4) |6eH. }, where,, = (fis fit )for & = (s,£). We
have thus on §,

(UnE W) =Py 5 6 )).

Since
Yel&asMs) = Yerul&Mns
Up:éeH, ,,—Uy(€ )EW(D,)

is a unitary representation of H_,,. On the other hand, the
functions f(Q) of position are defined as usual by

(fI@WNE) =S EW(E)

This suggests the following realization of the algebra of
quantum observables.
4. Lemma: Let U, be the vector space of functions

SFlE5 )eH X M. —f (5,5 )eC
which are continuous of compact support in £, and bounded
% = in §. Let further fe¥, ,—f*e¥ ,, and ( £,g)e¥ 5 XU,
—¥.4{ /8, 5 be defined by

FHELIH XM, —f (€~ 7ol 5 £ Aoyl ),
Vc,ﬁ(f,g):(f’g )eHc/ﬁ XM,
- f ditonl0) £ BT orml ™ SE Vel S

Then the map fe¥, ,—Fe(9, ) defined by

(FY)E) = fd#cm E)fEL L)

isa *-algebra isomorphism from ¥ , onto a dense *-subalge-
bra of (9, ) such that

(foR)cn=[V.n(/8) + V.48 f)}/2,
respectively,

{8} ca={Ven(S8) — Voulg, f)} /it

1787 J. Math. Phys., Vol. 23, No. 10, October 1982

corresponds to (FG + GF)/2 (respectively, [F,G 1/if).

5. Remarks: (a) The proof of the above lemma is made
by straightforward inspection. (b) The assertion of the
lemma would carry over if 9, were to be replaced by ifc,,,

= QYH_,,) X =(M_), with the composition laws extended
accordingly; the formulation chosen in the lemma is, how-
ever, better adapted to the sequel (see, e.g., Lemma 7 and
Theorem 11 below). (c) In case fand g are functions of £ only,
the involution f—f" [respectively, the twisted convolution
product ¥, ,( f,8)] reduces to the ordinary involution (respec-
tively, the ordinary convolution product) usually defined on
R'(H_,4). (d) At fixed c, but with #i free to run over, say (0,1],
the objects in %, 4 do not change: only their composition
laws do. One then verifies easily the following assertion.

6. Lemma: As £i—0, the nonabelian *-algebra %, con-
tracts to the abelian *-algebra %, whose elements are the
functions

FEL IR * XM —f(EL)eC,

which are continuous of compact support in £, and bounded
% = in {; and whose composition laws are

FHELIER X M, (€~ £ )*€C,
v\ foHEL )R 2><Mc~f dnfin,¢ g~ €)X,

where d7 (respectively, 7 ~'£ ) is the Euclidean measure ds dt
[respectively, the Euclidean addition ( — s, + 55, — ¢, + )]
inR?2

The contraction of the Lie structure of U, as i—~0
requires a more detailed argument, which we now give.

7. Lemma: for every fe9, define

FAp. b, x y)ER 2 X M,
—>f J-dx’dy'exp[ —ipx +p,y )} fIX' Y%y

Then (i) the Jordan product ( fog). 5 on U , induces an %, the
composition law given by the point-wise multiplication in all
variables (p, ,p,;x,p);

(i) the Lie bracket { f,g]. 5 on ¥, induces on %, the
Poisson bracket

{f8)c = —0.X3.X;) with X;lo, = —df,
where w, is the symplectic form with Darboux coordinates
{B. = exply/2c)p,.p, = p, — (x/2c)exply/2c)p,;x.p}.

Proof: Since the convolution product on ¥, (see Lemma
6) is abelian, it coincides with the composition law induced
on A by the Jordan product on ¥_,; assertion (i) then fol-
lows by usual Fourier transform (in R ). A straightforward
computation shows that, as i—0, the quantum Lie bracket
reduces, in the Fourier transform realization of %_, to

(/&) pepyixy)
= exp( — y/2c){9,f9, & — 3,89, f}p.p,x.y)
+ (x/20){3.f3, & — 3,28, F}(px:p,i%)
+ 1{8,f3, & — 3,83, F}(pxp, %)
— (< /)3, F8, & — 8,80, F }x:0yiX:¥).
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One then verifies that
{xy}. =0,
{xP,}c =0={yp.}.
{PxPy}e =0,
{xP:)e =1={yp,}.

With the change of variables (p, ,p, ;x,y)—>(p. P, %.y), the
expression for { £z}, becomes

where
wc=d[_71/\dx+d1—7y/\dy -

8. Corollary: {Ap, + up,|A.ueR } equipped with the
Poisson bracket {.,.}. is a representation of the Lie algebra
h.of H,.

Proof: On the one hand {p,,p,}, = — p,/c. On the
other hand, with our parametrization of H., we construct a
basis for b, as follows:

=c—1(0 1)__d_(1 x/c)
= 0 0/ dx \0 1

=ty L)

_d (exp(v/ 2c) 0 )
Cdy 0 exp( — y/2c)

We have then [Z,,5,] = — Z,/c, so that the representa-
tion is given explicitly by @ (A=, + u=,)=4p, +up,. Il
9. The Fourier transform, which appeared in Lemma 7,
was introduced there as a mere mathematical convenience,
although that lemma, and its corollary 8, do indicate that a
deeper phenomenological meaning should be sought. The
remainder of this section proposes such an interpretation.
Let A, (respectively, % ) be equipped with the topol-
ogy it inherits from &' (H,,,;) X (M, ) [respectively,
LR Y X 8={M.,}}. A quantum state is defined as a positive,
continuous linear functional of norm 1 on . ,. A family
{@5|#€(0,1]} of quantum states is said to be classical
whenever

@o: fEA limy_, (@y; f)eC
defines a positive, continuous linear functional of norm 1 on
9, . Equivalent definitions of a classical family of quantum
states, and several classes of examples, have been described
in Ref. 8 for the flat case (c = ), but the above condition
will suffice for our present purpose.

10. Lemma: To every classical family {@, |#<(0,1]} of
quantum states corresponds a positive measure dg, of norm
1, concentrated on the space X (~R ? X M_ ) of the pure states
of A, such that

(‘I’o;f) = f d¢ (px ’py;x’y).?(Px ,Py;x,Y),
where
}E(Px Py ;x,y)e&i

Iy

»
x=0

Iy

y=0

—»f dx'dy'exp{ — ilx'p, +¥'p,)} F(x'y'x.p).
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Proof: Upon writing

P FEUa [ sl M €1 SE Yo

we notice that the condition that ¢, be a positive functional
on %_, is equivalent to

[auter 3 eergCipatrmte it 514050,

Gk=1
This implies that

o fE, aj dEdu () FIEC WPoEL),

where g, satisfies the positivity condition

fduc@) S 2l VR ol '8 )50,

jk=1

From the generalized Bochner theorem, there exists there-
fore a positive measure dg of norm 1, concentrated on the
pure states of %, such that

Pl ) = j dp (.6 epe (L),

Since ¥, is abelian, its pure states are product states of the
form

ep,g’(g!g) = ep(§ )52(§ )’

where
e,(§)=exp{ —ilx'p, +y'p,)};
[ auerss cre) =g

Hence

(Poi f) = f do (p£) f dEFEL)e, ().

We collect our results in the following summary.
11. Theorem: To every quantum observable

F fdm(g VAU E)

[where (f(£,)¥)5) =SE5 WS ) (Un(& W)
=Y(r.(€ 5 6)) Vb, = % (M, ,du. )] corresponds a clas-
sical observable, namely a function fon

Z={(pL)lp=psp,)ER % ¢ = (x,p)eM., } given by

Fipk) = f dEfIEC e, (€)
[where e, (€) = ,., (x'y') = exp| — i(wp, +¥p,)}] such

that, for every classical family {@,|#i€(0,1]} of quantum
states, one has

(i) limy_o (@niF ) = f dp (pE)FpL),

where dg is a positive measure of norm 1 on %;

(i) limy, o (@:FoG ) = f dp (p£ ) FE) L)

where ( £:g) is the point-wise multiplication of functions on ¥;

(i) limy_o (@i [F.G 1/ifi) = f dp (L) F8).(p.L),
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where {fg]. is the Poisson bracket associated with the sym-
plectic form o, = dp, Adx + dp, Ady on %, with Darboux
coordinates given by

D, = exply/2clp, and p, = p, — (x/2c)exply/2c)p,.

12. Remarks: (a) This theorem solves the Dirac problem
for M, by constructing, via the classical limit -0 of the
initial quantum theory, a correspondence principle F—f
between quantum and classical observables. In this limiting
procedure the Jordan and Lie structures of the classical the-
ory are obtained from purely quantum premises; so is the
momentum map of Corollary 8. In that sense, the classical
mechanics of a particle with curved configuration space M,
is completely derived from the primary theory, namely from
the quantum mechanics of such a particle, as axiomatized by
the system of imprimitivity formulation of Mackey.

{b} The classical limit selects unambiguously the varia-
bles p, as the physical observables respectively associated to
the coordinates x* of M. These momenta have to be distin-
guished from the variables p,, which only appear as a math-
ematical convenience, namely as Darboux coordinates in the
diagonalization of the symplectic form @, canonically asso-
ciated with the classical Poisson bracket derived from the
quantum theory. This distinction is intimately linked to the
nonvanishing curvature of the homogeneous Riemannian
manifold M, ; indeed the explicit form of the p,, in terms of
the p, shows that this distinction disappears in the limit
¢— 0, 1.e., K, —0. In this limit, the results of Ref. 8 are com-
pletely recovered, thus showing that the geometric dequanti-
zation program outlined there has a nontrivial extension to
nonflat homogeneous Riemannian manifolds.

(c) The starting point for the generalization to higher
dimensions of the considerations presented in this section is
indicated in Remark 3(d).

1. QUANTUM GEODESIC FLOWS

1. In this section we bring in perspective the role of the
Laplace-Beltrami operator

4, =g '%3,8:8.%d,
in the quantization of classical geodesic flows, with special
attention to the case where the configuration space is a Rie-
mannian manifold of constant negative curvature. We first
discuss the case where the manifold is simply connected, as
exemplified by the Lobatchevski plane; we then look at the
modifications to be brought to the theory for multiply con-
nected manifolds which are compact and without
boundaries.

Our first remark is to notice that in the coordinates of
the Lobatchevski plane with metric

2 2
- +Jy — Xy
el =422 1) (¢ ),
(g.[t) ( +x +y) —xp C2+x2

the operator H, = — #* A_/2 takes the form
Hy=(m}, + 72 ~c 27?2,
where

— 3 —1/2
T, = —ifig” ""*d,,

= — ifilxd, —yd,)
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are, respectively, the momenta canonically associated with
the Lorentz boosts in the directions x*, and to the rotations.
H,, is thus invariant under the action of the unitary
representation

(UE¥x) = g~ '(x])
of the group G = SL(2,R )/Z,; and 4, is in fact the corre-
sponding representative of the Casimir operator which gen-
erates the center of the universal enveloping algebra of the
Lie algebra sl(2,R ). The questions then are (i) to derive the
form of H, from first {i.e., quantum) principles; and (ii) to
relate this operator to the classical Hamiltonian of the corre-
sponding geodesic flow on 7M., .

2. Scholium: For H self-adjoint in §, = ¥* (M, ,du. ) the
following conditions are equivalent:

(H= —#A4./2+ V(x) with VxeM. >V {x)eR,
(i) [x“.H |/ifi = g**g\ %o,

where 7, = — ifig” 9, and 4°B = (AB + BA)/2.
Proof: from [x*,7,]/ifi=g; '/?6" I and
Hy,= —#A4,/2=7,8" g m,/2, weobtain [x*,H,]/ik
= g#"g!oqr, . From (ii) we have thus [x*,H — H,] =0, i.e.,
(H — H,) is affiliated with {Q (4 )|AeB (M,)}’; since
{Q(4)]4eB(M,)}" actingon ¥’ (M. ,du.)is maximal abelian,
we thus obtain (i). The converse implication (i)=>(ii) is
trivial. [ |
In conformity with the correspondence principle estab-
lished in Sec. 11, the commutation relation (ii} in the above
scholium, with the Jordan product appearing in the rhs, re-
flects the classical relation {x,H,}. = g**p, for the Dar-
boux coordinates (x*, 5, ), with H, = g** b, p, /2, which is
the Hamiltonian defining the classical geodesic flow on
T°M,.In particular, in the flat case (c— oo ), 7,, (respectively,
Hg; p, and H,) reduces to — ifi d,, [respectively,
(w2 + 72)/2; p,, and (p% + p;)/2]. In this limiting case, the
commutation relation (ii) can be interpreted'* as an expres-
sion of the restriction further imposed on the theory by the
condition that it be Galilean invariant.
3. Scholium: For a continuous one-parameter group
{V(t)|teR } of unitary operatorson §, = *(M.,du,_)thefol-
lowing conditions are equivalent:

(i) V(t)=exp{ —iHt] with H=f(4,),
(ii) Ulg)V(¢)U(g~") = V(t)VteR,geG = SL(2,R )/ Z,.

Proof: Let K be the stabilizer of the origin in the Lobat-
chevski plane; we have then M. ~G /K, and

k= [( i)Ssil: g cos 0) ‘ '96[0’2”]]‘

U (G )istherepresentation of Ginduced by the identity repre-
sentation of K, and thus §, can be seen as the space of func-
tions ¥:G—C satisfying ¥(gk ) = ¥(g)V(g,k )G XK, and
which are square integrable over G /K with respect to the
canonical measure z_. With X defined by

o) = [ du.lg VX 88 Wig)

the condition that X belong to U (G )’ is equivalent to
X{(g.g') = xlg~'g’), where y is a spherical function on G with

sin
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respect to K, i.e., that y is constant on the double cosets K:K.
As a consequence of the following three facts, the algebra
¢ (G) of spherical functions is abelian'’: (a) K is compact;
(b) K is maximal, i.e., K = {geG |gKg~' = K }; and (c) the
transposition g—g in SL(2,R ) is an antiautomorphism and
satisfies k = k ~' for all k in K. We thus have
UGYCU(G)",ie., U(G)is multiplicity free, and V'(R)
CU(G)YnU(G)".From this and the remark at the end of Sec.
IIIL. 1, condition (i) of the scholium follows immediately. The
converse implication, (i}=>(ii), is trivial.

4. Corollary: For H self-adjoint in . = &% (M, ,du.) the
following conditions are equivalent:

(i) H= —#*A4,/2 + AI with AeR,
(ii) ¥ (R )={exp( — iHt /#|teR }
commutes with
U(G) I H,,
and
[x*H 1/it = g*g' %orr,.

Proof: This follows immediately from Scholium 2 and
the fact that H, acts transitively on M. [ ]

Each of the equivalent conditions of this corollary thus
implies that ¥ (R ) commutes with the full U (G } (and in parti-
cular that the Hamiltonian H is rotation-invariant). As
shown by Scholium 3 the latter condition, namely that V(R )
commutes with U {G ), is weaker than the conditions of Corol-
lary 4. Via the correspondence principle established in Sec.
I each of the equivalent conditions of Corollary 4 character-
izes completely the classical geodesic flow on T°M,. The
ambiguity left by Scholium 3 also has its equivalent in the
classical limit: It only places in a general setting such well-
known facts as, for instance, that the trajectories of a free
particle in flat configuration space are straight lines for spe-
cial relativity, i.e., H = (2,p2 + m?)'/?, as well as for Gali-
lean relativity, i.e., H = 3,p2 /2.

5. We now turn to the formulation of the quantum and
classical theories on compact Riemannian manifolds of con-
stant negative curvature. These manifolds are obtained as
quotients I" \M_ = I" \ G /K of the Lobatchevski plane
M,~G /K by adiscrete subgroup /"C G. This is quite analo-
gous to the identification of the flat torus as the quotient of
the Euclidean plane R 2~E */K by the discrete subgroup
Z >C E % There are, however, two essential differences: (i) the
restriction imposed on the volume of I" \ G /K by the Gauss—
Bonnet formula; and (i} the fact that, whereas the torus still
has a continuous group of smooth isometries (namely
Z*\R?, where R ?is the translation subgroup of the Euclid-
ean group £ 3, this is no more the case for the curved mani-
folds I \ G /K. This latter fact can be obtained as follows.
Since I" has no fixed point (it identifies opposite sides by
pairs) and cannot be simply conjugate to a subgroup of either
one of the maximal abelian subgroups

PRI A e 37

we can assume without loss of generality that I" is non-abe-
lian and contains an element ye4 with y#e. As a conse-
quence, one obtains by contradiction (see, e.g., Ref. 16) that
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Ng(I)={geG |gl'g~ ' =TI }isdiscrete. Sois then the group
o (') = ' \Ng(I'") of smooth isometries of I"\ G /K.
Since this manifold is compact, o/ ;(I") is in fact finite.

This precludes any direct use of the system of imprimi-
tivity approach to formulate the quantum theory of a parti-
clemovingonI" \ G /K. Sincethecoveringspace M., is never-
theless available, we start with the theory on M., as
established in Sec. II, and restrict it to " \ M, by making use
of the periodic boundary conditions provided by I". We ob-
tain in this manner the projection valued measure Q,-:
EeB(I' \M_}>Qr(E)eB (D), where & is the Hilbert space
of square-integrable functions on I" \ M, with respect to the
measure du - canonically inherited from du_. The Laplace—
Beltrami operator 4 7 is similarly obtained, and its proper-
ties have been extensively studied.'’

6. Scholium: With H, = — # 45./2, and V(t)
= exp{ — i Ht /#i}, the von Neumann algebra {Q,(E),
V(t)EeB(I' \M_), teR }" coincides with L (§ ).

Proof: Impose first BQ(E) = Q,(E)B forall E in
B(I" \M,).Since the Q- (E )’s generate a maximal abelian von
Neumann subalgebra of (H ), we have (By)(x) = B (x)i{x)
with B (.)e® (I" \M.). Since I" \ M, has finite volume, we
have B (.)e®* (I" \M_). Impose moreover BV .(t) = V(t\B
forallzin R. From the fact that O is a nondegenerate eigenva-
lue of 4 § with eigenvector 1, we obtain that

(Vr(t)B)x) = (Vr(t)B 1)x)
= (BV-(t)1)ix) = (B 1)(x) = B (x)

implies B (x) = A-1{x) with AeC, and thus B = A1. Hence
{QHE), V(1) EeB(I' \M,),teR } actsirreduciblyon .||}

In physical terms, this scholium asserts that all the ob-
servables of the theory can be expressed as functions of two
kinds of fundamental observables: the position observables
Qr and the energy H . This generalizes to the curved mani-
folds I" \ M, a result well known for the flat torus. Here,
however, the scholium is important in that it allows one to
bypass the absence of the momentum observables, a diffi-
culty inherent to the curved space situation where the geo-
metrical symmetry group .« ;(I") is discrete.

7. Whereas the spectrum of — 4 § is discrete, and posi-
tive, some degeneracies might occur amongst its strictly
positive eigenvalues, so that the quantum systems, in contra-
distinction with the corresponding classical systems (with
¢ < oo ), are not strictly ergodic. Still, as A0, the Wey! for-
mula (in the form given for instance in Ref. 18) can be used to
show that the number N, (E ) of eigenvalues, for H

= — #*A % /2, contained in any interval (E,E + 4 %) with
E > 0, satisfies

vE)=lim, (N(E)=2au " \M,).

This again generalizes to the curved manifolds I" \ M, a re-
sult well known for the flat torus. Here, however, there is a
difference in interpretation: Since, for ¢ < «, the classical
system is ergodic, the rhs of the above expression is equal to
the volume of T¥(I" \M.), i.e., to the volume which is “oc-
cupied” by the classical particle in the phase space
T*I"\M.). Moreover, by the Gauss-Bonnet formula, this
volume is determined, at fixed curvature K, = — ¢~ 2, by
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the genus g of the surface; we have thus
V(E)/Sﬂ'zc2 =g—1eZ,.
For finite, but small, values of #, this result holds to O (#*).

One can actually do somewhat better, as the next result
shows, when we compare the quantum partition function

Zl‘(ﬂvﬁac) =Tr CXp( - BHCI‘)
with
HS = —#A% —al)/2

and the classical partition function

Z(Bie)

= J f dp, dpyJ f dxdy exp{ — fgt*(xyp,p. }

"\M,

=2mu{l \M.)/B.

8. Proposition: With HS. = — # (A — al)/2 and
a=a,=K_/6

h2Z (B.#,

BZeBRA \ _oypmp) as p—,

Zp(Bc)

whereas one has only O (8#) when a #«, .
Proof: The Selberg asymptotic formula reads'’

Sexp( — €d,)~(4me) " *a, + a € + ~ + a,€" + ),

where A are the eigenvalues 0 = A,<A4,<A,<- of the La-
place-Beltrami operator — 4 ¢ for the two-dimensional
(d = 2) manifold I"\M_;

1

do=pi(F\M,) and a,=— | dusK..

£,

From this one computes

2
RZABR) ik, - o)+ 0UBRY). W
Zr(Byc)

The interest of this result is that the curvature correc-
tion o, = K, /6 to the Laplace~Beltrami operator — 4 ¢
provides the best possible fit of the quantum partition func-
tion to its classical limit. This is to be compared with the
original proposal'® concerning the possible dynamics on
curved, infinite, and simply connected spaces; see also Ref.
20 for a connection with the BKS-kernel of the geometric
quantization program, and the results?' based on the Feyn-
man path integral.
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In this paper we derive in a completely rigorous way a family of inequalities holding for proper
combinations of the squared norms of the states generated by the quantum evolution of a
compound quantum system in the presence of additive conservation laws. The application of
these inequalities to the quantum theory of measurement yields lower bounds for the
malfunctioning of a measuring apparatus, which are valid under more general mathematical
conditions and for a larger variety of physical situations than those considered up to now in the

literature.

PACS numbers: 03.65.Bz

1. INTRODUCTION

In this paper we consider the evolution induced by the
interaction of two quantum systems .S and s when, in the
interaction process, some additive quantity is conserved.

The existence of additive conserved quantities gives rise
to constraints on the norms of the states which are generated
by the application of the unitary evolution operatior U to the
states of the system S + s. The importance of this fact was
first recognized by Wigner' in connection with the quantum
theory of measurement. In fact, he has pointed out that the
existence of additive conserved quantities by itself entails
limitations upon the measurability of certain observables. To
be more precise, let us denote by H and /# the Hilbert spaces
of the systems S and s, respectively, and identify S with a
measuring apparatus devised to measure the observable .4
associated to the self-adjoint operator M of A, and s with the
measured system. In the Wigner formulation one assumes
that M has a purely discrete spectrum with eigenvalues m,
and a complete set of eigenstates ¥;, and that the unitary
operator U describing the system—apparatus interaction
commutes with an additive quantity
N=N,®l, + 1, ® N,. Then one can prove that, unless
the operators M and N, commute, it is impossible for U to
act as required by the ideal measurement scheme hypoth-
esized by von Neumann?

Ulgoo¥,)=4,01,. (1.1)
where ¢, is the initial state of the apparatus and the ¢,,’s are
the final states satisfying (¢,,4,) = 8,,,.. Araki and Yanase,’
and subsequently Stein and Shimony,* have shown that the
theorem originally suggested by Wigner can be rigorously
proved when NV, is a bounded operator and the initial appa-
ratus state ¢, belongs to the domain of definition of N,.
Moreover, Stein and Shimony have made conceptually clear

a Work supported in part by Istituto Nazionale di Fisica Nucleare, Sezioni
di Trieste ¢ Pavia.
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what has to be the mathematical requirement corresponding
to the physical occurrence of an additive conservation law.

In fact when N is unbounded (as happens in almost all phys-
ical cases) the sense of the statement “U commutes with N’
has to be made mathematically precise.

In the case in which the measured observable of the
system s does not commute with the part N, of the additive
conserved quantity N, since (1.1) cannot hold, we must resort
to a nonideal measurement scheme. To this purpose, let us
start by writing an equation expressing the most general type
of evolution which can be induced by U on the state ¢, ® ¢,,, :

U¢0®¢m=¢m®¢m+ Z¢mn®¢n' (1’2)

n#m
In the case of the quantum theory of measurement the prob-
lem then arises of making as small as possible the norms of
the states ¢,,,,, and almost orthogonal the states 4, . In fact,
both the nonorthogonality of the states ¢,, and the presence
of the states ¢,,, give rise to errors, ambiguities, and distor-
tions in the measurement process, as discussed in detail in
Ref. 5. This problem has been the subject of various investi-
gations. First of all, it can be easily proved that the norms of
the states ¢,,, can be made very small only by making very
large the expectation value of the operator N}, on the state
éo.">° Besides this general result, it then becomes relevant to
obtain a quantitative estimate of the minimal deviation from
the ideal measurement scheme, and this is usually expressed
through the derivation of bounds for proper linear combina-
tions of the squared norms of the states ¢,,,, . Up to now, such
bounds have been obtained only in the case in which the
conserved quantity is the total angular momentum, the Hil-
bert space is the finite-dimensional spin space of a particle of
given spin, and the measured quantity is a spin component.
More precisely, in Ref. 7 the case of spin § has been dealt with
in a rather heuristic way. In Ref. 5 the Yanase bound has
been rederived in a simpler and more rigorous way and equa-
tions defining an optimal measuring apparatus have been
obtained. In Ref. (8) we have built an explicit example of a
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physically reasonable measuring apparatus working almost
ideally. Finally, in Ref. 9 the derivation of Ref. 5 has been
generalized to the case of a particle of arbitrary spin.

Summarizing, the bounds for the terms related to the
malfunctioning of the apparatus have been obtained up to
now under the following rather restrictive assumptions:

(i) the conserved quantity is the total angular momen-
tum;

(i1) the measured quantity is a component of the spin;

(iii) the spin space, i.e., the space A, is finite dimensional.

It is then interesting to derive explicit bounds for the
general case of an arbitrary additive conserved quantity, of
an arbitrary measured observable and for an infinite Hilbert
space A. We do this in Sec. 3 by making use of a theorem
which will be proved in Sec. 2 under rather general assump-
tions. This theorem consists in the derivation of a family of
inequalities which must be satisfied by proper linear combi-
nations of the squared norms of the states ¢,,, appearing in
(1.2). These inequalities are valid for any unitary operator U
which commutes with an additive conserved quantity N sa-
tisfying some general requirements. Therefore, the theorem
could find applications to other quantum problems besides
the quantum theory of measurement.

Before coming to the statement and to the proof of the
theorem, we want to comment briefly about the correct
mathematical formulation of the assumption that an addi-
tive conservation law holds for U. In fact, while for a bound-
ed self-adjoint operator 4 the fact that 4 is conserved can be
unambiguously expressed as [U, A ] = 0, in the case in which
A is unbounded this relation can be meaningless. In such a
case, by the statement ““A4 is conserved,” we will mean that
for every real number r

[Ue™] = 0. (1.3)

As discussed in Ref. 4, this condition, from the point of view
of every essential mathematical and physical consideration,
should be regarded as the meaning of the proposition that
the operators U and 4 commute.

2. A GENERAL THEOREM

Before stating our theorem let us specify the notations
we will use.

We shall deal with the tensor product #° = H ® h of
two separable Hilbert spaces. In 4 we consider a complete
orthonormal set of states {1,} and denote by P, the projec-
tion operator on ¥,.

Given a pair of integers / and j, i}, we define two pro-
jection operators Z, and #; according to

P=P+Q, I=ij (2.1)
with
Q1: sz, 1=i,j. (2.2)
kENl

Here and in the following N, and N; are two subsets of the set
N of the positive integers which are arbitrary except for the
condition that N;,N; and the pair /, j form a partition of N. It
follows from the definition that

PP, =P, P, =0, (2.3)
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P+ P, =1, (2.4)

Given a unitary operator U onto # and a normalized
vector ¢,eH, one can write with complete generality

U@ Y =P @Y + Y bmn ® Y (2.5)

n#Em
where the states ¢, and ¢,,,, belong to A. In connection with
the expansion (2.5) we define the quantity 7, according to

m=3 llul® (2-6)
k31

For the sake of brevity we shall use shortened notations
such as, e.g., Z, for I, ® #, and Ny, for Ny ®1,. Further-
more, the same symbol || - || will be used to denote operator
norms and vector norms in &, H, and A.

Theorem: Let U be a unitary operator on
7 = H & h,{1¢,}] a complete orthonormal set in 4 and ¢, a
normalized vector in H. If there exist two self-adjoint opera-
tors N, and N, acting on H and A, respectively, such that

(i) N, is bounded,

(ii) ¢, belongs to the domain Dy, of Ny,

(iii) for all real numbers r, [ U, ¥« +¥r] =,
then for any pair of positive integers / and j, i #j, the follow-
ing inequalities hold:

11— ()| - |4, N, 9|
< Wl (S0 + 18,87)

+H(Z e+ 1))
eNj

+ HN,, ||(277i + 277j + 771'77])’ (2.7)
where the vectors ¢, ,4,, of H are defined by the expansion
(2.5), the positive real numbers 7, are given by Eq. (2.6), and
the sets of positive integers N, and N; are arbitrary except for
the condition that their union covers the whole set of positive
integers except the pair / and j.

Proof: Having chosen the pair /, j and defined the opera-
tors &7, through Egs. {2.1), Eq. (2.4) allows us to write the
operator identity

UNy + Hr _ ilNy + H, iNy + Na)r
Pk Wl — o Nu h)’.@i_*_‘@je H n

— .@je’]NH + Nh)'gi + ‘@i + -@,—ei(N" + Nh"ﬂj.
(2.8)
Multiplying by U ™ on the left and by U on the right, taking

into account the commutativity condition (iii) one gets the
relation

Ny + N (N, i
e ¥ M = oWNu NI+ P U+ U+ P, UeWn + Mol
_ U+gjeiN,,r'@ie—iN,rUei(N,, + N,ir
+ U + ‘@iem’“'@je - iN,,rUei(N,, -+ N,.)r' (2’9)

In the right-hand side of the above equality we have brought
the operator e™+”either to the left or to the right in each term
appearing in it; this has been done since we will sandwich

this equation between the states ¢, ® ¢, and #o® ¢, and we
will subsequently take the limit for »—0. We obtain in this

way a correct expression, since the operator N, will then act
on the vector ¢OeDNH.
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For r#0 let us define two bounded operators g(r) and
G (r) through the equations

eMr =1, + irg(r),

e =1, + irG(r), {2.10)

and note that under the limit 7—0 the operator glr)converges
strongly to N, and the state G (r)d, converges strongly to
Ny do- Sandwiching (2.9) between the states do® ¢, and
$0® ¥, with i+ and using (2.10) we have

(B (L + irG (N]do)sis [ 1, + irg(r)]¢;)

=Ly —irG*(r)]do® ¥;,
1, +ig(rU* 2, Up, » )
+{(Z,Ubo @9, U [1, +irglr)]
X [1g +’7G{’)]¢o®¢j)
—(Z; Uy ® 4, [ 1, + irg(r)]
X2, [, —irg*(N]U (I, + irg(r)]
X1y +irG(r)]goe ¢,
+{(Z,Ubo o ,,[ 1, + irg(r)]
XP; (L, —irg* (N U [T, + irg(r))]

X[1n +irG(r)] o ® ¥)). (2.11)

Due to Egs. (2.3) and (2.4) all terms not containing 7 cancel.
Dividing by » and taking the limit for »—0, we get
WiNuty) = (UNuydo 89,7, Upy @ ;)
+ (2, U@ t);,UN, ¢, ® ¥)
+ (UN.4o8Y,7,Upy® ¢;)
+(Z,;Upo@¢;,UN, 4o 9))
—(Z,Uy8¢;,N, 7 . Udy® ;)

+ (U@ 4,7 N, 7 ,Upo®Y)). (2.12)

For the last term in the r.h.s. of (2.12), recalling (2.1), we
write the identity

PN, #,=PN,P,+PN,Q, +QON, 7, {2.13)
Observing that
P Uy, =0, 0, (2.14)

we get from Eq. (2.12)

[1- (¢i7¢j)]'(¢i’Nh¢j)=(UNH¢O®¢H'@1'U¢O®¢])
+(Z,;Ugo® ¢;,UNy b0 @ ¢;)
+ (UN,¢o® ¥, 7 ,Upo © ¢;)
+(Z;Upo® ¥;,UN, $o @ 1))
— (2, Upy® 9y, ,N, 7 Uy ¢)
+ (P Ugo ® ¥, ¥, O, Udo © ¢y
+(Q; Uby @ ¥,,N, 7, Udy @ ;).

(2.15)

Using the Schwarz inequality for all terms in the r.h.s., we
get

11— (¢i’¢j)l']('//i!Nhd’j)l<"Nl{¢0"'"'@iU¢0®¢j"
+ INudoll-l 2, Upo @ || + ([N, |I-{|| 2, Uo @ |
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+ 1|2 Uy ® ;|| + “‘J/)jU‘ﬁo@’ﬁi”‘”'@iU(to@lﬁj“

+ 1P, Uy @ ¢, ““Q; Ugy® ¢j I

+ Qi Ugo® ||| 7 Udo @ ¥} (2.16)
For the various vector norms appearing in the curly

brackets we use the following relations, which can be easily

obtained from (2.1), (2.2}, (2.5), and (2.6):

12,054 = | S + W] “n, 217

12,0800 = | S8+ 10l "< @1

P Ug,® v = 8.1, (2.17¢)

Ie,uew - | S0l T, 2174
IeNj

10Uyl =| S| “<n. 217

12,0804 = | S 161" + 1] "<

Use of (2.17a}-(2.17f) in (2.16) yields immediately Eq. {2.7).

Note that this theorem is meaningful only when N, is
not diagonal on the basis {1, }. We note also that, if in Eq.
{2.16) we had used, instead of the simple quantities 77, and 9,
which give a majorization of the norms in the 1.h.s. of
(2.17a)-(2.17f), the actual expressions of such norms [also
shown in Egs. (2.17a)-(2.17f)], we would have obtained a
bound more stringent than (2.7). However this bound takes a
rather complicated form and, for the use we intend to make
of our theorem in the next section, the result (2.7} is suffi-
clent.

3. LIMITATIONS ON QUANTUM MEASUREMENTS

As already stated in the Introduction, the theorem of
Sec. 2 has a straightforward application to the guantum the-
ory of measurement. In fact, let us suppose we want to mea-
sure an observable .# associated to the self-adjoint operator
M (with purely discrete nondegenerate spectrum}*® of the
Hilbert space of the measured system. The measurement is
obtained through an interaction of the system with another
quantum system acting as a measuring apparatus. Suppose
also that there exists an additive quantity which is conserved
during the evolution induced by the system—apparatus in-
teraction. If the part of the additive quantity referring to the
measured system is bounded and the initial state of the appa-
ratus belongs to the domain of definition of the part referring
to the apparatus, we can then identify the states ¢, of the
theorem of Sec. 2 with the complete set of eigenstates of M,
the quantity N = N, & [; + Ny ® I, with the additive con-
served quantity, the operator U with the unitary evolution
operator describing the system—apparatus interaction, and
the state ¢, with the initial state of the apparatus.

In the case in which M does not commute with N,,, Eq.
(2.7) shows that an ideal measurement scheme of the type
{1.1) is impossible. One is then forced to describe the mea-
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surement process through Eq. (1.2). Since, as already dis-
cussed, the appearance of the states ¢,,, and the nonortho-
gonality of the states ¢, correspond to a malfunctioning of
the apparatus,” to have a physically acceptable measuring
apparatus we have to make as small as possible all the norms
|ldu || and the scalar products (¢,,4;). As shown by Eq. (2.7)
this can only be obtained by monitoring the physically mean-
ingful quantity |V, @,||, making it larger and larger. To see
that this is actually the case, first of all one has to note that
the left-hand side of Eq. (2.7) cannot be zero; in fact the
quantity (¢,,4;) must remain different from 1, since, being
the norms of ¢, and ¢, bounded by 1, it could attain the value
1 only for ¢, = ¢;. This must be excluded, otherwise the
measuring apparatus would respond exactly in the same way
when detecting the states ¢, and ¢, associated to different
eigenvalues of the measured quantity. Actually, as already
stated, we need to make (¢,,¢;) become infinitesimal in order
to have a correctly functioning apparatus. Secondly, the
quantities (1;,N, ¥;) cannot all be zero, since N, cannot be
diagonal in the representation given by the vectors ,. Then
the only way to obtain an acceptable measuring apparatus is
to make || N, d,|| larger and larger. In such a case we can
treat as infinitesimals the quantities 77, (of order 1/)|N, é,l|)
and (@;,4,). Then, keeping in Eq. (2.7) only the dominant
terms, we get

I('ﬁi'Nhlbj)‘ <(
V5ol

+(Zler+1er) " -

Using the fact that (4 )/ + (B)"/*<v2(4 + B)'/? and taking
the square of both sides of (3.1}, we then get for the norms of
the unwanted states the family of inequalities

> liguli* + ;}IMIZ + llgill” + ;17

leN;

Sl + ||¢,-,-|V)

leN;

> (80N, 95) P/ 2| N o (3.2)
We recall that in Eq. (3.2) { andj (i #/) are arbitrary, and that
N; and N; are two arbitrary subsets of the set of positive
integers, such that their union reproduces all the positive
integers except for the pair /, j. Formula (3.2) summarizes a
set of inequalities which cannot be violated when one wants,
for physical reasons, to make as small as possible the norms
of the states ¢,,, appearing in an evolution equation like
(1.2).

As particular cases of (3.2), it is interesting to consider
the following ones:

{a) Fix the pair i, j, with i <J, and choose then N, to be
the set of integers going from 1 to ¢ (i< <) excluding i.

Equation (3.2) then becomes

Sl + S’

>0 Na )|/ 2|\ N ol (3.3)
If 4 is the two-dimensional spin space of a spin-} particle and
the measured quantity is the z component of the spin, we
must choose in Eq. (3.3)i = 1, t = 1, j = 2. Moreover, if the
additive conserved quantity not commuting with S, is either
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the x or the y component of the total angular momentum J,
N, is correspondingly either the x or the y component of the
spin and N, is the same component of L = J — S. Equation
(3.3) then becomes

82:11” + [l 12l >#/8IL,, , ol (3.4)

This is the bound expressing the total malfunctioning of the
apparatus obtained in Refs. 7 and 5.

In the analogous case of a particle of spin s we allow for
convenience the indices to run from — stos. Then choosing
t =i arbitrarily, andj =i + 1, we get

3 ulf+ S el
/8L, ol s + i+ V)is — i), (3.5)

which is the bound (3.13) of Ref. 9. We note that the bound
(3.15) of Ref. 9 for the total amount of distortion £* (defined
ingeneralase? =3, ;.. ||#,. ||) can be obtained summing
Eqgs. (3.5) over all values of i from —stos— 1.

(b) Fix the pair 4, j and then choose N; to be the empty
set. Then from Eq. (3.2) we get

S lidull® + llgy )
1%

>N, Y2/ 2 N dol” (3.6
The interest of inequality (3.6) lies in the fact that its left-
hand side, apart from the term ||@; |, is the sum of the
square norms of all the unwanted terms in Eq. (1.2) with
m =j. This quantity represents the probability of changing
the state of the system when a measurement of .# is per-
formed, the system being initially in the j th eigenstate of M.
Equation (3.6), when used for a measurement of a spin com-
ponent of a spin } particle, gives the result (3.4). For spin
greater than | Eq. (3.6) is a relation essentially different from
(3.5]. In particular, if one uses Eq. (3.6) to derive a bound for
the total amount of distortion €, one gets a less stringent
bound than the one obtained by (3.5).

With reference to the general Eq. (3.2) we observe that,
from a physical point of view, the quantities which must be
made as small as possiblearethe 72, = 2, . |4,... [|*>. Unfor-
tunately, from Eq. (3.2) one cannot get an inequality involv-
ing only a given 72,. On the contrary, it is quite easy to get
inequalities for the total amount of distortion € = 2, 72,.
This quantity has been considered in the literature as ex-
pressing the overall malfunctioning of the apparatus. We
stress, however, that this parameter is not particularly sig-
nificant in the theory of measurement. In fact, in the infinite-
dimensional case it can very well happen that, even though
all the %2, are made very small (and therefore the apparatus
works in a physically acceptable way), € turns out to be
infinite. Taking f = i andj =i + 1 in Eq. (3.3) and perform-
ing the summation over i, we get

> ! N, )2
2”NH¢0”2 Zl(@b. h¢1+1” (37)

For a bounded operator the series appearing in the r.h.s. can
be divergent. (Incidentally, we remark that if N, besides
being bounded is of the Hilbert-Schmidt type, then the series
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is convergent. Therefore in such a case apparatuses could
exist leading to an arbitrarily small total amount of distor-
tion.)

If, instead of using Eq. (3.3), we sum Eq. (3.6) for a fixed /
over all j’s different from #, we get in place of (3.7)

€>(AN,)}/2||Nudol’, (3.8)

where (4N, )? is the mean square deviation of N, is the state
;. Since Eq. (3.8) holds for any i, € turns out to be larger
that the maximum possible value of the r.h.s. of (3.8) when ¢,
runs over the set of the eigenstates of M. Since for a bounded
operator (AN, )2<||N, ||, the bound (3.8) is useless when the
sum of the series at the r.h.s. of (3.7) is larger than ||V, ||%.

Concluding we have proved a theorem having a
straightforward application in the quantum theory of mea-
surement. In the well-known situation in which there exists
an additive quantity which is conserved during the system-
apparatus interaction and does not commute with the mea-
sured quantity, the theorem allows to prove the set of in-
equalities {3.2) which puts lower bounds to the norms of the
unwanted terms in the nonideal measurement scheme (1.2).

The assumptions under which (3.2) has been obtained
are much more general than those under which bounds for
the malfunctioning have been obtained in the literature up to
now. In fact, in our treatment both Hilbert spaces for the
system and for the apparatus are allowed to be infinite-di-
mensional and the apparatus part N of the conserved quan-
tity is allowed to be unbounded. On the other hand, the sys-
tem part N, of the conserved quantity is assumed to be
bounded.
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The relevance of (3.2) lies both in the fact that its deriva-
tion is rigorous under rather general assumptions and in the
fact that through the choice of the pair £, j and subsequently
of the sets N;,N; a fairly large set of conditions is obtained.
All known bounds obtained in the literature are particular
cases of (3.2).
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By exploiting the overcompleteness of the spin-coherent states we derive expressions for spin-
kinematics path integrals (specifically for spin 1/2 and spin 1) in terms of genuine (Wiener)
measures on continuous paths lying on the unit sphere and for certain dynamical systems which
when projected onto the subspace spanned by the proper spin-coherent-state matrix elements

yield the appropriate quantum-mechanical propagator.

PACS numbers: 03.65.Bz, 02.20.Sv

I. INTRODUCTION

Quantum-mechanical path integrals have almost invar-
iably been expressed as formal relations in view of the nonex-
istence of the “measure” in such formulas. Proper defini-
tions typically involve approximating the time integrals as
Riemann sums, integrating over the finitely many variables
that result, and subsequently performing a limit as the mesh
approximating the time integral is made infinitely fine.' No
genuine measure on a path space emerges since the limit of
the approximating measures is not countably additive. For
imaginary-time quantum mechanics, on the other hand, the
situation for canonical variables is quite different as one has
the well-known Wiener measure on continuous configura-
tion paths as embodied in the Feynman—Kac formula.?

In some recent work>* it was shown that by exploiting
the overcompleteness properties of the usual, canonical co-
herent states it was possible (in a certain projection sense) to
formulate the quantum-mechanical propagator for a res-
tricted set of dynamical systems as a well-defined integral
involving genuine Wiener measures on continuous phase-
space paths. In this paper we wish to show that an analogous
formulation exists for other kinematical variables, in parti-
cular those associated with (half-) integer spin. Thus we shall
construct (again in a certain projection sense to be defined
below) a representation of the quantum-mechanical propa-
gator for a restricted class of dynamical systems involving
spin-kinematical variables as a well-defined integral involv-
ing Wiener measure on a spherical manifold. For spin 1/2
the operator structure is identical to that for a fermion de-
gree of freedom, and thus in that case our Wiener integral
provides a representation of the dynamical evolution of fer-
mion degrees of freedom as well. We feel compelled to em-
phasize that this representation does not involve Grassmann
variables or anticommuting ¢-numbers, but only ordinary,
classical functions, the general possibility for which has been
shown some time ago by the author.’

In Sec. II we review basic properties of the spin-coher-
ent states with a special emphasis on consequences of their
overcompleteness. In Sec. III we show how positive-definite
functions involving these states lead to the basic Wiener
measure on the sphere; more specifically we are led to a real-
ization of the Green’s function of the Laplacian on the
sphere as a Wiener integral over the space of continuous

= Permanent address: Bell Laboratories, Murray Hill, New Jersey 07974,
US.A.
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paths on the sphere. In so doing we need the results of a
certain extension of the It5 differential calculus, the details
of which are presented elsewhere.® In Sec. IV we show how
the basic Wiener measure can be combined with other fac-
tors to generate a representation of the quantum-mechanical
propagator for certain dynamical systems as genuine path
integrals over continuous paths on a spherical manifold.

Il. SPIN COHERENT STATES
A. Aspects of the rotation group

Let S;,j = 1,2,3, denote an irreducible representation
of the Lie algebra of the group SU(2), which satisfies
[S1,5,] = iS, plus cyclic permutations.” As an irreducible re-
presentation it follows that

S8 =s{s + 1)I,, (2.1)

where s = 0,1/2,1,3/2,--, and 7, is the unit operator in the
(25 + 1)-dimensional representation space $,. Let |s,, ) de-
note a normalized vector in , with the property that

S318,) =mls,,), (2.2)

where m is one of the variables, —s,...,s — 1,5. Let 0, @ de-
note the usual coordinates on the unit sphere, where 0<8<,
0<@ < 27, and define® spin coherent states {for state 5,,) by

|0’¢9sm =U (6] Ism )
=e S~ 055 ) (2.3)

for all points on the sphere. The representations of $ and U
will always be fixed by the vector |s,, ). We frequently will
use the notation 2 for the pair 8,¢, and denote the unitary
operator by U [£2 ] and the spin coherent states by |{2,s,,). In
many applications only one value of s and m is needed and it
suffices to simplify the notation to |0,¢) or |12 }; weare not so
fortunate.

It follows from properties of the rotation group that in
each space §, the spin-coherent states admit a resolution of
unity in the form

T 2T
( 2541 )J' f 16,95, ) (0,5, |sin 6 dO dp = I
4 o Jo
(2.4)
Henceforth we shall set
e —— @.5)

and we assume the integration limits are implicit. If |4,s) and
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ly,s) denote arbitrary vectorsin £, then we can restate (2.4)
as

( 2:; : ) f (4,516,955, ) (6,015, | ,5) A2

= {A,s]y.5).

(2.6)

Moreover there are group orthogonality conditions which
state that

J()»,s\e,q),sm YWl,@,s: lys'YdR =0, 2.7)
provided |s — 5| is a positive (nonzero) integer; note that the
m values are equal for both vectors.®

It follows from the foregoing that for s> 0 the spin-
coherent states satisfy infinitely many conditions of linear
dependency of the form

flfirp,sm Ygl6.p)d2 = 0.

Another manifestation of their linear dependency is the fact
that two spin-coherent states are generally not orthogonal.
In particular, for the special case m = s, it follows that

O"@"5.10"p"5.)
[ o )
2 2
" ’ "o 2s
+icos(‘9 +6 )sin(¢ (p)]’
2 2
and these vectors are orthogonal only in the case that the iwo
variables £2 ” and 2’ label diametrically opposite points on

the sphere. We note in passing that if m = — s then it fol-
lows that

(2.8)

(2.9)

(9//’¢ ”,S_:|€’,¢",S_S> — <6Il’¢ ",st’ﬂ?',ss)*'
(2.10)

B. Ambiguity of operator representation

The overcompleteness of the spin-coherent states intro-
duces an ambiguity in the representation of operators. Let B
be a linear operator on §, which we wish to represent in the
form

B =( 2s+1 )Jleu,wn,sm)
4
X Kp(0".p "0, (0 @', |d2"d2".  (2.11)
In view of the resolution of unity (2.4) one acceptable integral
kernel K, is always given by

”n ”n ’ ’ Zg + 1
KB(G P ;0 P ) = ( )
47

X{(0" "5, B0 \@"5,.). (2.12)

However in view of the linear dependencies among the spin-
coherent states there are infinitely many other linearly inde-
pendent integral kernels K, that yield the same operator B
when inserted into {2.11). All such integral kernels form an
equivalence class labelled by B, and itis convenient to denote
a generic element of that class by

(25 + 1)/4m)(0 ", @" 5, |B 10 ,@ S ) kc.-

As a simple example consider the unit operator B = I,.

(2.13)
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One acceptable integral kernel is clearly given by
((2s + 1)/47)(6 " " 15,, 16" 15, ), (2.14)

while according to (2.4) another member of the equivalence
class of the unit operator is the §-function distribution on the
sphere,

o2 — £2')=b(cos 8" —cos 8')5 (¢ — ¢'), (2.15)
which has the property that
Jf(ﬂll)6(0 I'—ﬂl)dﬂ ”n :f(n’), (2.16)

for continuous functions /. In fact, as a preparation for the
introduction of dynamics one of our principal tasks will be to
find other elements of the equivalence class of the unit opera-
tor that admit representations as Wiener integrals over con-
tinuous paths on the sphere. To this end we first construct
the basic Wiener measure on the sphere starting from posi-
tive-definite group functions.

Ill. BASIC WIENER MEASURE
A. Positive-definite group functions

A positive-definite group function is a continuous func-
tion F (6 ", ";0",¢ ) that is invariant under left group multi-
plication and satisfies the inequality

M
z afakF(gjy¢)j;6k'¢k}>09

k=1
for any choice of complex numbers a,,...,a,,, and for any
M < «." Evidently (2",s,, |2 ".s,,) is such a function since
(5.1 UT2-2" U 2-2']ls,,)
= (5, |UTR"IUNRIU21U[2]]s,)

(3.1}

= (5. U2 "1U[2"]]s,), (3.2)
and
Sara, (2,5, 125,) = | Say 126,5,,)|>>0.  (3.3)
Consequently any sum of the form
(3.4)

F(n Il;ﬂ!) — zps‘m <ﬂ ”,Sm|ﬂ ’,S,">,

with p_ . >0 is a positive-definite group function, and a fun-
damental theorem'' asserts that all positive-definite group
functions can be represented in this manner.

Now if Fis a positive-definite group function then so
too is F* [cf. (2.10)]. Since the product of positive-definite
group functions is again one, then

J(2";:02")=|F(2"2")? (3.5)
and the positive sum given by
R2"12")=Ae “ Z a"J (02 "0 /n!
n=2~0
____Aea[l(ﬂ';f)')—l]’ (36)

are positive-definite group functions for arbitrary 4 >0 and
a > 0. For our purposes we shall choose F to be the expres-
sion in (2.9) for some s > 0, and consequently

J (27,027} = (1/2%)1 + cos B)”, (3.7)
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where

cos f==cos 8" cos 8’ + sin 6 " sin 6’ cos (p” — @').
{3.8)

It follows that
R(2";2')=Aexpla[2~ %1 +cos B)*—1]]. (3.9)

We now specialize further to the choice s = 1/2; we shall
return later to indicate what changes occur for s> 1.
The function

R (272" = A explalcos B — 1)] (3.10)

is a positive-definite group functional, and therefore admits
the general representation

R2"2)=3 pm(2",5,102",5,), (3.11)

where the coefficients p, ,, >0. If we examine the special case
where 87 = 8’ = 0 it follows that £ = 0 and thus

A = zps,m (Sm Iei(¢~ ‘wl‘S]]Sm)

— Zp el —em
s,m .

However, this can hold only if 2,p, ,, = O for all m+£0, and
since the terms are all nonnegative it means thatp, , = 0 for
m#0. As a consequence it follows that R (£2 ”;42’) has the
special representation

(3.12)

R(2"0") = (417)_,120{21 + 1rid2 " ol42",4o) » (3.13)

in which only integer spins contribute, and all with m = 0;
the factor (2/ + 1)/4+ has been introduced for later conve-
nience. When 8 = 0 it now follows that

R(2;02)= (4#)"2(21 + 1)r, = A. (3.14)
We next wish to link 4 and « by the requirement that

fR (2:2")d02 = 1. (3.15)

Since this expression is invariant under orientation of the z-

axisitis convenient toset {2 = 0,i.e., 0’ = ¢' = 0, in which
case

JR (£2;0)d2 =27A Jﬂexp[ga(cos 6 — 1)]sin 6 d8

1
=4nA f exp( — ay)dy
(V]

=47da” (1 — e~ ). (3.16)
Consequently we choose
A=(a/4r)l —e— )L (3.17)

Later when we are interested in the case where a> 1 it will be
adequate to choose

A =a/4r. (3.18)
The function R ({2 ";42 ') admits several equivalent and
useful representations as given by
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R(2";02")
= (4m)™" 3 2+ 1r (ol U127 10 1211
— '120(21 + 1), P,(cos B)
= {4r)" S 2L+ Vil U121 1, Y40 1U 121
= IEr, Y.2"}Y,,. (2", (3.19)

where the P, are the usual Legendre functions, and the ¥, ,,
are the usual spherical harmonics which fulfill the orthogon-
ality relation

JY;',',,, )Y, ,.2)d2=26,6,, . (3.20)
From (3.19) it follows that
r= J- R (£2;02"\P/{cos B) d2
= ZWAJI 1exp[&a./(x — 1)]P,{x) dx. (3.21)
Since| P, (x}| <Po(_x)zl we learn that
r<rye=1. (3.22)

More specifically, we shall need the evaluation of r, for large
a, in which case it follows that

r = —;—af_ lexp[icz(x —1)]
X[1 =4+ 1)x—1)] dx
=1—I{+ 1)/a,

accurate to the indicated order.
Suppose we consider another positive-definite group
function of similar form,

(3.23)

S2"02)= zs, Y. 2"Y,,42°, {(3.24)
where

s=1,

SI>O,

35 < o0 (3.25)

Then it follows that the group convolution of R and .S be-
comes

T2":0 '}EJR (27:02)S (202" d2
=3 ¥Y1.2"Y,,.Q2")

Ezt, Yr.2"y,,.42", (3.26)

which leads to a new positive-definite group function where
Ly=rogso=1,
t, =rs5,>0,

zl, = Zr,s, < 0.

(3.27)
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Consequently functions of the sort as .S form a closed class
with the properties (3.25) under group convolution.

Now let us consider the N-fold convolution of R with
itself given by

Ry (2742 ")= | R(2"2)-
X R (2,302)R (22 ") d2yd2, df2,,
(3.28)

which evidently has the expansion

Ry (27:02°) =3V Y %12 ")Y,,,(2). (3.29)

We are interested in the limit of this expression as N— o0,
and we see that we can obtain a meaningful and nontrivial
limit if we link the value of 2 and ¥ according to the rule

a=2N+ /T, (3.30)
where v and T are two positive parameters the significance of
which will become clear later. With this identification, and
the elementary fact that
_ 4+ T D

AN+ 1) -
it follows that R, converges at N— oo to a positive-definite
group function given by

lim |1 (3.31)

N—owo

e — (/2 + 1)va

R (27:02")=lim R,y (2 ";02")
N—ow
— ze — {1/t + llvTth (.{2 ")Y;,,,,(ﬂ :)(3.32)
Furthermore it is clear that

JRT(.Q;.Q NdR =1, (3.33)

and

Rey 10730 = [Rp (030 R, @02 a0, (334)
In addition,

lmR 2"52') = 3V £, (7)Y, 2

=802 —N). (3.35)

Consequently we may regard the function R (42 " ;02 ') as the
integral kernel of a semigroup (in 7'}, which is normalized for
all Tin the manner of (3.33). Now let us interpret T as a time
interval; then since by construction R, Ry, and thus R, are
nonnegative real functions, it follows that we can regard

R (2 ";12") as a Markov transition probability density gov-
erning an underlying stochastic process. Thus we see the
possibility of representing the positive-definite group func-
tion R (€2 ";42") by means of a path integral over an appro-
priate path-space measure determined by the underlying sto-
chastic process.

Heat kernel

It is not difficult to see that

RA02702") = (VT2 "2 (3.36)
namely, that R is the Green’s function G for the “heat”
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equation, where

d

—G(2,2',T)=14G(2,02"T), (3.37)
voT
subject to the initial condition
G,02'0)=62—1"), {3.38)
and where A is the Laplacian on the unit sphere,
2
a= 19 gnod L 9 (3.39)
sin 8 36 a6 sin® 8 dg?

Thus the representation of R, by a path integral is at the
same time a representation of the heat kernel by a path inte-
gral.

B. Spherical Wiener measure
If we set e==T /(N + 1), then by definition we have

Rr(f2":02 )—lélr_gf J(21TV€)“"*”
1 N

Xexp[— Y [cos b, cos b,

V€ k=0

+sin g, , , sinG; coslg, , , —@)—1]
N
X H sin 8, d6, dg,, (3.40)

k=1

where 2 '=0,,¢;and 2 "=86,, . ,.¢n. - Weassert that this
expression defines the integral of a pinned Wiener measure
on the unit sphere,?

R0 "3 '1= [l 60),
where it is implicit that the paths are pinned at = 0 and
t = T so that

N'=6"9'=06(0,p0),

nN"=0"9"=0(T)p(T) (3.42)
Formally the expressions (3.40) and {3.41) may be stated as

(3.41)

r
R, (12,02 =./VJCXp[ - ——l—f
2v Jo

X [6% + sin? 8 ¢?] dt }H an, (3.43)
t

where ./ is a formal normalizing factor. The form of (3.43)

correctly suggests that, like ordinary Wiener measure, the

measure i 5, is concentrated on continuous (but nowhere dif-

ferentiable) paths on the unit sphere. This feature has the

consequence that

doit)=vdt,

sin Gty dp?(t) =vdl, (3.44)
insofar as infinitesimal integration measures go; these are
just two of the symbolic rules of the It differential calculus'?
for the problem at hand. We also see that v represents the
temporal scale factor in the Wiener process.

The relations (3.44) may be regarded as consequences of
the appropriate Prokhorov formula,'® which asserts, for ex-
ample, for arbitrary smooth functions B (6,¢ )and C (6,¢)that
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E (exp[ L fB(e,q;) do + lfcw,cp)sin 6 dg
v v

- %J[B X6,0) + CHOp)) dt ]) =1, (3.45)

where E denotes expectation with respect to u%, including
integration over {2 ”, and the stochastic integrals are inter-
preted in the sense of It6. We illustrate this formula for a
special choice of B and C in Sec. IV.

Other starting points

We next wish to outline the argument that the result for
R ; did not depend on our specific assumption that s = 1/2
in the function Fin (3.5). Let us examine the result for the
general case that 25 = p, and therefore that

R(2702'y= A expf(a/p}[2~ 71 + cos BF — 1]},
(3.46)

where we have scaled a to a/p to make the comparison for
different p values easier. In the present situation A is chosen
so that

1= fR (2,0) d2

= 4774 J; exp[(a/p)p” — 1)] dy, (3.47)

which for large a we can approximate as

1 =4r74 Llexp[ —a(l —y)—lalp — 1)(1 — y)*1 dy,
(3.48)
which then leads to
A= (a/4m)[1 — [p — 1)/a] (3.49)

correct to the indicated order. This modification of 4 as
compared with (3.18) leads to an extra overall factor

[1—4p — 1)ye] ¥+ e = 1720 — 10T, (3.50)

compared to the previous construction of R ;. However
there is another factor that just cancels this one.
For brevity let

cos B, =cos 8, , , cos 6,
+sin 6, , sin G, cos{d, ., — ).  (3.51)

Then the extra factor arises from the property that, to the
necessary accuracy, the integrand has the form (apart from
A (N+ l))

kljoexp[(a/P){ [1+44cos B, — 1)]7 — 1}]

= ﬁ exp{a(cos B, — 1)/2
k=0

+ alp — 1)(cos B, — 1)%/8]. (3.52)

The first term leads to the Wiener measure %, on the sphere
Jjust as before, while the extra term becomes

exp[(p — 1)/{4ve)Y (cos B, — 1)2]
—>exp[(p — l)/(l6v)f(a’6’2 + sin® 8 do ?)*/dt ] (3.53)
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For Wiener paths such a factor does not vanish, and we have
shown elsewhere® in an extension of the It6 differential cal-
culus that, almost surely,
(d6* + sin® 6 dg?)?
dt

4 2 4
=f[ do +Zsin20d62dL +sin“¢9dL]
dt dt dt

=(3+2+ 3)v2fdt

= 82T, (3.54)

Consequently the extra factor that comes from the inte-
grand, namely
el172p — 10T

(3.55)

exactly cancels the additional term that comes from A, lead-
ing in the end to the identical expression for R ; independent
of the starting point. For convenience we shall hereafter
adopt our original definition of R based on spin 1/2.

IV. PATH-INTEGRAL REPRESENTATION
A. The unit operator
Spin 1/2

We start our discussion of dynamics by constructing
integral kernels that are in the equivalence class of the unit
operator for spin s, specifically for spins = 1/2 and 1. To this
end consider the positive-definite group function

R(©2"02)= (2" 3,52 4,,,)R (2":2"), (4.1)
where according to (3.19)

R(2":02') = (4m)! i(21+ N (L U2 "1U [2])]).
1=0
4.2)
Since

231212 " 172) = i U2 "TU [2°1 41 2), (4.3)

it follows from the properties of the rotation group that R
admits an expansion given by

R(@"02) =47~ Y (2 + 2%, 1,
I=0
XA+ 4 p|UTQ2 U L2+ 4y 2),
(4.4)
where the coefficients 7, , ,,, are given in terms of the

Clebsch-Gordan coefficients C (s,,s,, j;m,,m,) by the relation

21+ 2, 1o =20 + Dr,|C LA + 504)]7

+ (214 3, [CU+ LLI+ K042
(4.5)

This relation reduces simply to

Fivin =8r+r ) (4.6)

We renormalize the series in (4.4) by dividing both sides by
71,2, thereby introducing

Tiv12=t12/F2s (4.7)
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and

)l

R (2”02 )=( 221+2r,+,,2

X <1+ ule (271U 2T+ 1,50
(4.8)
The leading term in this sum is then
@m) 72l U2 " TU (2] 412)
= Qm) 7242121 2) (4.9)
and thusitfollowsthat R (2 ” 42 ')isin theequivalence class of
the spin-1/2 kernel {4.9) which is a member of the equiv-

alence class of the unit operator. In the notation introduced
in Sec. II,

R (272" =2m) (2 " 31,212} )Ec. (4.10)
It follows that the N-fold convolution of R with itself,

R (2 "302')= [R (2 732,
X R (252))R (2,;;22") d2-d0, d02,
(4.11)

is given by the expression
Riw)(2 32" = (4m) 3 (20 + 2PN )
=0

XU+ 4 UTI2 " IU 211+ 4y),
(4.12)

which, since 7, ,,=1, is still in the equivalence class of the
spin-1/2 unit operator. We are again interested in the limit
N— oo subject to the choice of @ = 2(NV + 1)/vT = 2/ve. For
large « it follows from (3.23) and (4.6) that

Frioin=1=[{+1)+0+1){+2)]/2a, (413
and in particular that
Fia=1-—1/a. (4.14)
Consequently, we find that
R, (2"02")= hme (27,02
N
— (477_)—1 i (21 + 2)e— 12211+ 2vT
X{I+14 n/le*lﬂ"]U[ﬂ 1+ 4i2),
(4.15)

which is still an element of the equivalence class of the spin-
1/2 unit operator. Let us now seek a path-integral represen-
tation of this expression.

By definition

R (2"02')= lim7 N+‘J j
N—>w
N
X T @2 1d172l200412)
k=0

N
XR (2 4 1342) [] 44, (4.16)
k=1
where 2 "=12, ., and £2'=(2,. In order to evaluate this
limit we first observe that by themselves the R factors along
with the df2 factors lead to the Wiener measure on the
sphere. The rest of the expression leads to some weighting of
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this measure. Clearly the initial factor
Fi AN+ N_,ev T2, (4.17)

For the remaining factor we first note for general s,,
(which we momentarily suppress) and for continuous Wie-
ner paths that"’

N
I (2. 120
k=0

—exp| — [(@wya oy

- %J(d!) B — \.Q(t))(!)(t)])]d(}(t))], {4.18)

where [df2 (t)=d |2 (¢)). When m = s it follows, for the
problem at hand,'® that this expression becomes

exp{isIcos Ot)deplt)

- %sf[d’&z(t)+sin29(t)a‘¢(t)]] {4.19)
Asa consequence of [t8’s law (3.44) we learn that, for general
5, this factor in the integrand becomes

exp( —svT /2 + isjcos Gdg), {4.20)

where the remaining integral represents a well-defined sto-
chastic integral.

Combining the relevant factors in the case s = 1/2 we
learn that

RA2"02)
- e’“T/“Jexp[il/Z f cos 0(t) dg (t )]dp,’,,{e,tp) @4.21)

provides a path integral representation for an element in the
equivalence class of the spin-1/2 unit operator.

Although this formula holds for all 7, the part of inter-
est to us—the element of the equivalence class of the spin-1/
2 unit operator—is independent of T. Were it not for the
prefactor it is apparent that as T grows large the entire inte-
gral would decrease. Thus the need for an increasing prefac-
tor is apparent, and as a semigroup representation even its
structure is fixed, only the specific factor (v/4) remaining
undetermined. In this way we can understand the need for a
prefactor here and in subsequent relations as well.

Spin 1
Let us now outline the analogous calculation for a spin-
1 case. Thus we now set

RQ".0)=(2"1,|21)R(12":2")
- S+ 1,

I=1

XLIUTR2 "1 (21h),

where the sum starts at / = 1 since there is no spin-zero state
with m = 1. The coefficients 7, are again given by Clebsch-
Gordan coefficients, and it follows for />1 that

(4.22)

F=irn+ Q@+ 1)U+ i ] (4.23)

We renormalize the coefficients according to
F =F,/F,, (4.24)
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and let

R(2:0)=@n"" S @+ 1IF,
I=1

X (LU 1U[2)L), (4.25)
which is then in the same equivalance class as
@m) 3L | U2 U2
= (3/4m)(02 ",1,|2",1}) (4.26)

appropriate to the spin-1 unit operator. The N-fold convolu-
tion of this R leads to

R @702 = @m) ' S (21 + 1+

I=1

XL U2 1U[2°)]), (4.27)

and again we take the limit as N— 0. For large a it follows
that

;l = 1 - 2/a,
=14+[2-1(+1))/a, (4.28)
and thus in the present case

RA2":02)=1mR (2 ";02")

N

— (417)-—1 i (21 + l)e(1/21(l—- Wi+ 2T

I=1
XL U2 U2, (4.29)

which is still a function in the desired equivalence class.
For the path-integral representation of (4.29) we need to
consider the result of

N
II ;l—‘l(nk-plrlllnk’l]):
k=0

which according to the remarks made earlier contributes in
the limit N— oo the factor

(4.30)

e”exp( —vT/2 + ifcos 6 dcp) (4.31)

to the integrand. Consequently we find for the spin-1 case
that

R (02":02")
= evffzfexp[ifcos O(t)de(t )]dufyw«p )

provides a path-integral representation for an element in the
equivalence class of the spin-1 unit operator.

(4.32)

Limiting form

We should observe that in each of the indicated cases
the deviation of the path-integral expression from the true
expression is at least of order e ~ *7. Consequently the limit
v— oo will yield just the leading term, which is the desired
integral kernel. In particular, for spin 1/2 for example, we
have the relation

(2m)~ (8 " ":51/2|9'»¢7 ’»51/2>

= lim vT/‘fexp[i—;-fcos 0(z)d¢(t)]dufy(9,¢ )
(4.33)
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Of course it should be recalled that the Wiener measure de-
pends on v as well. The intuitive reason for the validity of this
expression is perhaps best seen from the formal expression
(3.43); for if we formally take the limit v— 0, then according
to (3.43) it follows that

(6 "’¢ ',51,12|8 I’¢ ',illz)
1 .
=N (—J- e dt) daa /),
expl| i 5 cos @@ H' i)

which is just the usual formal path-integral expression for
the spin-1/2 propagator for vanishing dynamics, where #"is
a formal normalization constant.'® We remark in addition
that the leading correction to this expression which is sug-
gested by (4.33) has been useful in interpreting the station-
ary-phase approximation to the formally defined path-inte-
gral expression for spin-coherent states.!® Here we obtain
confirmation of that procedure on the basis of the general
approach adopted in this paper.

(4.34)

B. Nonvanishing Hamiltonians

For the introduction of dynamics let us concentrate on
the spin-1/2 case and initially take as a Hamiltonian

H = ) = 1t)S, (4.35)

where 7 is a suitably smooth function. In a certain sense
there is no loss of generality (when ¥ is constant) in assuming
# = y8, since in a two-dimensional space any Hermitian
operator when diagonalized can be written as a multiple of
S, and the identity operator (I;). At any rate, this is the sim-
plest example to treat; other examples are treated later.

If we set
T
Ir= J vit)dt, (4.36)
(+]
then it follows for spin 1/2 that [cf. (4.15)]
RI02"0)
= (477 1% 21+2e—(l/2)l(l+2)vT
(4) :;o( )
XU+ 4,,|UNR" e~ TSUQ2+1,,,) 4.37)

= ()" i (2] + 2)e — AU+ 2T
=0

XU+ hpU6 @ U0 0" + T+
provides a function which is in the equivalence class of the
evolution operator. To determine a path-integral representa-
tion of this expression we return to (4.16) and simply add
¥« €, where ¥, =vy1ke), to the appropriate ¢, factors (those in
kets) in the integrand. Effectively only two changes take
place, one in the spin-1/2 factors and one in the R factors. In
the former we find a change in the phase factor to

exp(i—;—fcosﬁdcp - i—%fycosﬂdt),

which for s > 1/2 hasan obvious generalization according to
(4.20).

The change introduced by the R factors is somewhat
more complicated. To find this change observe, for large N
and in the presence of ¥, that

(4.38)
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N

. 1 \W+D
i -f( )
N

chp{ Y (cos B —1) ﬁdﬂk,

k=0 k=1

(4.39)

5=

where

cos B = cos B, , , cos 6,
+sin 6, ., sin 6, cos(@y .1 — @i — Vi€).
(4.40)
According to (3.40) we know how to describe the limit as
N--> o when y=0, so let us concentrate on the additional y -
dependent terms. Since

COS(@i 11 — Px — Yi€)

= COS{(@x 1 — Pi)cos(y,€) + sinlgy | — @ )sinfy,€),

(4.41)

the difference in the exponent from the vanishing- ¥ case is
given by

1 X . .
— z (sin 6y, ; sin O, {cos(@, , ; — @i )[cos(y e) — 1]

V€ k=0
+ sin(@ 1 — @i Jsin(yce)}). (4.42)

In the limit N— o the only nonvanishing contributions that
survive for continuous Wiener paths on the sphere are those
that arise from expanding cos (¥, €) to second order in €, and
from expanding sin {g; _, — ¢, ) and sin {y, €) each to first
order. As a consequence, in the appropriate limit, (4.42)
leads to

% fy(t )sin? 6(t) de (1) — 71«7 J}Z(: )sin? 6 (¢) dt,
(4.43)

which evidently are well-defined stochastic integrals. Thus
the final form for the path-integral expression of a function
in the equivalence class of the evolution operator is given by

T
)@ " lenp| i A0S, |2 o)
1 T
= e"”“fexp[i 7f (cos dp — y cos O dt )]
0

1 T
chp[ — J (v sin® 8 dp — Ly sin’6 dt )]d/t,TV(O,cp ).
v Jo
(4.44)

Expressed in this form it is clear that this representation
holds for all ¥ that are locally square integrable. To describe
a similar expression for spin 1 it is only necessary to double
the phase and double the exponent in the prefactor (e*7 7).

Several remarks regarding (4.44) are in order. We have
already commented on the need and form of the prefactor.
Observe next that the phase factor is just the classical ac-
tion, '’

I= %J-[cose & — v cos 8 Jdi (4.45)
for a driven spin-1/2 variable. In terms of

p=}cos b,

H =y cos 0 = yp, (4.46)
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this relation reads

1=[wp—H1an

and implies the classical Hamiltonian equations of motion
p= —14sinf8= —3H /3p =0,
-
¢ = E =7
Finally let us examine the measure u ™7, where
du™6,p )Eexp[ ! J}/ sin® 6 dgp

v

(4.47)

(4.48)

- % fyz sin? 6 dt ]d,uf,,(e,cp ). (4.49)
First, we observe that (4.39) implies that
1= lim [R{,,(2"2"d02"
Nosoo

= J-d,uT"'(B,cp )d2", (4.50)

and thus like 27, we can regard ™" as a probability measure
when the final integral is also included. This formula may
also be stated as

E(exp[ iJ‘y sin” 8 dp — Lfyz sin® 6 dt D =1,
v 2v
(4.51)

which is then seen as a special case of the general Prokhorov
formula (3.45) when B = 0 and C = ¥ sin 0. It is important
to appreciate that, in the above sense, the measure x ™ only
redistributes the weight of the Wiener paths without affecting
the total weight, which remains unchanged. In probability

language we may say that the stochastic variable

exp[ %f}/ sin® 8 dp — Z—Iv ff sin® 8 dt ]

is a martingale.
It is also instructive to understand this result regarding
77 in a formal manner, and we observe, in the same sense as

(3.43), that
Jaum00)
=/VJ-exp[ L jy sin’ 8do — —l—fyz sin® @ dt ]
v 2v
Xexp[ - 2L f(é)z + sin® 6 ¢) dr ]H o t)
v t

o fo L

X {82 + sin® 8 (@ — v} dt }]] 42 (r)-

(4.52)

{4.53)

We see then, in this case, that the proper result for this part of
the integrand is obtained by replacing 6 and ¢ by the relevant
classical equations of motion, § and ¢ — ¥, in the presence of
the classical Hamiltonian H = 1y cos €. Similar conclusions
are found in the case of canonical variables.>

Other Hamiltonians

The particular Hamiltonian S, is especially simple be-
cause it is an element of the Lie algebra. Equally simple ex-
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pressions should exist for the other elements of the Lie alge-
bra, e.g., .S, and S,. However, since we are only working with
two of the three variables of the rotation group, we can ex-
pect a somewhat different relation for S, and S, than for S,.
To discuss the general case where

H =Ht)=a(t)S, +B()S, + 7t)S;
we note, for a, =a(ke), etc., that

(4.54)

— i 2 5 — y — 10 S,
e e(ks|+ﬂks+yk$)e wkse kslsm)

- i[q’k + eyy — elag cos @g + By sin g )cot 9k153
=€

_ i[ek + €(By cos @y — ag sin q:k)]S,ls )
m

Xe
—i + By sin @glcsc Of
e ime{a) cos @i k k (455)

valid to first order in €, which up to a phase factor is again a
spin-coherent state. As a consequence, and based on our pre-
vious results, it is not difficult to establish the path-integral
expression for spin 1/2 (or 1) for an element in the equiv-
alence class of this evolution operator. For convenience we
indicate this expression formally as

(2m)~' ("¢ "vil/ziTeXPI - iJ; [a(t)S, + B(t)S, + ¥(t)S;] dt }16 ¢ 2 Ec

=/J‘exp[i%‘[[cos0¢—(acos¢)+,85inq))sin9—ycos€]dt]

xexp( - ZLI[ [0 + a sin @ — B cos @) + sin® 8 [@ + (a cos @ + Bsin g)cot 6 — y]z}dt)l'[ an(t),
14 t

where T denotes the time-ordering operator. Moreover, ex-
actly as before, it follows that the drift terms in the Wiener
measure are restatements of the classical equations of mo-
tion as determined here from the classical Hamiltonian

HE<01¢!£I/2|%’6’¢’£1/2>

=asinfcos@+Bsinfsing +ycosb.  (4.57)

We may note as before that the limit v— oo yields the appro-
priate matrix element, i.e., as in (4.56) but without “E.C.”

It is also natural to consider Hamiltonians that are not
simply elements of the Lie algebra. Unfortunately, at pre-
sent, our methods are unable to generate path-integral ex-
pressions for general Hamiltonias. One could imagine inte-
grating a formula such as (4.56) over the variables a, £, and ¥
with some suitable weight factor. The principal roadblock in
instrumenting this proposal is the need for a, 5, and ¥ to be
locally square integrable. This precludes any rigorous inte-
gration to generate a Hamiltonian formulation, i.e., a Mar-
kov dynamics. However, we may expect that we can couple
the parameter controlling the necessary nonlocality in time
with the parameter v in such a way that in the limit v— o0 not
only does the desired matrix element emerge directly but
also the nonlocalities of the dynamics disappear at the same
time. The question of how best to determine genuine path-
integral expressions for general Hamiltonians is clearly a
problem of some interest and one that deserves further atten-
tion.
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The overcompleteness of the coherent states for the Heisenberg—Weyl group implies that many
different integral kernels can be used to represent the same operator. Within such an equivalence
class we construct an integral kernel to represent the quantum-mechanical evolution operator for
certain dynamical systems in the form of a path integral that involves genuine (Wiener) measures
on continuous phase-space paths. To achieve this goal it is necessary to employ an expression for

the classical action different from the usual one.

PACS numbers: 03.65.Db

I. INTRODUCTION

As usually formulated, quantum mechanical path inte-
grals are physically elegant but unfortunately are mathemat-
ically inelegant as well. The apparently closed form of solu-
tion path integrals provide to many problems is tempered by
the ambiguities inherent in giving the path integral a mean-
ingful definition, and this aspect has been carefully docu-
mented.' There have been several attempts to introduce gen-
uine measures and thereby restore order in path-integral
formulations. In the works of Albeverio and Héegh-Krohn?
and of Combe er al.,” for example, effort is concentrated on
multiplicative potentials which have the property that their
Fourier transform is a bounded measure. While this limita-
tion leads to well-defined path integrals the measures in-
volved are Poisson measures for which the paths are not
continuous but rather entail discontinuities. In addition this
limited class of potentials does not include the harmonic os-
cillator which, to be incorporated, must be dealt with in an
alternative fashion.

In this paper we present a detailed analysis of a quan-
tum mechanical path integral formulation that involves gen-
uine (Wiener) measures concentrated on continuous paths,
which deals in a natural way with harmonic-oscillator po-
tentials; a summary of our principal results has already ap-
peared in Ref. 4. We are able to handle directly an essentially
arbitrary quadratic Hamiltonian of the harmonic-oscillator
type involving quite general time-dependent coefficients, ail
with one and the same Wiener measure. Superpositions over
the time-dependent coefficients significantly widen the class
of systems we are able to consider.

Our approach and analysis is based on coherent states
and their special properties, and differs considerably from
the viewpoint adopted in Ref. 2 or Ref. 3. Before undertak-
ing our detailed analysis we sketch the general mathematical
setting of our approach.

* On leave from Dienst voor Theoretische Natuurkunde, Vrije Universiteit
Brussels, Belgium.

® Scientific collaborator at the Interuniversitair Instituut voor Kernwetens-
chappen (Interuniversitary Institute for Nuclear Sciences), Belgium.
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A. Consequences of coherent-state overcompleteness

Coherent states are conventionally defined in an ab-
stract Hilbert space 5% by

| prgy=e"P2=7)0) (1)

for all real p and ¢, where Q and P are an irreducible Heisen-
berg pair, and |0) denotes the normalized solution of the
equation (Q + iP)|0) = 0. These states admit the funda-
mental resolution of unity

1 =f | 2.4){ pqidp da/2m) 2)

when integrated over all phase space. As a consequence we
may conveniently represent the vectors of the abstract Hil-
bert space by bounded, continuous functions

U p.9)=(pgl¥), 3)

with an inner product given by

(¢l = f ¢ *(p.q)¥{ p.9)ldp dq/2m). 4)

If (¢ ) = | p',¢") it follows that each function ¢/ p,q) satisfies
the identity

Yp.g)= fﬁ” (P'\q4'; Q¥ p.q)dp dq/2m), (5)

where

(P4 pa) =(P'q| p:q)
= exp{i(pg’ — qp') — il p’ — p)?
+ (¢ — 9’1} (6)

plays the role of a reproducing kernel. Thus the set of func-
tions of the form (3) with the inner product (4) comprise a
reproducing-kernel Hilbert space % ,.° The reproducing
kernel projects out a closed subspace of the space L %(R?) of all
square-integrable functions, and there remain infinitely
many linearly independent square-integrable functions orth-
ogonal to all elements of & ,. This feature has important
consequences for the representation of operators on %', by
integral kernels.
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Consider the expression

(1B |9) = f 80" " Kl 00" )
XY p'.q'\\dp"dq" /2m)dp'dq’ /2m) 7

for arbitrary vectors |¢ ) and |#), and an arbitrary but fixed
bounded operator B. One integral kernel that satisfies (7) is
always given by

Kp(p".q";0'q)=(p".4"|B| P9, (8)
but in view of the foregoing remarks there are infinitely
many other kernels that serve equally well to represent the

operator B. As an example we note that all kernels of the
form

Fy(p".q";p'q) = H1+44)
Xexp{}i(p'q” —q'p") —Al(p" —p'V
+lg" -’ (9)
where A > — ] serve to represent the unit operator, even in-
cluding the limiting distribution as A— o,

F,(p".q"; 09 >2m8(p" — polg" — ¢'), (10)
which also serves the same purpose.

All kernels that satisfy (7) for a given B form an equiv-
alence class labeled by the operator B, and which we shall
denote by % (B ). Thus the examples F; in (9) and (10) all
belong to the equivalence class € (1). A generic element of
% (B)isconveniently denotedby { p”,q"|B | p’,q')£.c (Where
E. C. represents equivalence class). Any such kernel can
serve to represent the operator B in the context of (7), or
stated otherwise, in the form

B= JI PP "q"|1B|Pg Yec (Pq]
X (dp"dq" /2m)(dp'dq’ /2m). (11)

It is by exploiting this freedom of representation that we
shall achieve our goal of representing the quantum mechani-
cal propagator by means of a path integral involving genuine
(Wiener) measures.

In the next section, Sec. 2, we detail the construction of
the path integral for a special class of dynamical systems,
following closely but with significant differences, the usual
method of construction. In Sec. 3 we evaluate the path inte-
grals constructed in Sec. 2, while in Sec. 4 we prove that each
of the evaluated path integrals is indeed an element of the
equivalence class (in the sense described above) of the evolu-
tion operator for the particular Hamiltonian in question. A
brief conclusion follows in Sec. 5, and the Appendix contains
some details needed for Sec. 3.

2. CONSTRUCTION OF THE PATH INTEGRAL

We start by recalling some more properties of the co-
herent states and the Weyl operators.

A. Basic properties and notations

We take #7to be a separable Hilbert space, on which we
define the Weyl operators W ( p,q) as

W (p.q) = expli( pQ — ¢qP)), (12)
where P,Q are an irreducible Heisenberg pair on 5, chosen
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in such a way that
Wirq\W(p"'q")

=explli(p'q" —p"¢NW(p' +p".4 +¢"). (13)
The operators W ( p,q) then act on 5 in an irreducible way.
Additional properties of the W ( p,q) are

W(pg)'=W(—-p,—q (14)
and, for any operator formally written as F (P,Q),
W(p.q)'F(P.Q)W (p.g)=F(P+pQ+9) (15)

We shall use the fact that any (bounded) operator is
completely characterized by its diagonal matrix elements
between coherent states

Be# (), Vp.q:{ p.q|B | p.g) = 0B =0, (16)
where the coherent states (c.s) are defined as (see Sec. 1)

| p.g) = W(p.,q)[0).
One can also use diagonal matrix elements between coherent
states to evaluate traces.

A trace-class =Tr 4 = J -d‘;ﬂ (pqld|pg). (17
T

Using the product rule (13) for the Weyl operators, one
may show that (4) can be rewritten in the following form:

V¢,M:I£’$W(p,q)l¢ YW (pg)! = (916 )15 (18)

[the easiest way to verify (18) is to check that the diagonal
matrix elements between c.s. (coherent states) of the two
sides are the same].

Defining |n), n = 0,1,2,..., to be the (n + 1)th norma-
lized eigenstate of }(P* + Q* — 1) (which is consistent with
the definition of |0) in the Introduction), we have in particu-
lar

f"‘;—f W (pg)n)(m| W (pg)l =8,y (19)

The usual technique in the construction of a c.s. path
integral for an evolution operator U, is to reexpress the evo-
lution operator as a product U, = (U, ,,)", to insert the reso-
lution of the identity (2) between each two factors, and to
take the limit as 7—co (see Ref. 1)

(p"q"|U.|P\q")

d, d
— Lm Pn—164n 1 [ dpydg,
n—c 27T 2'”’
n—1
XH (Pj+1’qj+1|Ur/n|pj)qj>’ (20)
j=0
P.=pP"4.=9",
Po=0P'49=4¢"

For a time-ordered product T exp[ — if*” H (¢} dt ], the same
technique is used [put € = (¢ — t')/n]

= lim {exp[ — iH (t" — €)e]

n— oo

Texp[ —i'[TH(I)dI

Xexp[ — iH (t " — 2¢)e]--exp[ — iH (t')e}},
which then implies that
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(P"q"IT eXP[ - tfH (¢ )dt ]lp',q'>

= lim dpn - ldqn —1 " dpldql
n—ox 21]' 2”’

n—1

X I (Pjs 149+ Jexpl —iH (t" +jele]| p;.q;),
j=0

(21)
Pn=P"8,=4"Po=P90=q

Basically we shall do the same here; however, instead of (2)
we shall insert some more complicated object, and the results
of our manipulations will no longer be the matrix elements
(p".q"|U,-, | p',q'), but some other element of % (U.- )
{ From now on, we shall use the symbol U, -, to denote the
evolution operator T exp[ — if}- H (¢)dt]}.

B. The “big” space & and the vectors 2.g.B8>>
We define a “big” Hilbert space #° by

= e *,,
n=0
where each 77, isisomorphic with 5% (we shall not write out
these isomorphisms explicitly, but shall always assume them
tacitly understood). We define canonical projections P,
from & to & as follows:

Vo= ; ¢,,eﬁ’:P,,,¢=¢,,,.

The conjugate operators to these P, are the canonical injec-
tions I, ; these are the maps from 7 to # defined as fol-
lows:

Voe 1,0 = o Y,
where all but the mth ¢, are zero:
¢II = 6"”! ¢'

The following properties of the P_, I, are easy to check:
(a) PmIn = 6mn 1}?”’
O [P = @ (8nn1n)
n=0

(this operator is zero on all the 5#°, with n#m, and 1 on
X, it is the orthogonal projection operator in #° with im-
age {0} @0 {0} 0¥, {0} &),

©lsg = o1,
n=0

=31,P, (22)

(as a sum of mutually orthogonal projection operators, this
sum is well defined in the strong topology),

@1,=P}, PlL=1,.

For any Be[0,1) we define a set of normalized vectors
| pg; B)) in Z’by the rule

| p.g; B)) =(1—B)'" Zﬁ"’zln(W(p,q)lnH

n=90

=(1-5)" & B W(pgm].  (23)
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These vectors | p,g; 8 ) ) have the following overlap function:

«p" 9" B\Pq;B))
=(1- B)ZB"(nlW(p",q")*W(p’,q’)Iw

=(1— BTe[ B W (p" 4" )'W(p' g,
where N = }(P? + Q* — 1). Fortheevaluation of thisexpres-
sion we refer to the Appendix [see (A9)]; the result is
" ” I ! i r_n "
Kp"q"; B8 =eXp{—2-(Pq -p'q)

1+ 8 "2
Tt il 24)
One can easily calculate the overlap function
((p".g"01 p'.g’; B)) as
{p"g" 0P " B)y=(1— B) " O\W (p 4" "W (p'¢)i0)
- B 1P
Another property of the | p,g; 8 )) is the following [use (19)]:

[2% 15480 pai
2

(" —pV+4"

=(1- B)Eﬁ‘"*"’”zl,.
xf—‘!—’iq—W(p,q)lnle Wip.q'P,
27
- B}EBRI!}P’!

=(1- B)a(B"L,). (26)

This operator is a multiple of the identity on each of the %, -
spaces with, however, difficult constants on different spaces.
We shall use this “generalized effective resolution of the
identity” to replace {2) in the construction of (20) or (21).
Note that (26) holds for any S<[0,1) [for B = 0, it essentially
gives (2) again), which allows us to adjust B when needed;
this feature will turn out to be important in our construction
of the path integrals below.

C. Construction of elements of < (5) for Be % (7))

Let us now see how (26) can be ,l\xseful for our purposes.
Every bounded operator B on 7 is completely charac-
terized by the sequence (B, = P, Bl,), ,_,.
Using (26) twice, we obtain

Jdp”a'q” f dp'dq’ p".q"; B))
27 27 o
X((p"q"; BBl BN(P.G P ar)
1 - B} Zﬁn+m1 Bnm ms

Sandwiching this between {{ p,,4,;0| and | p,,4,;0)) and us-
ing (25), we find

fdp dq fdp 9 praal P0")
2 27

X {{p".q"; BB| P B P 4| P
=(1— BNK Pz:%‘Boo‘ Pv‘h)-
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Hence

1 dp"dq" ( dp'dq’ ., .
Boo = I—BJ- pzw f 2 P
(p"q": BBl P BIPg| (27)
or, stated otherwise,
/(L — BI(p".q"; BIB| p'sg's B))eE (Boo)-
What has happened in this construction is really a projection
such as described in the Introduction: The matrix element

(p".q";B|B| p'\q’; B)) is a sum of different matrix ele-
ments:

«p".q":BIB|p'.q;B))
=(1= B)3 B"*™*n|W(p".q"'B,, W(p'q')|m).

By virtue of (19) all matrix elements with 750 and/or m # g

1 dp,_.dq, _
Po[ n‘lfp 1dyq,
(1-8) 27

give no contribution whatever when the projection is carried
out:

m#0

n#0 or
d Ild " d Id ’
v 4[4

X (¢ IW(P",q")IOHnI W(p".q")'B,., W(p.q)im)
X{0|W(p'.q)'¥) =0.

Therefore, all these terms drop out when the projection is
performed, and the only relevant term is the B, term.

To apply the same argument to a product of operators
B,--B,, we must restrxct ourselves to diagonal operators.
An operator Be%# (%) is called “diagonal” if Vk £/, B,;, =0
(i.e., the operator B does not mix the different 7, ,

B= o>_,B,,) Let B,,...,B, be diagonal operators on 7%;
then

dp,d
".J‘ p] ql Bnlpniliqn—l;ﬁ>>
27

<(Pn—1’qn_1;B|Bn—1|Pn—zan—z;ﬁ))"‘|P1aql§ﬂ>><<an1§BIBl I

-3 Bt VB, I, P B, I, -PBio=B,0B, 100Bc0;

hence [app;y—(217)]
= Poor o [ S, n<<p,+1,q,+l,m 11 214 BEE (Bogn B a0+Boo) 28
(Pn=pP"4, =q";Po=P'90=19)-

Again, one can easily understand what has happened; since all the B; are diagonal, the insertion of the generalized effective

resolution of the identity (26) does not mix the

B, with different k and, as before in the linear combination of functions in the

left-hand side of (27), only one term, the term corresponding to B, o, ++B, o, is not orthogonal to { (¢ | p",¢"}{ p'.¢'|¥);

h.e H}.

D. Application to the evolution operator
It is now easy to apply (28) to the propagator U,- ,.

= Texp| —ifi  H{t}dt]. We have
Ul'.(' = lim Un(t "t ') (29)

withU, (t " t')=exp[ —iH(t" — 2¢€)e]

Xexp[ — iH (t')e] [wheree = (¢ " — t')/n]. Let H{t )be a self-
adjoint, diagonal operator on 7 satisfying

—€)elexp[ —iH ("

Hylt)=H{t).
Then (28) implies
1 J-dpn—ldqn—l
(1— B) 27 2r

X Py 19413 B lexpl — H{t" + jele]

X|p,q;: BNEC(U,(t",1") (30)

(P =p".9, =4";P0=p"90 = q').
As yet we are still free to choose £ and all the H, for k #0;
{30) holds for all possible choices. We shall see that, at least

for certain quadratic Hamiltonians H (¢), it is possible to
choose the 3, H,, in such a way that the functions (30) con-

dp,dq, "'
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I
verge for n— 0, and give rise to an element of € (U, - ,.).

To show how the Wiener integral emerges, we first
study thecase H {¢ ) = 0. In this simple case, wetake H(¢ | = 0
[i.e., Yk, H,,(t) = Hylt) = H(¢) = Q]; the function (30) be-
comes [use (24)]

1 J‘dpn—ldqn—l - dpldql
(1— BY) 27 2T

n—1

X 1_-[ (pv1:94 ;810958

__ 1 J‘dp,,_ldqn_lm dp,dq,
1- B8y 2T 2r

n—1

XHCXP{ (D191 —Pj+ 14

j=0

_+8) s a2
4(1 _ B) [(pj+l p/) +(qj+l q,) ]} (31)
(Pn=P" 4, =4";Po=P40=1¢)

Recall’ that the joint probability density for a Wiener
process x(f ) to be at the points x; at times ¢, {j = 1,...,m; ¢,
>t,, | >->1>1,), having started at x,, at time 7, is given by
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p(xn 9tn *n—1 ’tn -1 Q“';xorto)

—— - 1
_,»IJ. [ [27(; —1,_,)]'" &

If all the time intervals are equal, Vj: t, —¢,_, = e =t
— o)/ n this becomes

PXnsto + nEX, _ 1ty + (1 — 1)€;x0,10)

H 1 (x; —x;_4) ' (32)

(217’6)"/ 2, €

In order to fit (31) with (32), we choose t, =¢', ¢, = ¢ " and
{14+ BVR(1— BY=1/eor B=(1 —e/2)/{1 +€/2)
[where € = (¢ " — ¢ ')/n]. With this choice for S, it is now
clear that the Gaussian factors in (31) are correctly chosen to
generate independent (non-normalized) pinned Wiener mea-
sures in p and ¢, pinned at the starting points so that
pit)= p', g(t’) = ¢', and at the final points so that p(t ) = p”,
qit”) = q We shall denote these pinned Wiener measures
bydu, 7 (planddu,, -4 (g). Itisalso easy tosee what
the other factors in (31} become in the limit for »— 0, name-

ly,

S e tr gy
(2me) Gar (1= B = 2m(1 + l¢) 217(1 + » )

— 2t V2,
2[ Pidiv1— P19 )= z[ Pl — ) — P —Pg;)

- f [ ple )dalt) — it )dple)).

Thus (31) becomes

2" =V dpy, P o )

i
xexp|- | Lol atr) — g0 1dp()) . (33)

It is clear that the integrand in (33) may be given a well-
defined meaning in terms of stochastic integrals. Moreover,
since p and ¢ are independent stochastic variables, all pre-
scriptions for defining the stochastic integral in (33) are equi-
valent, which means that this integral is a perfectly well-
defined path integral over a genuine measure. We shall
evaluate this integral in the next section, and show that it is
indeed an element of %' (1).

|

In the simple case H (¢) = 0 above, we chose all the H,, identical, i.e., H,, = H,, = 0. Although this is of course the
simplest choice, there is no a priori reason to choose all the H, identical. Indeed, considering H (¢ )0 below, we shall see that
in general the choice of identical H,, does not lead to a well-defined limit of the expressions (30) as #— co . On the other hand, it
may well be possible that two different sequences of H,, , H ;, , with the same zeroth component Hy, = H }, = H, bothlead to
well-defined but different limits of (30), both of which are elements of € (U.. ,.).

For H linear in P,Q,

H{t)=s(t)Q + r(t)P,
the choice H,, (t) = Hyolt) = H (t} is satisfactory, and the result is

2" =12 j ity Pl (q)exp(—;é f [ p(t)dglt) — it dp(r)]

+ f [He)dgle) — s(e)dplt)] + fd‘ { —ils(e)gle) +rir) plt)] — A[s%(t) + (e )] })» (34)
where we assume s and 7 to be square integrable. Again, we shall check below that (34) is indeed an element of % (T exp{ — if}
Xdt[s(t)Q + r{t)P]}).

For quadratic Hamiltonians, the choice of identical H,, leads to convergence problems. We illustrate this by means of
the simple time-independent quadratic Hamiltonian (@ = constant#0)

=(a/2)P*+ Q% —1).
Let us first try the choice H,, = Hyo = H. We get[e ={t" —t')/n]
Dy 138 le ™ pg;: B))
=(1— BTe[ B W (p;4 1:q;4 1) e W (p;q))]

=(1- B}l — Be—"‘")"'exp{é[qj+ 1{ — g; sin a€ + p; cos a€) — p; , 1(g; cos a€ + p; sin ae)]

- 4(1—1_*'—%-?“) [{g;, 1 —q; cos ae — p; sin ae)’ +(p;, ; + g, sinae — p; cos ae)z]]; (35)
— Be
see (A8) in the Appendix.
To generate a measure in the limit 7— o0, we have to choose
B =1— be + ole),

which leads to
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‘_Jrﬂ;'f=_'l_( 2 0(1)).
1— Be—= € \btia

For Be[0,1), b is real, and the factor 2(b + ia) ™" in front of € ~! has a nonzero imaginary part as long as a #0, which means
that (35) cannot generate a genuine path integral measure. At first sight, it seems that this problem can be circumvented by
allowing £ tobecomplex: 8 = e~ (1 — €/2}/(1 + €/2); however, going back to (23}, one sees that for 8 complex, the factor
(1 + B~ /(1 — Be ‘) would have to be replaced by (1 + | B |e ~*4)/(1 — | B |e ~“*¢), which shows that a complex choice

for B does not solve the convergence problems.

Ali convergence problems are avoided if the H,, are chosen in the following way:

Hy =(@/2)P*+Q*—1)—akl =H —(H),.

For this choice of (nonidentical!) H,, , we obtain [e = (t" — ¢')/n]

<(Pj+1’qj+1;B|e_'H€|Pj,‘Ij;B)>

=(1-— B)Tl‘[ ﬁNW(pj+ l’qj+l)Te—iuNeW(pj,qj)eiaNe]

= exp[é[q,+ 1(~ g; sin @€ + p; cos a€) — p; , (q; cos a€ + p; sin ae)]

_ 1+ B
41— B)
see (A8) in the Appendix.

[(g;,, — g, cosae — p; sin ae)* + (p;, , + g, sin @€ — p; cos ae)’]]; (36)

We can now again choose 8 = (1 — €/2)/(1 + €/2)[e = (t " — t')/n]; the substitution of (36) into (30) again leads to an integral

w.r.t. the pinned Wiener measure, and we obtain

2" =% [y, 2 oM, 2

xexp|(£-+a) [ ote) date) — gt0) dpit)) ~ 246+ [ L0) + 011 (7)

The same technique of choosing
Hy,(t)=H{t)— <H(’))k

works also for the time-dependent quadratic Hamiltonian
H(t) = [alt)/2)P? + Q> — 1 +5(t)Q + At )P.

For this Hamiltonian we obtain
R Ly

alt)

xexp [{[ £ +at)] ot date) ~ at apte 1 — )

(i 4 alt))[ plt)} + qlt)*] dt

— Usle) dple) — rie) dglt)] — (i + ale)] [sle)glt) + rie) ple)] dt — 4Us(e)* + rie*1dt ] ]; (38)

the trace to be calculated is slightly more complicated than
for (38); see (A 10) and (A 11) in the Appendix. Note that to
give a sense to (38) or (34) we have to take s and r square
integrable in [¢’,¢t "]. For (38) and (37) additional conditions
on a will be introduced in Sec. 3 where needed.

In the next section (Sec. 3) we shall evaluate the path
integrals (33), (34), (37), and (38). In Sec. 4 we show that they
are indeed elements of the corresponding % (U, - ,-) for the
Hamiltonians in question.

Remark: 1t is not really essential in the construction of
(28) that the states |n) are the eigenstates of the harmonic
oscillator; the only properties used are

1¢m|n) =4,,,,
2| p.q) = W(p,q)|0).

We could therefore replace the vectors |#) by any orthonor-
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r
mal set ¢, in 7, as long as ¢, = |0); the functions 8" can
also be replaced by a positive function p(4, ), where 1, are the
eigenvalues of an operator A with eigenvectors ¢,,: A¢,
= A, ¢, with, however, the restriction that = p(4,) < .
This would allow us to try the same technique
Hyl(t)=H(t)— (H(t)),
or, even more generally,
H (t)=H(t) —glA,t), withg{d,t)=0.

for Hamiltonians different from the harmonic oscillator; the
problem is then to choose A4, f, and g in such a way that the
traces

Tr[pA )W (p; 19941 e~ i”")GW(pj,qj)ei‘("’)‘]

still have the right form to generate a genuine measure in the
limit n— oo

|. Daubechies and J. R. Klauder 1811



In the case of v degrees of freedom (v > 1), a class of
Hamiltonians for which the procedure above clearly works
is given by

H)=1att)| 3 [4,2.F, +0.0)+28,.0,)]

+ 3 (500 +R0P],
=
where A, B are v X v matrices with 4 ‘' =A4, B*= — B. The
path integral corresponding to the Hamiltonian (39) is given
below [expression (44)] in a more intrinsic and shorter nota-
tion system than we have used up to now (see Sec. 3A). The
proof, given in Sec. 4, that the path integral (38) really is an
element of the equivalence class € (U, - ,.) for the Hamilton-
ianH (t) = la(t)(P* + Q% — 1) + s(t)Q + r{z )P, easily extends
to this multidimensional case.
One can show that the path integral (44} also gives an

element of &' (U,- ) for the more general quadratic Hamil-
tonian

(39)

H(t)=—21— S [4,(t)P.E, + Q.0) + 2B,(1)P.Q)]

ij=1

+ 3 (S0 + R0 ],
=

with 4,(t) = A;(¢), B;(t) = — B;(¢), and 4;;, B;; almost
everywhere differentiable and piecewise continuous. The
only change needed in (44) is the replacing of the constant
matrices 4, B by time-dependent ones. Note, however, that
this is a generalization on the level of the path integral only,
while for the Hamiltonian (39) (i.e., constant matrices 4, B )
the complete construction in Sec. 2 can be generalized; this is
not true for the case where 4, B are time-dependent; it would
then be necessary to choose also the basis vectors |n) time-
dependent, and the evaluation of the resulting formulas as
traces (see above} would no longer hold.

3. EVALUATION OF THE PATH INTEGRALS

Since the path integrals (37), (34), and (33) can all be
obtained from (38) [by putting, respectively, r =s = 0 for |

27t A 740

Xepr.[(i + 2a)o(v,dv) + 20(b,dv)] + fdt [ — ali + a)s(v,v) — 2(i + a)s(b,v) — s(b,b)] ],

(37), @ = Ofor (34), and r = s = a = Ofor (33)], we shall only
evaluate (38) here.

A. Notations

For reasons of convenience, and to shorten the calcula-
tions, we shall use the more condensed symplectic notation
system, introduced in Ref. 8 and frequently used thereafter
in, e.g., studies of Weyl quantization®:

(pg) =0,

U(U’,U”) — %{P’,q” _p”’q')’

Jv :J(p,q) = ( - q,P),

s(vl,vll) — O_(UI,JUII) — %(plpll + qlq”).
Some simple and useful properties of g, s, an J are

(40)

olv,v) =0,

Ji= -1,

oV JJv") =o' w") = s(Jv'w") = — s, Jv"),
e”’ = cos ¥1 + sin ¢/ (yeC),

ole’',e™v") = ofv',v") (yeC),

slerv’,ev”) = s(v',w") (yeC).

We shall also use the following consequence of the properties
of J:

(41)

(l _ ei!a)—l(a _ ei.lab)
a+b

—1 a
= ——coth-—J{a — b) + 42
5 co 5 (a ) (42)

Furthermore, we introduce the notations
|v]? = s(v,) = 4 p* + ¢°),
o(v) = exp( — 4[v?).

In these notations, (6) and (13), e.g., become
"'y = o —v"),
W)W (") =" " W + v”).

In the symplectic notation system, we can rewrite (38) as

(43)

where we have written b (¢ ) for (r(t), s(¢ )); in general, both a and b are time-dependent.
Almost the same integral can be written for the more complicated Hamiltonian (39); while this integral would be rather
lengthy to write in the conventional notations, in the symplectic notation system it becomes

ey, E 0

Xexp{f[a(iv + 2aCv + 2b,dv})] + fdt [ — s(v,iaCv +a*C ) — 2s(ib + aCbw} — s(b,b)11,

(44)

where now v is a 2v-dimensional pinned Wiener process, where b is the 2v-dimensional vector (R,...,R,; §},...,S, ), and where

Cis the 2v X 2v matrix (L. ; 5).

In evaluating any of these Gaussian integrals, the result will be given by the contribution of the extremal path, multiplied

by a suitable constant.
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B. Contribution of the extremal path

To determine the extremal path, we proceed formally and extract the exp[ — }( * + ¢°)] from the Wiener measure, and

(43) then becomes
2me ~ "’/ZJva:jﬁ'.exp[J dt [io{ — 0+ aJv+2bp) — | — 0+ aJv + b |?] ]

We can rewrite the integrand in the exponent as

F{,,t) = — ali + a)s(v,v) + s(v, — 2(i + a)b — (i + 2aVJd) + f(D,t)
= — s(0,0) + s(0,2adv + 2Jb + iJv) + g(v,t).
The variational equations are therefore (we assume « to be differentiable a.e.)

—2a(i+a)v—2(i+a)b—(1‘+2a)Ji)—%{—2b+2a1v+2Jv+iJv)=0

or
b — (i + 2aMp — ali + alWv — aJv = (i + a)b + Jb,
which can be rewritten as
d . d d .
[Z — (¢ +a).]](z—a1)v =J[:i7_ (i +a).l]b.
The extremal path is therefore given by
vt)=e"V[c+ e’ ~*d + JB(t)],
where

a(t )EJ-tdS als), Bt )EJ-de e~ %Vp (s)

(to define a, we assume a to be locally L '), while the boundary conditions v(t ') = v', v(t *) = v” impose
c+d=V, c+e’" " d =M _JB(t").
We now evaluate the exponential in (45) for this extremal path. Since [from (46)]
— b+ av+Jb= —iJelIrii—g
we have [use (41)]
iolo + aJ + 2Jby) —s(— v+ aJv + Jb, — 0 + aJv + Jb)
=ig(—iJe” = "'d + JB(t),c + e’ ~"d + JB(t)) + sid.d)

— io(B(t),B () — i—;its(B (the + €70~ 1) — s(e?—d c).
Integrating this we obtain
J:dt liol — v+ adv+ 2Jby) — | — 0+ atv+ b |*]
= iJ:.a(B (¢),B(t)dt —is(B(t")c + €’ ~d) — io{e”"" —*'d — dc)
= zf ~dt o(B(t),B(t)) —is(B(t")e ™ Mp")

—iole™ ™ Wy" —JB(t") — v, [1 — e’ ] T e My _JB(t") — 7T W)).

Using (42), this becomes

fﬁdt--- = if'dmw (1).B (1) — (B (¢ ")’ + e~ My")

t"—t'

—lofle ™ "yp" v') — L coth le= Yy —JB (") —v'|

So finally (43) is equal to

43) =2 =4, expli[ diotBi0)Ble)

— fS(B (t "),Ur +e —a(t")Jvn) _ io(e —a(l.)-,v”’ul)]w[e —alt"Myn JB (t n)]ooth[(:" —x’)/z]’
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where the multiplicative constant 4, . ,. still has to be
determined, and where a(t), B (t ) are given by (46).

C. Determination of the muitiplicative constant

In this and in some of the following subsections we shall
use the shorthand dv for the measure dp dg/27.
With respect to this measure, we have

fdv o) =

fdv &P g p)* = - a)(v )8 /e, (49)

We shall also use the following property:

Take any complex 2n X 2n matrix 4 (matrix elements
A,;) satisfying

A‘=4,

A+ 47

Red = >0;

let a; be the 2 X2 matrices

- 1
de]"'den exp[ Z v; a'JUJ W (50)

If 4 is real, the square root to be chosen is the positive one; if
A is not a real matrix, the sign of {det 4 )'/? is determined as
follows:

£:[0,11—C continuous,
(det 4)"/2 =lim f{4), with {f(0)eR ,
Al (A)?=det(Re d + il Im4).

Let us now proceed to the determination of 4, - ,- under
the assumption that (¢ } is a continuous function {this condi-
tion will be relaxed at the end of this section). As usual, the
constant 4, . ,. can be shown (by a variational argument) to
be mdependent of the boundary conditions v’,v” and of the
linear parts of the integrand in the exponential in (45). Hence

Xeprj "dt lio{ — v + aJv,v) — |o — aJv\z]].

g = (A2i 1,2/ — 1 Ay I,Zj)
Ty Ayy /' Writing this out as a limit, we obtain [as before
then €=(t"—1"V/n]
J
n—1
4., = fdu I exp[zo( v +alt’ + eWyey) — ] Vo — v —alt’ + jelvel* (v, = v, =0)
o 2776 j=0 €
n—1
= ,.132 —2;6— du,-du, _ H exp[ —istJu; . +alt’ +jelu;eu,)e

—slu;,, —u; —alt’ + jeJu;u;

n—1
—hm——fdul Jdu,,_iexp z (w;,m; ;u;)

n—w 2TE Lj=1

where m, ; are 2 X 2 matrices defined by

m,. =2+ Ealt’ + keli + alt’ + ke))]1,
M =—1+ [éﬂ-a(t’ +ke)]eJ,

My = —1— [%—i—a(t’ +ke)]eJ,

m, =0 if (k—1]>1,
with J [as in (40)] given by
J= (1)'0[ .

Applying {50} to (51) we seec that
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—u; —alt’ +jeu;) ) (u,

=u0=0)

Ao =lm-b—— 1 (52)
new 21 €(det M,)"?

where M, is the 2(n — 1} X 2(n — 1) matrix constituted by
the 2 (2 blocks m, ;. We shall calculate the limit (52} in the
standard way, i.e., by constructing a recursion formula for
det M, . In the limit for n— o, this recursion formula will
become a differential equation, and the solution of this dif-
ferential equation then gives an explicit expression for (52).
Due to the particular structure of the matrix M,,, and the
continuity of @, all (¢ } dependence will cancel from the dif-
ferential equation, leading toa constant 4, - ,. independent of
aft)

For n fixed we define M, , to be the 2k X 24 matrix
constructed from the 2 X 2 blocks m, ; with , j<k in the fa-
shion
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my, My, e My, D, ,=deeM,,,

My Myy o My D, ,, = minor in M, , of the matrix element
M - (Mn,k )2k.2k ’
nk
and
Mey Mey 0 My D, ,, = minor in M, ; of the matrix element
We furthermore define y Mo k-

Developing the determinants D, ,, D, , ,, and D, , , into products of matrix elements with the appropriate minors (we
develop these determinants along the last row of columns), we obtain the following two recursion relations:

DnJ = [2+aj(i+aj)€2](Dn,j,l +Dn,j,2)
; 2 2
+[2+ali+a)e)D,, .\ + [1 + (%+a,) 62] D,,_s» (53)

; 2
D,y +D,,,=2[2+ai+a)e]D,;_, — [1 + (—;—+aj) e’](D,,,jgl,l +D,;_12)

where we have written a, for a(t’ + ke). The quantity of interest to us is

filt' +(j— 1l =¢€D,,. (54)
In the limit for n—> w0, this relation defines a (continuous) function £, on [¢',t "], and we see from (52) that

1 1
A= 55
2 e o

where the procedure discussed below (50) has to be applied to determine the sign of the square root. By analogy with (54), we
define

g lt'+(j— el = ez(Dn,j,l + Dn,j,2 ).
In terms of the g,,, £, the recursion equations (53) can be written as [t; =’ + (j — 1)e]
£ilt) = gt 1)+ [1+€[i/2+alt;1)]?]8.(1)

2{2+alt, )i+ alt; . 1)]62}

_ L)+ 2+ alg)[i+al)] €11 _0) — {1+ €[1/2 + alt) ]2}l )
B 2+ alt)[i + alt)] € '
Substituting the expression for g, into the equation for f,, and grouping the terms of order 1, €, €*,--- together, we obtain from
these equations the relation

=26 )+ 6 () — 64 )+ 26l 0) =€ [E £ully )+ 260 — 76,41 — 4E) 1, (8))
+(48 1 4 FTENLG ) H (=280 — &0 — )18 5)] + O(€), (56)

’

gn(tj)

where
& =alt)[i +alt)], &= [é +a(tj)]2.
Using the fact that §; = £, — 1, (56) can be rewritten as
_'2[fn(tj+1)_3f;1(tj)+ 3fn(tj—1)_fn(tj——l)] 262{ _i[fn(tj)'i‘zfn(tj—l)_ an(tj—Z)]
+ & [ = Yalg) + 8406 =30 5)] + & [L600) = 440) + T4 20) — 445 _2)]) + Of€Y). {57)

Equation (57) holds for fixed n, and for j:2—n — 1, again with € = (t " — ¢’)/n. In the limit for n— o0, (57) will lead to a
differential equation for f,_, and as an intermediate step we obtain

— .)€ +O0() =€ — - 4f 1) + O() + &, (- 2)f1(t)e + O(€)
+& -2 (t)e+ O()] + OleY),
hence
[ab) =L+ & —E)Sa5) + Ole). (58)
It is here that the “miracle” happens: If a(f ) is a continuous function, then
S —§=aly i+ alt )] —alg)[i+aly)] =ol),

which means that the a-dependent terms £; drop out of the equation. In the limit 7— o, Eq. (58) becomes
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fLey=fL1)
where all the @ dependence has vanished!

To determine the initial conditions for this differential equation, we go back to the definition (54) of the £, , and we easily
obtain

. (t) = lim £,(t) = lim €1 =0,

f.() = lim f"————(tl) —/alto) = lim €[2+4,6)*—1]1=0,

n-——+qo n—oo

soiey= tim LIV TI _ ym (0 4 g0 1 16— o - 117 204 £ 1) =2

With these initial conditions, the solution of the differential equation is

i 11 — af < t—1t'\?
f.(t) =2[cosh(t — ") — 1] 4(s1nh - )

One can easily check that the procedure sketched under (50) to determine the sign of the square root of det M,, gives

lim ,/det —.hm—smh( tV" 251nh 5 —r.

’
n—sa0

so finally [from (55)] we ﬁnd

Lt — !
A,.,. = 4w sinh 5 . (59)
Substituting expression (59) for 4, . into (48), we have as a final result

2arel” — 1V ZJ-d‘u W, o exp[J[(:’ + 2ajolv,dv) + 201b,dv)] + fdt [ —ali + a)s{v,v) — 2(i + als{b,v) — s(b,b )]]
= E—IT'———WexP{if, dfo-'ldfz[U(b (#1),b (t))cos( B (21,85)) + s(b (2,),b (t,))sin( B (1,,8,))]

i f " dt Tlb 6" Yeos{ B .4) — ot (1 w'sin( B.)
+ s(b(£),v")cos( Bt “,t") + alb (¢ )v")sin( B (t",t )] — iof” v')cos( Bt "t ")) — is(v”,v')sin B(t "¢ '))]

]coth[(: " —1')/2)

Xw{v"cos[ Bt " t)] —R'sin[ B{t",t)] —v — J-l'dt [/b it Jeos( B(1,")) + bt )sin{ B (1, )] , {60)

where
Bltnty) = f drafe).

Putting b () = [0,s(¢ )], a(t ) = a (time independent), (60) can easily be seen to lead to expression (15) in Ref. 4.
Remark: In what follows, we shall denote the right-hand side of (60) by F,. . (v",v'):

Fr )= (1 = e~ Vexpli[ drotBe)80)

— o' + e~ V" JB(t")) — iole ‘“"')’v",v’)]w(v' +JB(t") — e~ oUWy |eothlie” = 11721
One can easily show that these F,- ,. have an interesting property,
Vie[s,t"] fdv F, ;(v,0)F;,-(0p") = F, . (v'v").
This can be proven by direct computation; it can also be considered as a consequence of the fact that
Viele'a"): [ | dutist odun, £ = w5

This last property can be used to relax the continuity requirement on a (see above); for piecewise continuous a, we can cut the
path integral into different pieces corresponding to time intervals on which a is continuous. For each of these pieces, our
evaluations as carried out above hold without any problem. We can then use the “chain property” of the F,. . as stated above
(the direct proof of which does not require a to be continuous) to show that even for piecewise continuous a the result (60) still
holds.

1816 J. Math. Phys., Vol. 23, No. 10, October 1982 I. Daubechies and J. R. Klauder 1816



Bringing all our conditions on a, #, and s together, we see now that

—ua has to be piecewise continuous, a.e. differentiable and locally L '

—rand s have tobein L %([t",¢ "]).

Now that we have calculated the integral, we shall verify in the next section that the result is indeed an element of
¢ (U, ) for the corresponding Hamiltonian; we shall also discuss in what respect it differs from the matrix element

(U”IUI”,I' |U'>.

4. THE PATH INTEGRALS YIELD ELEMENTS OF THE PROPAGATOR EQUIVALENCE CLASS
Let us denote the function defined by (60) by F,.,.(v",v'). We claim that F,. ,.e€(U,.,.), i.e., that

Jdv”fdv’]v)F,-‘,.(v”,u’)(v'| =U,., = T‘exp[ — ij Ht)dt ], (61)
with H (t) = la(t)(P* + Q2 — 1) + r(t )P + s(r)Q. To prove (61) it is sufficient to show for all v that
fdv”fdv'(v!u”)F,n,,,(v",v’)(v’|u) = (|U,., |v). (62)

The equivalence of (61) and (62) follows from a standard analyticity argument: Since F, . ,. is uniformly bounded,
|F,- " V)|<[1 —e " =1]~" (we always assume ¢ " > '),
one can use [see (16)]

R R 2 2 2 2
(pg + ix ) pp — ixpl/2 (x; + pg + Xp + pE/4
(dlb) e’a a'' Pb b e a’ba b TP

to show that the function

6 (vy0s) = fdv"fdu'(uﬂv">F,~_,.(v",v')<v'|v.>

can be written as a product,

(x% + p% + x% + p%)/4

& (v,05) = flugva)e ;
where fis a complex analytic function in the variables p, + ix,, p, — ix,. The matrix element (v,|U,. ,. |v,) is a function of the
same type:

— (x% +p% + x% + p%)/4

(01|U, - |v2) = gloy,05)e
with g complex analytic in p, + ix|, p, — ix,. Equation (62} can be rewritten as
Yuif(v,v) = glv,v).
Because of their analyticity, this condition forces fand g to be identical:
Yu,,0, (v1,02) = glv1,02)
or

Vo,0, j do" f A OV Fe (0" Y0 |02} = (0| U ]0,). (63)

Now using the fact that |F,. ,. | isan L ' functioninv” — v’, and the density of the linear span of the c.s. in J#, one sees that (63)
implies (61).

Note that the argument above only uses properties of the “small” space 5. The “big” space ¥ was only introduced as a
device to define F,. ,. as a path integral with respect to a genuine measure. Once F, . . is found, we no longer concern ourselves
with & or the | p.g; B)), but simply prove directly that F,. ,.€ % (U,.,.).

We now proceed to prove (62). Using {v|v” ) (v'|v) = ™" ~*) w(v — v')w(v” — v) (see Sec. 3A and (60)), we have

fdv”J.du’(v|v”)F,,_,.(v”,v')(u’]v) = fdv”fdv'e‘“‘“‘”' o — v —v")[1 —e— "]
Xexp[iJ dt o(B(t),B (1)) — iol’ + e~ ¥p" JB(t "))]

— a(l")!vu

Xexp[ — iofe W)lwle Wy — o' — JB (g n)]eohle” -2l (64)

= f ‘tds als), B{t)= f Tdse“’“”b (s).
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Introducing the change of variable #” = e ~“*"¥y", and using {41), Eq. (64) becomes

(64) =[1—e " —]~ 'exp[zf dto(B(t),B(t ))]fdu”fdu’exp[ —io(u” JJB(t") — e~ V)]
Xe~ ol JB(t ")+ v — u")w(vl _ v}a)[u" _ U' _ JB ([ u)]coth“:" — t‘)/Z]Q)[uw —e — alt ")Jv] .
Taking the Gaussian in v’ together and completing the squares, we have
(l)(U' _ U)Cl)[U’ _ ll” +JB (1 n)]coth[(:" —')/2]

=a){v' - [v—{-coth C(w" —JBt "))]/[1 + coth

»

t" —_t' ]}1 + cothf(r” — 1°)/2]

. O)[U _ (u" —JB (t ”))]coth[(t " —1')/2)/}1 + coth[(t” — t')/2]}'
Substituting this in the integral above, and making the change of variable
u=v- 1 [v+cotht —!
1 +coth[(r" —¢t')/2]
{64) becomes

(" — JB (1 "»],

(64)=[1 —e~ " "] "exp[iﬁ dtalB(t ),B (t ))]fdu”fdu'exp[ —io(u" JB(t") — e " Hp)le ~ oIBETI —uT)

e~ o' JB(t") —u" + v)w[uﬂ e —a(l"iJv]a)(ur)l + cothf{t” — 1°)/2] . a)[v _ uu + JB (t ")]coth[{r" — t')/2]/{1 + coth[{t " — l')/2]l‘

Applying (49) to the «’ integral yields

2 o
64) = .
( 4) [] _e*‘("—"'](l_f_coth[(t "—t')/Z])exp[l_[' dtU‘B(t),B(t))]

XJdu"exp[ —io(u" JB(t") — e~V 4 y)]e =B N[ — e~ Wylw[v —u” + JB(t")).

Again we group the Gaussians in ", and complete the squares

olu" —e " “Mlofu" —v—JB(t") ] =w{u” — e M +v+JB")]Volv+JB(t")— e Vy}l/2
Substituting this into the integral, and making the change of variable

u=u"—ile " VYo+v+JBt")],
we obtain

7] U I e U ' . . . .
64 = B g a8 [ enpl —ite -4 e e
— e . 2et t’

Xwlv+JB(t")— e V] 2%exp[ -- io{u,v + JB(t") — e~ ““ Vu)]oHu).
Applying (49) again, this becomes

64) = exp[iﬁ ~a’t alB(t),B(t )}]e —iIB U Nexp[ — iote = Yo + JB(t "N ]wlv + JB{t ") — e~ Vy]

= exp[iJ- dto(B(t),B(t ))]e — il IBUT N (g —alt " Wy|ly + JB (¢ *))

{see Sec. JA).
Since (see Appendix) e ~*#|v) = |e?#’ v}, we thus have

fdu"jdv%vlv”)F,~,,'(v”,v’)(v'|v> = exp["fudt olB(t)B(r ))]e""“’”""”(vle— Wl + JB ("))

= CXPH: ~df o(B(t).B(t ))] (vle™ " WHIB (t "))|v)-
Our claim {61} thus reduces to
exp[iJ:f 'dz olB(t),B(t ))]e—"""""’W(JB t"N="0,., = Texp[ — zf 'dtH(t)],
where [see (46)]
aft) = J, tds als), B{t)= J:ds e~ Mp (s).

We shall prove {(66) by differentiation with respect to £. We have, first of ali,
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:Id;W(JB(I)) = 1i_!g-i—UV(JB(t+6))W( —JB(t) - 1]WJB(1)

= lim L[~ B0+ BB (£ + &) — JB (1) — 1] WJB ¢)

-0 €
= —io{B(t),B(t))WJB (1)) —2is(B (), \WIJB())
[the second term can be obtained by putting B = (R,S)]; then

lim L WB (¢ + €) — JB(¢))
€0 €

=lgnO%exp(—ii[R(r+e)—R(r)1P+ [S(t+€)—S(t)1Q})= —i[R(E)P+5()Q 1= —2is(B (), 1)}.

Moreover, e ~‘#V 5(B,V') = s(e” B,V Je ~ *#¥ [this can be obtained from (AS5) by differentiation).
After these preliminaries we are now ready to evaluate the time derivative of the left-hand side of (66)

%[exp[i f fds o(B (s),B (s))]e — it NPITB (¢ ))]
=[—o(B{t)B(t)) +alt )N+ o(B(t).B(t)) + 2s(e VB t), V)]CXP[!'J,dS o(B(s)B (S))]e ~ANWIB (1))

= [alt)N + 2s(b (), V)]exp[ifds o(Bs),B (s))]e — N IB (¢)). (67)

Sincea(t)N + 2s(b (t),V) = Ja(t P2 + Q% — 1) + ¢t )P + s(t)Q = H (t ), weseethatexp[if*. ds o{B (s),B (s))]e 'V W\JB (t )}
and T exp[ — if}. H (¢ )dt ] satisfy the same first-order differential equation in . Since both operators have the same initial value
(atz =1¢’, they are both equal to 1), they are therefore equal for all times

exp[iJ: 'ds a(B(s),B (s))]e — @t WPATB (1) = Texp[ - zf ﬁH (¢ )dt ]

This completes our proof that F,. ,.€€(U,-,.}.
Remarks: Comparing F,. .. (v",v'),

Ft e (v,"v'

B l——lr_—, CXPH dto(B(t)B 1 ))]e B Nexpl — iafe =Mo" v’ + JB ()]
— € [

Xa)(v' +JB (t u) _ e—a(:")Jvn)coth[(t" —r'|/2]’

with the true matrix element (v"|T exp[ — ift’ H (t)dt 1|v') [see (65)], we immediately see that the two expressions are very
similar; there are only two differences: an overall extra factor [1 — e =" ~*"]~'in F,. ,., and an exponent coth[(¢ " — ¢')/2] for
the w-factor in F,. ., where this exponent is 1 in the true matrix element. [These similarities were already noticed in Ref. 4 for
theslightly simpler Hamiltonian H () = a(P? + Q> — 1)/2 + s(¢)Q]. Inthelimitwherethetimeintegraldiverges,t * — t '— o,
both these differences disappear

=01, coth L=

1—e —1,

which means that as ¢ ” — ¢ '— o, the function F, - ,. approaches the true matrix element; its component orthogonal to

{(p"q"18 )¥| p',q'); §, Y '} vanishes!
This is easily understood if one tries to analyze what happens for ¢ * — ¢ '— o to the construction we made in Sec. 2. Asan
example we take the time-independent Hamiltonian H = (@/2)(P> + Q> — 1). Then

Frp 5P = Jim o § 1890 — B [ TL AW e~ =000
—_— =0 j=0

and

= klim i Bkl(l|W(v”)fe—ia(N-—-”(f"—l’)W(vl”I)‘
o =0
I

The term corresponding to/ = Ois simply (v"|U,- . |v'). For
1 #0, however, we also have to take into account a factor
LERPYAY 7] no_ gt \ —kl
lim ﬁk’zlim(l—t ! ) (1+’ d )
k— o k— o 2k 2n
==y

=e
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Inthelimit?z” — t'— 0, thesefactorse " ~*"—0forl #£0,
which means that all the contributions to F,.,. from terms
with / 70 disappear. Only the / = O term is left over; since

this / = 0 term is exactly (v”|U,. . |v'), we see that

F,~,,.(v",v'),~ - @"|U,-, [v').

— '
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In the limit wheret ” — t'—0, F,. _,.{v",v") approaches
8 (v" — V'), i.e., a specific member of the equivalence class of
the unit operator (see Sec. 1). Again, this can easily be under-
stood from our construction. For the example H = (a/2)
X(P?+ Q2 — 1), we now have

Froplo" )= Ye =it
]
X (| W (" )e

Ast" — t'—0,weseethate ¢ 'V 1~
and thus as a distributional limit

ialN —1)t” _‘)W(U'HI).

ialN —1)t" — l‘)—>1
>

Foo 0" 0S4 W ") W 0]
[

= “Te(W (") W ()
= 8" — V).

5. CONCLUSION

In this paper we have stressed the basic feature of over-
completeness of coherent states, and have used this fact to
construct integral kernels to represent the evolution opera-
tor for a limited class of dynamical systems in the form of
path integrals expressed in terms of Wiener measure.

Equation {38) presents the path integral representation
for the most general one-dimension dynamical system that
we are able to treat. This equation provides a novel formula-
tion of the (equivalence-class) propagator and suggests a var-
iety of further directions for study in addition to providing
an alternative computational scheme for such propagators.
However, our results are less than optimal in one sense. The
necessary restriction that s and » be square integrable prohib-
its our results from describing local-in-time potentials when
integrated over the external fields but only leads to nonlocal
potentials. It is important to learn if and how this limitation
can be overcome, and this problem may be clarified by using
basic states other than the harmonic oscillator eigenstates.
As observed in Ref. 4, the complex expression that plays the
role of the classical action in the Wiener measure formula-
tion of quantum mechanical path integrals may be formally
interpreted in a natural way: The phase of the integrand is
such as to form a martingale in which the phase-space mo-
tion is driven by the classical equations of motion. It is inter-
esting to add that an entirely analogous type of construction
can be given for kinematical groups other than the Heisen-
berg-Weyl group, and in particular for the kinematics of the
SU(2) spin group.'®

l

ii[e1i/2a)(:l+r3]lW( -_L, _ s) tath(L -S—)]lﬁ

dt a a a a

|

_L(S2+r2)[ ]¢+e(:/2a)(s + ) W(—L _ )
a a a

el lor2) -

= [92_(,,2 +0 1)+ rP+ sQ] [e<f/2a"s2+f‘>rw( L
a
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APPENDIX
We calculate the traces needed in Sec. 2:
Te[ YW (p".q")'W (P9}, (A1)
Te[ B W (p".q") e~ “YW(p'q')], (A2)
Te[ YW (p".q")'e = YW (p' g™ ], (A3)

TI'[ BNW(p",q”)T97i(aN+SQ+rP)EW(p’,ql)eiaNe], (A4)

where N = }(P? + Q? — 1). The last trace (A4) corresponds

to the choice H,, (t) = H(t) — (H (t)), with H(t)

=la(t)(P?+ Q% — 1)+ s(t)Q + r{t )P (see the end of Sec.

2); since (Q ), = (P), =0, theterm — (H (t)), leads to

the factor ¢V in (A4). We start by proving two lemmas.
Lemma I:

(i)e "W (p,q)=
with

Wi(p,g.)e ™" (AS5)

p, = —gsint+pcost,
g, =qcost—+psint.
(ii)e—it(aN+xQ+rS)

— e(i/Za)l:2 + 'J)’W( _

L,—S)e_iath(L’i). (A6)
a «a o a
Proof:

(i) This property can be proved by direct differentiation,
but it can also be considered to be a consequence of the pro-
perties of homogeneous quadratic Hamiltonians in general.
Indeed, it is well known that for a homogeneous quadratic
Hamiltonian H, the quantum evolution of a coherent state
| p,g) is given by the classical evolution, under the same Ha-
miltonian, of the labels p,g

e itH(P'Q]I p’q) = | DY, >’

where p, g, are the solutions for the Hamiltonian equations
for H ( p,q), with initial conditions p, = p, ¢, = g. Hence
e~ "™ p,g) = | p..q,), with p,,g, as in (A5). Consequently
e ""Wi(pq)lpr.g)

= e ~ N L/ pq’ Ap'q)‘ p+p.g+ q'>

= ll/2pPe —FI p 4 p' g, +4q )
— (172 prq'y— D'y 4y

= \V/2Upg —Pa)p

W(Prrql)l p,l'qlt>
=Wip.g)e " Ip.q)
Since the linear span of the c.s. is dense, (A5) follows.

(ii) We prove (A6) by differentiation. Take any # in the
linear span of the c.s. Then

£P2+Q2 ) ——iath(L’i)w
2 a a

10

Gl
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Since the linear span of the c.s. is a core for N, (A6) follows.
Note: (A6) is still true for a—0; for @ = 0 the left-hand sideisequal to W ( — st, — rt ), while the right-hand side gives

. ; r —s r S\ _,;
w — lim ell/Za)(52 + rzilW( — )W(—,— e iatN
a—0 a a a a

: r,—rs s
. i/2 2 4+ A —(1 t t
= w — lim !/22)" + 7t = (1/aksin “"W(———, )
a

a—0 a
=W(—st, —rt)
Lemma 2: For all yeC such that |y| < 1: " is trace-class, and
1 14+
ToW (pa) = ——exp| — L (57 + )] (A7)
11—y 4t -7

Proof: Since " has only a discrete spectrum, with eigenvalues #”, it is obvious that ¥" is trace-class for |y| < 1. On the
other hand, direct calculation from (AS) yields

(p"q"|le” ™| p'\q') = explle ™ "(p" +ig)p' —ig) —~ Y p"* + 4" +p* +4")],
hence, by analytic continuation (the c.s. are analytic vectors for V),
(p"a" YV p'a) = expl(y/2)(p" +ig")(p' — ig') — §(P"* + 4" + P> + ¢7)).

Using (17) we now evaluate Tr{(y W p,q)):

dp'dq’ . . dp'dqy e . . p
Tr(V”W(p,q))=J-%(p,qlr”W(p,q)lpm=f—’%e‘”"” PN p g | p+pa+q)

dp'dg’ 1—y,. ) 1
=f pzﬂq exp{ (7; ){pq —gqp') — —Z—K[(p +p/2 + (g +q/2)2]—%(p2+qz)]

14y o s (7P 2 l+y
l_yeXP[ n (P +4q°) — 8(1_)(10 +q)]— [ A= )(p )]

Using this result it is now very easy to calculate the traces (A 1)—{A4). Since (A1) can be obtained from (A2) by taking the limit
a—0, and (A3) from (A4) by putting r = s = 0, we shall only evaluate (A2) and (A4) explicitly. For (A2) we get

Te[ BYW (p".q"'e ™YW (p'.q)] = Te[ B W (p".0")'W (pgi)e ]

[with p;, =p' cos ae — ¢’ sinae, g, =p'sinae + q' cos ae]

— e(i/z)(Paq'—an'JTr[(Be_[ae)NW(P; _p”,q; _ qu)]

1 (/2 pod” — 95 P°) [ 1+ Be e 2 2 ]
= ¢ exp{ — —————— - A8
T H = pe m)[(zJ Py +1g" —4i)f) (A8)

This is exactly what was used in (35); in the limit for @—0, we have

TLBW (0" VW) =g e | — B — P i g1 (A9)

which yields (24). The evaluation of (A4) gives
Tr[ B NW(pn’qn)fe — {aN + sQ + rP)sW(Pl’q )elaNe]

= Tr[ BNW( ‘—P”, _ q")eii/Zal(sz#—?)ew( — _L, - _‘_g_)e—iaNeW( )W(p',q )exaNc]
a a a' a
I, i " i " r " s
= exp| —(s* + Ple + —(p"s — q"r r’—s’]Tr[ ”W(— - — ——)
p[Za( ) Za(p q )+—2;(q p') B Pr———q =
X laNsw(p + ’q + )laNe]
i 2 ” l
= exp| —Is +rze+— s—gq" —{rg' — ']
p[Za( ) 2a(p qr)+2a(rq sp’)

XTr[,B”W( —p" - i, —q" —%)W([p' + r/a)cos ae — (¢’ + s/a]sin ae,
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[p' + r/a]sin ae + [¢' + s/a]cos ae))

= CXP[;(SZ + e+ ——(p"s — q"r) + —rg’ — SP')] .
2a 2a 2a

1

1—p

Xexpl((i/2){q" + s/a)[(p' + r/a)cos ae — (¢’ + s/a)sin ael] — (p” + r/a)[(p’ + r/a)sin ae + (¢ + s/a)cos ae€])

1+8
41— B)

+ [(§" + s/a) — (p’ + r/a)sin ae — (¢’ + s/a)cos a€]?})

[use (A5) and (A9)]. Putting » = s = 0, this leads to (35).

{[(p" + r/a)—(p' + r/a)cos ae + (¢’ + s/a)sin ae]?

(A10)

Finally, we show how, under the assumption 8 = (1 — €/2)/(1 + €/2), and in the approximation that ¢ is small, (A10)

leads to (38). (A 10) becomes now

i 2 I ” ” i ’ ’
p 2a(S+ )+2 (p qr)+2 (rg’ —sp’)

1
1—- B

Xexp{(i/2)[lg" +s/a)(p' +r/a)—(¢" + s/a)lg’ + s/a)xe — (p" + r/a)p' + r/a)ae — (p” + r/a)g’ + s/a)}}
Xexp(—(1726){[ p" —p' + (¢’ + s/a)ae]” + [(¢" — ') — (P’ + r/a)ae)?})

S exp{ — (172e)[(p" —p'V +1g" — ¢V + (/2 + ) P'lg" — q)—q'(p" — )]

=1-%

—(@*/2)q” +p™)e — (ia/2)(p"p' + q"q')e — (i/2)[slg" + ¢) + r(p" +P)]e

—alsq' + rp'le —s(p” —p') +rlg”

=1 +€/2)%CXP{ —21 [(P;41 _Pj)2+(qj+l “q/‘)Z]}

€

+ [i/2 + a(tj)] [Pj(qj+ 1
- [S{tj)(pj+l
which can easily be seen to lead to (38).
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Properties of solutions for N-body Yakubovskii-Faddeev equations

P. Benoist-Gueutal and M. L'Huillier

Division de Physique Théorique, ® Institut de Physique Nucléaire, F-91406 Orsay Cedex, France
{(Received 14 April 1981; accepted for publication 30 July 1981}

We give a revised presentation of the Yakubovskii—-Faddeev formalism based on a systematic
study of the N-body system chain structure. Completeness properties of the corresponding
equations in differential form are considered. The expressions of physical and spurious solutions
are given in terms of the N-body asymptotic partition Hamiltonians eigenvectors.

PACS numbers: 03.65.Ge

I. INTRODUCTION

Consider a nonrelativistic system of NV particles inter-
acting via short range two-body potentials.

The method proposed by Faddeev' and Yakubovskii®
to calculate the bound states and scattering states, consists in
decomposing the wave function into components corre-
sponding to all various chains of partitions of the N-body
system.

Partition a,, 1<p<N), is a way of grouping the N parti-
cles into p disjoint subsets called clusters. If a, can be ob-
tained by fusing the clusters of another partition b, we write
b, Ca,. A chain of embedded partitions will be denoted

A; — {arCa’_l C-Ca,,, Cap}’ 1<p <r<AN.
(1.1)

Notations 4 ",p ,A ;’, orA :; will be used to display one or
both of the external partitions of the chain. We eventually
simplify notation by omitting upper indices N and a,,, and
lower indices 1 and a4, since the total breakup partition a,,
and the one-cluster partition @, are unique

A=A47, A,=A), A=4Y. (1.2)

Let Vap, 1<p< N — 1 be the internal interaction of par-
tition a,,, that is, the sum of all two-body potentials internal
to the p clusters of @,,.

The Yakubovskii~Faddeev (YF) equations can be der-
ived by defining interactions (v,) ., which realize a chain
decomposition of V,,p
g(vp),w =V oo (1.3)
where the summation runs over chains 4, contained ina,.
Equation (1.3) does not uniquely define (v,),5. The YF-for-
malism corresponds to the choice

=Ver (Y )ps (1.4)

where ¥, is the pair interaction internal to the partition
ay_ contained in chain 4. Numbers (Y }),, areeither Oor 1
and correspond to a specific correlation between chains 4
and B. They are defined in Eq. (2.13) and their properties are
studied in Appendix A, Sec. 3.

The partition Hamiltonian H, = H, + V., where H,
is the kinetic energy operator with center-of-mass energy

I

(Up )as

*Laboratoire associé au C.N.R.S.
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removed, can be decomposed using (1.3) and (1.4) as

Hap‘SAPsP = Z(hp)AB’ (15)

N

(hp)AB =Hyb,p + V))as- (1.6)

Let 7 be the Hilbert space spanned by column vectors
[¥) with components |¢, ) in the Hilbert space 7%, of the
N-body system, where 4 runs over the total set of chains. The
scalar product and norm on # are defined by

(@I¥) = > A@al0) = (¥|@)*, (1.7)

where (@, |, ) is a scalar product on 5. The set (h,) 5
defines a non-self-adjoint operator 4, on 7.

The YF equations are usually considered in an integral
form which results from the existence of the resolvent
operator

g2 =E—h,)"", (1.8)
z being a complex number. The properties of g, (z) follow

from the spectral properties of &,. They are studied from the
equation on 7

(z—h,)|¥) =0, (1.9a)

called a YF equation in differential form. This equation has
the structure of a system of coupled equations on #°,,

2094) — (b, ual¥5) =O.

B

(1.9b)

Summing (1.9b) over all chains 4 which contain a,,, one gets
through (1.5)

€~ H,)3 Tt =0.

A% A,

(1.10)

It follows that either 2 ., 2, [¢,) vanishes or it satis-
fies the eigenvalue equation of Hap.p The solutions of Eq. (1.9)
(and the corresponding spectra) will be called ‘“‘spurious” in
the former case and “‘physical” in the latter case. Obviously,
the physical spectrum is real. Evans and Hoffman>* consid-
er the properties of the solution of (1.9) in the three-body
case. They show that the spurious spectrum is real and prove
the completeness property of the physical and spurious solu-
tions on the chain-space 77°. In the present paper we extend
the results of Evans and Hoffman to the N-body case. The
spectral properties of 4, depend on the nature of the two-
body interactions and a rigorous proof of these properties is
difficult. Our study relies on the assumption of completeness
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of all partition Hamiltonians H, and of existence, for
Im 250, of the resolvent operator

G, le)=(z—H,)" (1.11)

The present paper is organized as follows: We first re-
view the YF formalism. A systematic study of the N-body
system chain structure, of the operators ¥ } introduced in
Eq. (1.4) and related correlation operators clarifies the pre-
sentation. This part, which contains no dynamical aspects
and is relevant to any N-body system, is discussed in Sec. I1
and Appendices A and B. In Sec. III we define Hilbert chain
spaces 57~ :; and chain Hamiltonians 4,. We make explicit
the structure of the matrix elements {g,(z)] 45 of the resol-
vent operator defined by Eq. (1.8) in terms of the operators

L@ =GdV,, G, (@VE G, (WG, ),
(1.12a)

(1.12b)

This result is of interest to understand the structure of the
YF equations in integral form and to study the asymptotic
properties of their solutions.

In Sec. IV spectral properties of chain Hamiltonians
h,,1<p<N, are studied. We present in Sec. IV B some prop-
erties of the solutions of the Schrodinger equation

(E—~H,)|¥) =0, (1.13)

which follow from the initial assumption of asymptotic com-
pleteness on the Hilbert space 7#,,. Consequently we prove
there exists a one-to-one correspondence between the solu-
tions of {1.13) and a choice of physical eigenvectors of the
restriction of 4, to the Hilbert space 5%, . The explicit rela-
tion between the chain components of a physical eigenvector
and the corresponding eigenvector of H o 18 given. In Sec. IV
C we construct spurious eigenvectors of 4, from physical
eigenvectors of the subsystem chain Hamiltonian

h,.p + 2<g<N. Thus we are in position to prove that the set
of physical and spurious eigenvectors of 1, forms a complete
basis in the chain space ##” and that the corresponding eigen-
values are real. Chain Hamiltonian 4, being not seif-adjoint,
this basis is not orthogonal. We show how to construct a
biorthogonal basis and its relation to the eigenvectors of ad-
joint chain Hamiltonian#,.

g1 __ _
V“q - Vav V"q; 1"

Il. CHAIN SPACE C:;
A. Definitions

Leta, and b, be two partitions of the N-particle system.
We use the symbol

52; = 1if b, is contained in or is identical to a,,,
=0 otherwise. 2.1)

When r = p, 52; is identical to the Kronecker symbol 6, ,, .
The symbol

8ap,=1—8,, (2.2)
will also be used.
The chain of partitions 4  is defined in Eq. (1.1). Let
r—1
6,4;,3;, = 6a,b, H 5‘:,1;,.5:1: ' 15’;'; N (2-3)
i=p

1824 J. Math. Phys., Vol. 23, No. 10, October 1982

then§,.,. = 1 means chains 4 ; and B are identical and
6, -5, = O means they differ by at least one partition. Let
& = {A B Z;---}be the set of r;” chains A | which contain
a, and are contained in a,, classified in a specific order. {For-
mulas related to the counting of chains are given in Appen-

dix A1.) Let C;' be the set of the applications of £’ on the

complex number field. A vector |F') of C’ isasequenceof n;’
complex numbers FA s e which can be written as a col-
o B

4

umn matrix. The space C:; is a complex vectorial space of
dimension n; . In particular the dimension of C=C;" is the
total number n of chains.

The norm and scalar product on C;’ are defined by

(GIF)=3G* .F,. =(F|G)* (2.4)
A:r 4 “p

P

B. Operators on G,

Operators O on C;’ are represented by ng’ Xn, matri-
ces of complex numbers O  ergerr ThE adjoint operator O is
defined by o

0,opr = (Oprras ) (2.5)

ap” ap

1. (;) operators

Given 1<p <r<N, (;) operators are defined on the chain
space C by matrix elements in the form

(0:)45 =645,07) 4.5.8,050 (2.6)
It results from this definition that one can consider the re-
striction of O ;, denoted by the same symbol, to any subspace
Ca. with g<p <r<s,

(0;),;::57; =5A‘:‘3‘:‘(0;)A;B;‘5Azq8'sq' (2.7)
In particular,
(0; )A ZrBZr = 5a,b, (O; ),4 ;B;aapb,,' (2'8)

Eventually the upper index will be suppressed in the nota-
tion of ( ;) operators if 7 = N.
The (;) operators satisfy the commutation relations
if p<g<r<s or ras<p<yq
(2.9)

0%0;=0:0¢

2. Chain correlation operators

In order to introduce in Sec. III the YF chain decompo-
sition of the interactions of the N-particle system, we study
in Appendix A correlation operators O on C, the elements
0, of which are equal to O or 1. The value O, = 1 implies
the realization of a definite correlation between chains 4 and
B. In the present section we summarize the main results of
interest for the analysis of the solutions of the YF equation in
differential form.

Summation operators S} are defined for 1<p <r<Nby

(57)a8 =6 ,r5:845.- (2.10)
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They are self-adjoint
S,=8,.

In particular,

(SZ+ ! )AB = 543’ (S:)AB = 5,4»;;»’ (S; )AB = 5,4,3,- (2-12)

We define for 1<p <¢<N Yakubovskii operators ¥ |

through recurrence relations

Yorl=1, YE+?=8r+2 Y, =14+(Y]_, — Ny,
{2.13)

(2.11)

One deduces the factorization property

Y, Y =Y, — Y)Y, p<g<r<N.
Given a chain B and any partition @, _, with
8y "= 5":: , = 1, there exists one and only one chain 4 con-
tafning a,_, insuch a way that (Y, ), = 1. This funda-
mental property of Y, is expressed by the relation

S,y =S,

(2.14)

(2.15)

lil. HILBERT CHAIN SPACE %zp
A. Definition

Let 77 :P’ be the vectorial space spanned by the set of the
applications |¥) of € = {4 ;,B .-} on the Hilbert space
# y of the N-body system. Vector |¥) is a column of rg’
components |¢A ot o ), which are vectors of 57,
Space ¥, a‘:’ can be considered as the tensor product

Hy=HyeCy. (3.1)
The norm and scalar product on 5% a‘: " are defined by

(@®) = Tp,.1¥,.) = (¥lo)*, (3.2)

AT “

-
3
p

where (g .,
“p

1//A :,) is a scalar product on 5.
P

If 77 is separable, 77 is a separable Hilbert space.
Operators on %" are represented by n:; X n. matrices of
operators on . Definition (2.6) of (;) operators can be
extended to the full Hilbert chain space =7 : N and to
J‘V:qs, with g<p < r<s.

8. Chain Hamiitonians
Let us define v, operators on # for 1{p<N by

vy =0, Wv_ 1 )us =Va,_0up ¥, =UN—1Y,);V' (3.3)

Operator v, is a () operator on 5, non-Hermitian if
p<N — 2. Elements (v,) 5 are Oor ¥, according to the
correlation property of Y%,

We define chain Hamiltonians /4, for 1<p<N by

(An)ap =Hpbyp, h, =hy +v,. (3.4)
Using Eqgs. (2.10) and (2.15) one gets
(S7v,) a5
=;6Apcp }/L‘N_ 1 (Y:’)CB =6APBP%:;/CN_1 (Y:JV)CB

b
=6,,po 2 Vey_ 10,
‘N-1

=6 V. (3.5

4PBP %
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Similarly,
(S2h)as = 8 5o H, - (3.6)

Operators v, and 4, realize the YF chain decomposition of
the internal interactions and of the partition Hamiltonians of
the p-cluster partitions.

Using Eq. (3.3) and (2.14) with r = N, one obtains

v, =V, = (v, —0,)YE, p<g<N, (3.7)
and from (3.4)
hy=hy+v,_, —v,)Y3, p<g<N. (3.8)

C. Green’s operators

Let z be a complex number belonging to the resolvent of
every Hamiltonian %,,1 <p<N. Then there exists a resolvent
operator

g2 =(—h,)"". (3.9)
Left multiplying (3.9) by S }(z — h,) one gets from Eq. (3.6)
[S’I’V(z - hp)gp(z)]AB = (Z - Ha,,) [Sllavgp(z)]AB
= (S;:V)AB = 5,4 ogr-

Left multiplying by Gap (2) = (z— H, )~ one obtains

[578,@)]4s = Go, (25 5, ,» (3.10a)
which is equivalent to

Y [8,(2)]45 = G, (2). {3.10b)

A

Thus, g, (z) can be interpreted as a chain decomposition of
the p-cluster partition Green functions. It satisfies the resol-
vent identities

8, =8, +8v, —v,)g,, (3.11a)
=g, +8,(t, — ,)¢,, (3.11b)
where z has been omitted for notational convenience. First
weshall use(3.10) and (3.11b) to obtain relations between the
partition Green’s functions which may be of use.
Upon iterative use of (3.11b)forg =r,r — 1,.p + 1,
one obtains

&= 8" (3.12)
9=p
with gi*? recursively defined by
g‘p’"’=gr’ g(pr,q)=gq(vp - vq+1)g‘p’,q+”' (3'13)

Using (3.7) and the commutation relations (2.9) one gets
g =z e, (3.14)

where Z ¥ is a correlation operator studied in Appendix
Ale

qu)z Yz+'y:+2...Y;“1Y;, (3.15)
and 7/ is recursively defined by

W=8, 75=8,—v, . (3.16)
Using (3.5) and (3.10) one obtains

S Nac=T_,, (3.17)

A q

@=G. VG, @Ve-G. _ @V Gl

(3.18)

g+ 1

r
Cq
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From (3.14), using formulas (A39) and (3.17) one obtains
2 [gp(r'q) ]AB = ZZ (7’{;) )ac(Z ;q))cs
A A C

=365, (3.19)
b, B:: !
and from (3.12) and (3.10b)
G le)= 3 S8 STy ) (3.20)
g=p b, B :;
The Green’s operator G, (2) satisfies
G, (2) =G, (z%). (3.21)
From (3.18) and (3.20) one deduces
Gld)= 3 38 ST, ) (3:22)
qg=p b, B :;
I, 20=G, @V, G, (@G, (V3 'G,la). (3.23)

Relations (3.20) and (3.22) are algebraical indentities. For a
given Gbp (z) they can be satisfied for any partition b, con-
tained in b, and involve the resolvents corresponding to the
partitions of the various chains. Of particular use are the
relations (3.20) and (3.23) with the choice b, = b, which
read
N —
G, 2= Y 386G, (2),

g=pb,

(3.24)

G, (2) = BZF 5,2 =Y T (2) (3.25)
h'l Bbq

and correspond to the decomposition of G, (2) into a sum of

operators of definite connectivity.

Relation (3.12) will now be used with » = /N to obtain
the expression of the matrix elements (g, ) 45 in terms of
partition Green’s operators. To simplify the notation index
N will be omitted in the following.

N
g = 28"
qg=p
Using Egs. (3.13) and (3.11) we find

g(:} =gp(vp - Up+l)gp+l(vp - Up+2)gp+2"'gN_ 1Vp8Ns
=8+ (U, — U,y l)gp+2(vp - Up+2)gp+3"'gNUp8p~
Using Egs. (3.7), (2.9), and {A36) one obtains

gg’)zgp+l(up ~Vp i 1084 2Up 41

(3.26)

— U, 20843

~gnUn_ 1S D8, (3.27)
From (3.7) and (A 18) we deduce
(Up+r_vp+r+l)=(vp+r+l _Up+r+2)]£i:+2(3'28)

Substituting in (3.27) and using Eqs. (2.9}, (3.16), (A22),
{A30), and (3.3) one obtains

8 =7, 110, =8, 11578, (3.29)
which implies, from (3.10a) and (3.5),

8)ur = EC:(?’p +1)acV G yope (3.30)
On the other hand, from (3.14) and (A38)

(& )as = ;(Yp )acb gopes (3.31)
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which gives with (3.30)

DWodac =3 Wpet)acVa G
3 c

It is then straightforward by recursion to obtain

Z(‘}/p Jac = FA,,?
C

where I, is given by (3.23).
Since matrix element (Z '), does not depend on
C, .., one obtains from (3.14) and (3.32)

(g,(oq) Jap = Z(Vq Jac(Z ::q))ca =(Z S” )AB;(Vq acs
=(Z) sl (3.33)

which gives with Eqgs. (3.26) and (3.23) the explicit expression
of (g,(2)) 4p in terms of the Green’s operators Gaq(z) corre-
sponding to the partitions a, contained in a,. We remark
from (3.32) that (g,(z)) .5 depends on B through purely geo-
metrical factors (Z7) ,p.

Definition (3.23) displays the fact that I', (2) isan a, -
connected operator. Then the decomposition (3.26) of g, (z)
corresponds to the decomposition of the matrix elements
(g,(2)) 45 into a sum of operators of definite connectivity.
From (3.17), (A39), and (3.25) one gets

S (@) 45 = 362G, (2).
A a,

The self-adjoint partition Hamiltonian H, has a real spec-
trum and G, (2) = (z — H, )™ is defined for any z with
Imz#0. Equations (3.26), (3.33), and (3.23) imply that g, (z) is
defined for any nonreal z number. The spectrum of operators
h,, is then real. This result will be derived in Sec. IV from an
explicit construction of the eigenvectors of 4,.

(3.32)

(3.34)

IV. YAKUBOVSKII-FADDEEV EQUATIONS IN
DIFFERENTIAL FORM
A. Introduction

Consider the restriction to the Hilbert chain space
H,, =y ®C, ofthe Hamiltonian 4, defined in (3.4) and
the equation

(z—h,)|¥) =0, (4.1)
which is a Yakubovskii-Faddeev (YF) equation in differen-
tial form.

Spectral properties of s, derive from the study of this
equation and depend on the nature of the two-body interac-
tions. A rigorous proof of these properties is difficult. In the
present paper we start from the assumption of asymptotic
completeness for any partition Hamiltonian H, which is
believed to hold for reasonably short-range interactions. The
main consequences of this assumption relevant to the prop-
erties of the solutions of (4.1) are presented in Sec. IV Bl and
in the present section we show they are enough to derive the
spectral properties of any chain Hamiltonian. Left multiply-
ing (4.1) by S and with the help of (3.6) one gets

(z—H,)S;|¥,)=0 (4.2)
From definition (2.10), S |W,,) is a vector which hasits n,

components equal to the sum of |4, ) components. As a
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result the YF equation may have two kinds of solutions.

(1) A solution |¥, ) such that S /| ¥, ) 70 will be called
a “physical eigenvector.” From (4.2) the sum of its compo-
nents has to be an eigenvector of H, . Then the correspond-
ing “physical eigenvalue” z is real.

(2) A solution |®, ) such that S )|®, ) = 0 will be
called a “spurious eigenvector.” It may be arbitrarily closely
approximated in the norm by a vector of the null space ﬁa’ of
Sy on¥, as

Oa,=7#n®0,, (4.3)

where O, , the null space of S ) YonC, _ is studied in Appendix
B, Sec. 1.

In the particular cases p = N and p = N — 1, vectors
|¥,, ) and |¥, ) have only one component and Eq. (4.1)
reads, respectively,

(z— Hy)i¢,,) =0, (4.4)
(z—H,, Mo, ,>)=0. (4.5)

Then for Ay and h, _, the eigenvalues are real and there is
no spurious solution. Thanks to the assumption of asymptot-
ic completeness for H,and H,  ,hy and hy_, have com-
plete sets of eigenvectors on 77°.

Under spectral properties of the partition Hamiltonian
H, we prove in Sec. C the existence of a physical solution
|\Il,,’) of (4.1) in correspondence with any eigenvector of H,.
Obviously, eventual spurious solutions of (4.1) for the same
eigenvalue may be added to I\l’a’) to give another physical
solution corresponding to the same eigenstate of H, . Let
.@a’ be a subspace of #”, o, Spanned by some choice of phys-
ical solutions of (4.1) in one-to-one correspondence with the
complete set of eigenvectors of H, . Let |x)e#%’, not con-
tained in ﬁ .Thesum 2, |y, ) of its components may be
approxxmated in the norm ’by a linear combination of eigen-
vectors of H, . Let |x)eZ, , be the corresponding linear
combmatlon of elgenvectors of h,. Since

2, Wa,) =24, |X4, ) one has

Ix) — Ix) = |®)ed, . (4.6)

Then, if the set of spurious solutions of (4.1) is a complete
basis on ﬁap, any vector |x)€%’, can be uniquely approxi-
mated in the norm by a linear combination of eigenvectors of
h, (cf. Refs. 3 and 4). To sum up, if the YF equation (4.1)
admits a complete set of spurious solutions on ﬁap, and if
there exists a set of physical solutions in one-to-one corre-
spondence with the eigenvectors of H, , which span 7 aphp
admits a complete set of solutions on #° ., and

K, =P, +0.. 4.7)

In Sec. IV D we prove that the set of spurious solutions
of Eq. (4.1) is a complete basis on ﬁ if chain Hamiltonians
h,.p + 2<g<N have a complete set ‘of solutions on 7,
spaces. Since it is true for ¢ = N and ¢ = N — 1 this ends
recursively the proof that the YF equation (4.1) admits a
complete set of solutions on 7, , therefore on 7, and the
spectrum of any chain Hamiltonian is real.
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B. Physical solutions of YF equation

We now prove by an explicit construction the existence
of solution of YF equation (4.1} in correspondence to every
eigenstate of H, .

1. Eigenstates of H,p and asymptlotic completeness
assumption

With a suitable system of Jacobi coordinates, partition
Hamiltonian H, can be written as a sum of p + 1 commut-
ing operators

-S$H+T,, (4.8)
i=1
where H, is the internal Hamiltonian of the ith fragment of
partition a, and T, is associated with the center-of-mass
kinetic energies of the p clusters.
Consider solutions of the Schrodinger equation

(E—H,)l¥; (E)) =0, (4.9)

written as a product of the internal eigenstates of the p clus-
ters and of their free relative-motion state. As usual in phy-
sics, “eigenstate” of H,, means any solution of Eq. (4.9)
which is of finite norm or normalizable in the delta function.
In | (E)) the index & stands for the remaining set of quan-
tum numbers (possibly continuous) which, besides energy,
specify the solution.

Any solution of Eq. (4.9) satisfies for any €20

i€G, (2)|yg (E)) = |¢5 (E)),
wherez = E + ie.

The eigenstates of H, are of two kinds:

(1) States |@7 (E')) corresponding to bound states of the
p clusters are called “bound eigenstates” of H, , though they
correspond, if p > 1, to a continuous part of the spectrum of
H, and are not square integrable. We assume they satisfy
the normalization relation

(PEIE@5(E)) = 8,,8(E ~E) (@.11)
where the Dirac distribution § (E — E') is replaced by the
Kronecker symbol 6. if p = 1.

(2) States corresponding to at least one cluster in a scat-
tering state are referred as “scattering eigenstates” of Hap
We assume they evolve asymptotically from a bound state
lp ¢, (E)) of another partition Hamiltonian H, , where par-
tition a, is contained in g,. There are two such linearly inde-
pendent solutions |¢§1'J"’(E *)and |5 *(E 7)), defined by

(4.10)

Y5 “(E *) )‘— llm [ *(z)), (4.12a)
[¥a; (@) = lfGa,, (Z)|<P2', (E). (4.12b)

This definition is meaningful only when the forces are suffi-
ciently short-range. We assume the eigenstates of H, forma
complete set in %, which corresponds to the closure rela-

tion
|¢’Z,,(E')><¢7Z,(E')| dE’

I—ZJ(G Q)

82 (B E)) (Ye(E *)|dE”,
+zes a)|w:p( D e
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written in a condensed notation,

1=2 L(m W5 (E) (5 (E")| 4E . (4.14)

2. Bound physical solutions of the YF equation

Let |@ a,|E)) be a bound eigenstate of H, at energy E
and |xg (E)) beann, , component vector with a single non-
zero component |x‘}, ) = |p:(E)).

lXA,’(E» = 6A,’B,,"¢) a,,(E »

where B, is an arbitrary chain contained in a,.
Using the restriction to 7, ofg,{z) =(z — h,)”', we

a,
define an n, -component vector

(4.15)

|95, (2)) = ieg, (z)IX5,) (4-16)
From Egs. (3.26) and (3.33) the components of |¢g, (z)) are

93, (@) =ielg, (2,5, |@ 5 (E)
= el Alp 3 5D

+ 2 (Z)a,p. 1€, (D)@ 5 (E)).

g=p+1
Let us consider

r, @es (E)) =Gye)V,, G, (2)+GC,[2)

G, @V G, 2es (E),
where any partition g, of chain 4, is contained in a,. The
partition Hamiltonian H, canbe decomposed into two com-
muting parts, H, = H, + T, , where T, is defined in (4.8).
Any factorin I’ (z) commutes with T, . Since |@ 7 (E)) isan
eigenstate of 7, corresponding to the eigenvalue E, , opera-
tor T, can be replaced by E, in any resolvent G, (z). Since
p2 (E )) is a bound elgenstate of H, , the energy E~- E,
less than the least eigenvalue of H, . “Then G, (z)and conse-
quently I v(z) is not singular when € goes to zero. This
proves the existence of

(4.17)

lim I (o)l & (BN =T, (E)le G (E)), (4.18)
if 6y =1,6,, =
Then

hm el, ()@ s (E)) = (4.19)
ifér =1,68,,
Usmg now (4 10) one obtains from (4.17)

lim|p 3 (2)) = EWe oo E)). (4.20)

p+|

This proves the existence of

93 (E)) = lim|@ (z)).
e—0

From (4.9) it is a solution of the YF equation in differen-
tial form

(E—h,)lez (E)) =0. (4.21)
From (4.17), (3.10), and (4.10)
Sie i,’(Z)) =lpsE)=Ylp4, (E)- (4.22)
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Therefore |7 (E)) is a physical solution of (4.1) correspond-
ing to the bound eigenstate |  (E )) of H, . Let us remark
from (4.20) that |¢Z (E)) does not depend on the arbitrary
chain B, in (4.15).

3. Scattering physical solutions
Let |¢Z:B (E)) be a scattering eigenstate of H,

[WAE) = lim ieG,, (2)|@ ¢ (E ). (4.23)

Let |x2:ﬂ (E)) bean n,, -component vector with a single non-
zero component

W5 (E)) = |5 (E)),

\x A_P(E» = A,’B,,p|¢’ ,,'(E)),

where B,
tains b,.
We define an n,

(4.24)

is an arbitrary chain contained in a,, which con-

-component vector

Worfl2)) = ieg, (2)|Xa") (4.25)
with components

W) = 3 (Z5),», i€, DIR5EY.  (426)
From (4.25) i

zw"""z» = i€G, @@ S (E)) = 102, (4.27)
Then

lim 3 ji7la) = 1o E D). (4.28)

If one admits that the vector }‘I’f,’: {z)) has a limit when € goes
to 0™, then this limit |¥*~(E *)) is a physical solution of the
YF equation 4.1) corresf;onding to the scattering eigenstate
W (E)) of H, . It remains to prove that this limit exists.
We remark that instead of the vector |x>"") defined by
{4.24) one might have chosen any chain decorflposition of
X % (E)). Indeed spurious solutions at energy E may be add-

ed to |\I’a:’3 *)) to give another physical solution.

C. Spurious solutions of YF equation
With the help of (3.8), Eq. (4.1) can be written

(z—hq)|\l’ap) = '_vq)Y/‘”‘l’a,,)’ D+ 2<g<N — 1.
(4.29)
Consider the subspace of 7, o, defined by the tensor product

H,, ®Qg:, where Qg defined by (B7) is a subspace of the

aq

g—1

null space of Y¢ on Cg'.

We have shown in Sec. IV A that by and Ay, admita
complete set of eigenvectors on % and #  _,, respective-
ly corresponding to real eigenvalues. Let us assume any 4,
with p + 2<g<N has the same properties on 5%°, .Thenone
can build a complete basis in the subspace %, ® Qj: of vec-
tors[(paﬁ(aq)) with components lqpaaﬁ(aq)) corresponding to
chains B, containing a, which satisfy

(E— hq)ld)ap(aq)) =0, (4.30)
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Yi|®, () =0. (4.31)

Using (4.29) one verifies that vectors |d>,,p(aq )) are solutions
of (4.1). They are spurious solutions since from {A35) and
(4.31)

SP1®, (0, = F¥ - Frr Y Yoy | ®, (a,)
=0.

Then h, admitson 7, ® Q7¢,p + 2<g<N, acomplete set of
spurious solutions corresponding to real engenvalues.
From Eq. (B21} with a, = a,, one obtains the decompo-
sition of the null space &, = %'y ®0, of S on #, .
N

ﬁap = z

9=p+2 a,

K, ® QZ:. (4.32)
Then 4, admits a complete set of spurious solutions corre-
sponding to real eigenvalues on ﬁa,- Coming back to the
discussion at the end of Sec. IV A we have then proved that
YF equation (4.1) admits a complete set of eigenvectors on
#,, corresponding to real eigenvalues.

We shall now exhibit the structure of the spurious solu-
tions of (4.1) in a somewhat different matter using Eqs. (B20)
and (4.3) which gives

O,=%y8K, + S SHyeR, sKl, (433
q=p+2 a,
where K is the null space of ¥'7 on C¢ and R,, is the eigen-
space of Y ) defined in Eq. (B6). In {4.33) %y ® R,, can be
replaced by any subspace Z o, Of H o, Spanned by a set of
physical solutions of 4, in one to one correspondence with
the eigenvectors of H,, . Since #'y=7, , Eq. (4.33) reads

ﬁar = i 2.@% ® K“;Z' (434)
q=p+2a,

One can build a complete basis of vectorsin #, ® K;* from
the physical solutions of 4, and %’ , and the null eigenvec-

torsof Y7 on CZ:. These vectors satisfy Egs. (4.30)—(4.31).
Therefore they are spurious solutions of (4.1) corresponding
to the eigenvalues which belong to the spectrum of H, .For-
mula (4.34) displays the fact that the complete set of spurious
solutions of 4, on ¥ o, €an be constructed from the physical
solutions of 4, and the null space of Y ¢ with p + 2<g<A/.

In particular case of the three-body problem andp = 1,
Eq. (4.34) reduces to

o, =7, 8Kz

K is a two dimensional space. To each solution of

(E — Hy)|¢Yv(E)) = 0 correspond two independent spurious
solutions of A,

(4.35)

[YR(E) [N (E)
WPHE) = | — [YR(E)) || ¥F3E)) = 0
0 — [YME))
(4.36)

Observe that spurious solutions exist only for eigenvalues E
above the three particles breakup threshold. There is no
spurious solutions when one is looking for bound states of
the three-body system or scattering states at energies below

1829 J. Math. Phys., Vol. 23, No. 10, October 1982

the three particle breakup threshold. These properties of YF
equation in differential form are given in Ref. 3 for ¥ = 3.1n
the general N-body case the equation (E — 4,)|¥,) = 0 ad-
mits no spurious solution if E is less than the three cluster
breakup threshold.

D. Dual solutions

Let us construct a complete basis on 7, of physical
and spurious eigenvectors of the restriction of 4, to &, a
along the decomposition of 7#°,

H=P.+ 3 3P, 0K,
q=p+2 a,
given by Egs. (4.7} and (4.34).
Let |W27(E )) be any member of this complete set. Index
7 runs from 1 to n, , the value 7 = 1 corresponding to phys-
ical solutions. Each 7> 1 value specifies both a partition g,
and a basis vector in K. To each eigenvector |W7(E)) cor-
responds an eigenvector [ (E)) of H,, ,

(E— H, [W2(E) =0,
WS (ENVE(E)) = 8o SIE — E). (4.38)

Index a stands for the remaining set of quantum numbers
possibly continuous which besides energy E specify the solu-
tion. Ifp > 1, for each 7 value, energy E belongs to the contin-
uum E>E_, where E_ is the least eigenvalue of the corre-
sponding partition Hamiltonian #,, .

The complete set of eigenvectors W5 "(£)) is not or-
thogonal since 4, is not self-adjoint and we proceed in the
following to the construction of the associated biorthogonal
basis. Assume that the N-body Hilbert space #° is separa-
ble. Let |u; )5, be a member of a complete orthonorma-
lized basis

(u;|u;) = 6. (4.39)
Let p be an index running from 1 to Ry which specifies a

particular chain 4, denoted A ¥. Let |x,,)e%#°, with
components

(4.37)

Xioag, ) =84, pwlts)- (4.40)
It results
Xip 1Xio) = 646, (4.41)
and the closure relation on 5%,
(4.42)

1= 22|XI,p)(x:.p|

Since eigenvectors |W;"(E ) form a complete basis on 5 a,
any vector |x;,) can be expressed in a unique way as

X =23 I |¥e7(E))agy(E )dE,

which defines functions af;” of E. Let (‘T‘;’;’(E )| be the distri-
bution on 7%, defined by

(4.43)

(P27(E)|x,,) = aS(E), (4.44)
which is equivalent to
(Te(E)| = 33X, |01E)- (4.45)
ip
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Substituting (4.45) into (4.43) gives

X = 3 [ WSED Fg B, E. 446)
The relation being true for any |y, ,) implies the closure
relation

Vo'(E)| dE.

1= (4.47)

The sequence of pairs { [i’;’;’(E )),(‘f’;‘f(E )|} defines a com-
plete biorthogonal basis on #° o,- From Eq. (4.47) one obtains

= ZEJ:E |WarE ) (WET(E) | dE
=22 L " B (¥sE) | b, dE.

After substraction of these two relations, one obtains from
the linear independence of the vectors |Wo(E))

(¥s7(E)|h, = E (¥2(E)),

which implies that |\Il" E
chain Hamiltonian h
The explicit construction of the |‘l"’ (E)) eigenvector

of h corresponding to the physical eigenvector |\Il"‘ YE)) of
h, is very easy. Let us add up the n, , components of the
vectorlal relation (4.43). On the left- hand side from (4.40)one
obtains |, ). On the right-hand side, spurious solutions 7 > 1
are eliminated. One obtains

(4.48)

E)) is an eigenvector of the adjoint

lu) =3 L ) o (ENa\E ) dE. (4.49)
and from (4.38) ’
ai)(E) = (¢ (E)|u,) (4.50)

does not depend on p. From (4.45) and (4.40) one verifies that
the n, components of |¥g''(E))

WELE) = SV (EN TS, anlu) = U5 (E) (4.51)

are equal.
V. CONCLUDING REMARKS

The Yakubovskii-Faddeev method solves the many
body problem in a natural way by decomposing the Hamil-
tonian according to all chains of partitions corresponding to
all possible paths which can be followed to fuse the particles
together. Our presentation outlines a structural analogy
between the YF formalism and the channel-coupling array
theory**® which follows from the introduction in both theor-
ies of decomposed interactions, chain decomposition in the
first case [Eq. (1.3)] and partition decomposition in the sec-
ond case. This analogy involves similar properties such as,
for instance, the existence of spurious solutions for the equa-
tions in differential form (Sec. IV C) and the fact that the
physical duals of both theories have similar equal compo-
nent nature [Eq. (4.51)]. However there is a main difference.
In channel-coupling array theories spurious solutions can
occur for complex energies. We have shown, on the con-
trary, that the spectrum of any YF chain Hamiltonian 4, is
real and that the set of its eigenvectors (physical and spur-
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ious) is complete.
The resolvent operator g,(z) = (z — g,) ' exists for any
complex number z = E + ie. The resolvent identity

8,(2) = g,(2) + &,(2)v, — v,)g,(z). (5.1)
can be considered as an integral equation to calculate g, (z)
and correspondingly any many-body wave function
|‘Ili;ﬂ(z)) in the chain space 77, . The matrix notation per-
mits us to stress the formal analogy between Eq. (5.1) and a
Lippmann-Schwinger equation in the space of partitions

G, =G, )+ G, 2V, —V, )G, (2) (5.2)
Both equations have a unique solution for z complex, but
there is an essential difference.

Equation (5.2) is not well behaved because its kernel
cannot be connected after a finite number of iterations. On
the contrary, Eq. (5.1) considered in the particular case
g=p+1,

gp(z) = gp+ 1 (Z) + gp+ 1 (Z)(U - Up+ 1 )gp(Z)
has its N — p — 1 iterated kernel [g, , ,(z)}v, — v, )

with the connectivity of a p-cluster partmon Indeed the
matrix element of the coupling potential

Ve, (Y=

(5.3)

]N»P

(W ~V, 1 )ap, = Y, )AFB,, (5.4)

connects two clusters of partition b, , , to form a new parti-
tiona,, ,,wherea,, Db, ,buta, , #b,, . Thisstring
of restrictions on the coupling of chains ensures an increas-
ing connectivity with each iteration.

Thus the N-body problem can be solved in a systematic
manner by induction through the hierarchy of connected-
kernel YF equations (5.3) starting fromp = N — 1 up to
p=1

Consider, for instance, the YF integral equation

(W2 (2)) = |@F (E)) + gol2)(v, — va)[ WP (2)),  (5.5)

where |@7 (E)) is the physical eigenstate of 4, corresponding
to a two-cluster initial bound state |@f (E)). It can be for-
mally solved by

WP (2)) = ieg\(z)| @} (E)),

which proves the uniqueness of the solution.
Adding up all chain components one gets

SI24) = ieGRISIgR A5,

=ieG ( Z)l‘Pb (E)) = | (2)),

that is the N-body wave function.

In Sec. IV C, we found that the YF equation in differen-
tial form

(E—h)WE) =0 (5.7)
may have “spurious” solutions (i.e, 2, |, (E)) = 0). These
solutions can be obtained from the YF integral equation (5.5)
when one substitutes for the inhomogeneous term a spurious
state.

In Sec. III C we have analyzed the connectivity struc-
ture of the Green’s operator

(5.6)

8,2 = Z g7z), (5.7a)

q=pr
(&) s = (Z ") anT s, (2); (5.70)
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I, =GV, G, V&G, Vi'G,. (570

Dynamics enters into the matrix elements of g only
through the factor I', (z), the other factor (Z ), being
purely algebraic. Term I, () is the most connected part of
(8,(2))45- Then if one assumes g, is known for ¢>2, the un-
known part of g, is only its most connected piece

) ,5 = ,. From (3.11) and (3.16), it satisfies an integral
equation with the same kernel as the YF equation, and a
connected homogeneous term

g = g,(v; — v,)8Y + gav, — v)gY". (5.8)
Relations (5.7) are of interest to analyze the asymptotic
structure of the YF chain components of the wave function.

Actually one cannot hope for an exact solution of the
hierarchic system (5.3) for N > 4. An approximation scheme
may consist in a truncation of the hierarchy at some level p
with a given model for g, , , (2). Such a model may be derived
from the analysis of (5.7) or from the spectral expansion of
& + 1(2) which follows from the closure relation (4.47) in
terms of the biorthogonal basis.
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APPENDIX A: CHAIN PROPERTIES
1. Counting numbers

Given any pair or partitions a, and a, restricted to

& =1 rep+1], (A1)
let v’ be defined by
L 2

where the symbol &, is defined in Eq. (2.1). The number v;/,
r>p + 2, counts the partitions @, _, which are contained in
a, and which contain a,. Note that v::* ' reduces to 6::* N

Let n:; denote the number of chains 4 :p which are con-
tained in g, and which contain a,. Then

e =80 (A3)

and nZ; can be computed from either of the recurrence
relations

ng = 38 ng (A4)

= X ng, 85 (A5)
which gives in particular

ngr =g, (A6)

From (A2) and (A5) one deduces
Sreve =Y Yni Sut= Y onh 8 (A7)

dq. 194

It will prove useful to introduce counting numbers m:; de-
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fined by
i =0, (A3)
=8+ > Yerm (A9)

From (A6) one derives, in particular,

a a
P+ 2 P2
my = vy 1.

Using (A4) and (A9) one obtains

(A10)

—1

= e S+ S S 3o 8m,

a_,9=p+2 a,

and through (A2),
r—1
ng=vy + > Svimg. (Al1)
P (4 g=Pa42 r q P
From (A9) and (A11) one gets
r—2
my=vy =8+ Y 3o —8)mg. (A12)
13 » /4 =2 p
Note also the relation
r—2
my =vy =&+ ¥ Ymglver—&7),  (Al3)

g=p+2 a,
which can be proved by identifying the iterative solutions of
(A12) and (A13).
In Appendix B we show that m:; is the dimension of the
null space in C:; of the correlation operator Y, defined in

Eq. (2.13)

2. Fundamental property of chains

The main properties of the chain correlation operators
defined in Sec. II B derive from the following property: given
three partitions b,,a, _,, and b, with ¢<r — 1 such that
62:7 = 5';; =1 — §,,"' = 1, there exists one and only one
partitiona, , such that &' =&y  =1.

Indeed, let us denote by “1”, ““2”,..-,*r,” the r clusters in
b, labeled in such a way that “1>* and “2” are fused to obtain
a,_,.Since 5‘,’,;* ‘=0, “1” and “2” belong to different clus-
tersin b,. Then by fusing these two clusters of b, one obtains
the uniquea, _, partition which contains both b, anda, _,.

As a consequence a partition b, _,, which contains b,
and is different from @, _,, does not containa, _,.

3. Chain correlation operators

We define various operators on the chain space C hav-
ing all their matrix elements equal to O or 1.

(@) Summation operators S {. They are defined for
1<p < g<N through their matrix elements

(S3)as =848,04057 (Al4)
Operator S} is self-adjoint

§1=51, (A15)
and behaves like a projector

(SZ ),213 = ”:: (SZ ass (A16)

where n:Z is defined in Appendix A, Sec. 1. Its main interest
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results from the summation property

(SZO)AB = z O,

e (A17)
(OSZ )AB = z O,5-
B
(b) Operators I>* 2. They are defined for 1<p<N — 2 by
I =87+ ~1, (A18)
which corresponds to matrix elements
(I:+2)AB =6A’*2B’+)S-a’+'b’+,5’4pﬂp- (Alg)
Operator 15 ? is self-adjoint
Ip+1=Tr+2, (A20)

(c) Operators D ;. They are defined for 1<p < r<N by
resursion relations

Ditl=1, D, =1I;_ ,D;7' if p<r—2.
In particular D5+ 2 =[5+2,
By iterating (A21) one obtains

r_gr r—1 p+3yp+2 __ r P+2
D=1, _,J;=}I2¥3[p+2=Dpr  I2+2

(A21)

(A22)
and for the adjoint operator

Dr — Je+2fp+3 qgr—1yr  _7p+2j"
D,=1*I51qI; "I, =I0""D; ..

(A23)
From (A19) and (A22) matrix elements have the form

r—1 _ r—2

@Dw=50( TI 5.0)( T 8o ) Sunmen (A24)
g=p+1 q=p+1

which proves that (D ),; equalsOor 1.

Property of D |, operators: Given a chain B and a parti-
tion a, _, which satisfies

by =6y =1-6"'=1

(A25)

there is a unique chain 4 containing @, _, such that

(D) .4s = 1. This property is derived from the property of
chains described in Appendix A, Sec. 2 in the following way:
We first remark from Eq. (A24) that (D) ,5 = 1 implies
a, = b, for s<p and s> which is consistent with conditions
(A25)8%_ =83~ = 1. Condition (A25) 8} * = 0 implies
85~ = Oforp + 2<g<r — 1. Relation (D) . = 1 implies
8% -1 = 6% = 1. Then from the property of chains, parti-
tion a, _, exists and is unique. This property is expressed by
any of the relations

(S;7'D)as =845(1 — 85218 4050 (A26)
(S;7'D)as =8, (85" — 850 )840

if p<gcr—1, (A27)
(S;D; Jap = 5A,B, (V:,’, - VZ;H . )‘SA rgee (A28)

where v’ is defined by Eq. (A2).

(d) Yakubouskii operators Y . They are defined for
1<p <r<N by

Yeri=1, Y,=141;_,Y,"\
They satisfy the relations

(A29)

r—1
Y,=SD,=D,+Y,,, (A30)
9=p
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and the factorization property

Y, =Y, =(Y,_, Y)Y}, (A31)
if p<g<r<N.

From (A30), (A26), and (A27) one obtains
z (Y; )AB = (S;_ ly; )AE = 6A,B,6,4PBP' (A32)

437
Since from its definition (¥} ), is a non-negative integer,
Eq. (A32) proves that (¥} ), equals O or 1. It proves also

that given a chain B and a partition @, _, such that

& =6y =1, (A33)
there exists an unique chain 4 containing g, _, for which
(Y})s = 1. From (A 14) we can write (A32) as

§,7'Y, =87, (A34)
From (A15) one obtains

Yrs:-t=s". (A35)
By iteration one gets
S, =Y5ryrti.y, =¥, ¥,"L.Yr3Fe 2 (A36)

() Operators Z 9. They are defined for 1<p<qg <7<N
by

ZM=Yiv'Yir .Y Y. (A37)
Note that

ZP=72%+"=§". {A38)
From {A36) and (A37) one gets

SIZMW =S =Z1981. (A39)

We now prove that (Z ",“’)) 5 does not depend on chain
A7\, which can be expressed by
(SeZ7)ap = ":v (Z7) 45- (A40)
Let us first prove (A40) is truefor Z " ~* = Y, ~ 'Y ;. From
{A29) and (A23) one derives
Zy =04 Y, DL Y
=81 Y, '+ D,z (A41)

From (A26) one gets
(5:A3 ::; )an =6A,.B,(1 “52:7;)5,4' gr

which proves that (D’ _,S"~1),, does not depend on
a,_,.Letusassumethat (Z,~ "~ %), does not depend on
a,_,.Then (D’ _ sZ;~ =), does not depend ona, _ ;.
By (A41) it follows that (Z}"~?),, does not depend on
a,_,.Sinceitistruefor (Z57%") 5 =8,,.25,.:0, 5, itis
true for any 7. From (A37) one gets

Z;(qi = ZZ + 2(q)z;(q + Zi’ (A42)

which proves that (Z /) ,, does notdepend ona, , ,. Using
the commutation relation (2.9} one obtains

(S;qu))AB = z (S;+IZ;q))AB

Fg 4

= z (YZ+IS;+IZ;q+”)AB'

Qg
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Let us assume that (A40) holds for Z #* . Then

(Sq ZM))AB = Z” P Z:q))AB'

4541

Since (Z ¥) .5 does not depend on a, , |, one obtains (A40)
from (A5).

APPENDIX B: CONSTRUCTION OF A COMPLETE BASIS
INC

Our purpose is to construct, in the chain space C;’ de-
fined in Sec. II, a basis which is adapted, in the particular
case r = N, to the solution of the YF equation (4.1). The
useful results are expressed by Egs. (B19), (B20), and (B21).

1. Definition of various subspaces of C;’

We define in this section subspaces
R,07,05,0; R;,Q7, and K.

’ L;t uspﬁrst consider the summation operator S, de-
fined by Eq. (A 14) which is represented on CZ; by a square
matrix with its nz; elements equal to 1. Its eigenvalues are nZ;
and O with degeneracy equal to 1 and n:; — 1, respectively.
Let ]ﬁz; be the one-dimensional subspace corresponding to
the eigenvalue n)". It is the set of vector of C;” which have all
their component; equal. ’

Let O’ be the null space of S ;. Since S} is self-adjoint

0 is orthogonal to ]ﬁ:;
Cr =R @0 (B1)

and its dimension is 7, — 1.

Consnder now the set of vectors |E ) of C* - with components
= E ~, depending only on partmon a,_, contained in

»

chain 4 ;. They span a subspace of C;’ of dimension v;’,
where vZ; is defined by Eq. (A2). This subspace can be de-

composed into the direct sum, ]ﬁZ; ® @:p of two orthogonal
subspaces

SE, =0 if |E)eQ. (B2)

Any vector |E )e]ﬁ:,'; @ @Z; is orthogonal to the null space
0g of S;='on Gy
Considering ¥ , defined by Eq. (A29), one obtains

(FLED) o =3 (X)), opn b,
F, B
Z(Y S, E",,H.
Using (A35) one gets "
(¥; lE>) . = ZE,, . (B3)
Y, |E) =vap[E) if |E)eRy, (B4)
Y;|E)=0 if |E)eQ. (B5)

If |E ) is an eigenvector of ¥ , corresponding to eigenvalue A,
then from properties of finite dimensional square matrices it
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follows that Y, admits an eigenvector |E ) corresponding to
the same elgenvalue A, which is not orthogonal to |E ). Thus

|E ) does not belong to Oa ,i.e., S, '|E)#0. To sum up,
from the existence of these two eigenspaces of Y , orthogo-
nal to 0% - follows the existence of two correspondmg eigen-
spaces of Y p,IRap, and Qaﬂ of dimension 1 and Va,, -1,
respectively,

Y |E)= vZ;]E), S, 'E)#0 if |E )ERZ; , (B6)

Y |E)=0S," NE)#0 if |E) €Qy . (B7)
Finally, let K’ be the null space of Y. Then
Q. CKy. (B8)

2. Eigenspaces of Y

Forp=r—2onehasY,_, =5;_,. Then
K, =0, | and the dimension of
K, ,=va ,—l=m (BY)

where the counting numbers mZP are defined by Egs. (A8)
and (A9).

Let us assume that the dimension of KZ; is mZ; if
p + 2<g<r — 2. Wesshall then prove recursively that dimen-

sion of
Ko =mj.

ap

(B10)

Given any partition a, with 87 =87, = 1,p +2<¢<r -2,

consider the tensor product K- ® Q¢-. From Eq. (B7) one

has

Y IF)=YI|F)=0, S{'|F)#0 if |F)e]KZ; ®QZ:.

(B11)

From the factorization property (A31) and from Egs.

(A34) and (A35) it follows that

Y,|F)=0S;|F)=0g<s<r if |F)eKy eQ%. (B12)
Let K:; be defined by

— r—2

Ko=0Qr+ > YKieQg (B13)

g=p+2 a,

From (B11)and (B12) the subspaces which are added in (B13)
togive Kz; are linearly independent. The dimension of Q- is
Vg — 1, we assumed that the dimension of K7, is mg: if
P+ 2<g<r — 2. Then from (A13)

dimension of Kﬁ; =mg (B14)
Since, from (B12), Kg; is a subspace of ]sz, one has
dimension of Kg’ >mg’ (B15)

We obtain from (B15) that dimension of R’ @ K¢ >m;? and
from (B6) and (A31)

Y,|F)=vZ|F) if |F)eRZ oK. (B16)

Using (A9) one obtains that the number of linearly indepen-
dent eigenvectors of ¥, corresponding to a nonzero eigen-
valueis at least equal to 1 + 272} ,3, mg* = ng’ —my’.
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Then

dimension of K¢ <mg; . (B17)

From (B15) and (B17) one obtains (B10) and, by the way, we
have proved that the set of eigenvectors of ¥, is complete on
Cy.

We obtain from (B13) and (B14)

r—2
]Ka, a, E;a, a,
a a § E a, ® Qaq'
{J p q (4
g=p+2 a,

3. Decomposition of C;’

(B18)

Since the set of eigenvectors of Y is complete, C:; can
be decomposed into the sum of the eigenspaces of Y, which
reads, using (B6) and (B16),

C; =Ry + 07, (B19)
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r—1
ol = KZ; + Y ZRZ' oK.
fd =2 o q (4
Substituting (B18) into (B20) and using (B19) one obtains
another decomposition of the null space of S
r—1
0y =Q;+ X YCreqQ.

g=p+2 a,

(B20)

(B21)
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Perturbative technique as an alternative to the WKB method applied to the

double-well potential
H. M. M. Mansour® and H. J. W. Miiller-Kirstén

Department of Physics, University of Kaiserslautern, 6750 Kaiserslautern, West Germany

(Received 22 September 1981; accepted for publication 7 January 1982)

We give an explicit and complete perturbation theoretical analysis of the solutions and
eigenvalues of the Schrodinger equation for the double-well potential. In particular we
demonstrate the matching of various branches of the solutions over the entire range of the
independent variable, and we calculate the splitting of eigenvalues due to the finite height of the

central hump of the potential.

PACS numbers: 03.65.Ge

1. INTRODUCTION

It has been recognized recently that the physical vacu-
um of a nonabelian gauge theory is degenerate, and that the
true vacuum will therefore have to be taken as a superposi-
tion of these degenerate vacua.' An understanding of the
physical consequences of this phenomenon requires an un-
derstanding of the tunneling of a particle through a barrier
from one vacuum to another. Coleman? has discussed the
stability of the false vacuum which is related to the eigenval-
ue gap. He also compared instanton and WKB analyses of
the splitting for one dimensional anharmonic oscillators. A
rigorous WKB analysis of the gap for the one dimensional
case was made by Harrell.® The double-well potential has
also been treated by Fréman et al.* by means of certain
phase-integral approximations. To first order their phase-
integral approximation is identical with the first order WKB
approximation. However, as explained in Ref. 5, higher or-
der phase-integral approximations differ from the corre-
sponding higher order WKB approximations. In other ap-
proaches, Isaacson® discussed singular perturbations
resulting in asymptotic eigenvalue degeneracy for the ordi-
nary differential operator

1 d*?

Vi

2 dq® 4y
when v—0, and Brézin et al.” showed how the large order
behavior of perturbation theory is affected by the presence of
pseudoparticle-antipseudoparticle contributions to the rel-
evant path integral. Brézin et al.” confirmed the result ob-
tained previously® that in the case of degenerate minima the
perturbation series is not Borel-summable. The relation of
tunneling solutions to Borel summability has also been stud-
ied using the simple quantum-mechanical model of the dou-
ble-well potential.” For such a system the solution corre-
sponding to an instanton is known analytically. Other
attempts have been made to study the analytic structure and
Borel summability of the perturbation series for the double-
well potential.'>"" In particular, Caswell'? showed that
there exists a summable perturbation series in terms of an
effective coupling.

An investigation of the tunneling phenomena may be
subdivided into two stages, the first stage consisting in the

“0n leave from the Department of Physics, University of Cairo, Cairo,
Egypt.
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study of analogous potential models which exhibit most of
the essential physical aspects of the problem, and the second
in extending or applying the methods used for investigating
these simple models to the case of real nonabelian field theor-
ies. In the present investigation we are concerned with the
first stage. In fact, since the WKB method has been used as
the most important tool for investigating tunneling phenom-
ena'*"!® in potential as well as field theoretic models, our
main objective here is to demonstrate the usefulness of an
alternative procedure which we believe has definite advan-
tages over the WKB method and in particular makes the
problem of the matching of various branches of the overall
solution particularly transparent. This alternative proce-
dure has been applied previously to a large number of exam-
ples such as the Mathieu'® and other equations,'”'® Schré-
dinger equations with Yukawa,'? Gauss,”° logarithmic?' and
quark-confining power potentials,”” and multidimensional
and multichannel® equations.

In the following we consider first the nonsymmetric
double-well potential. Our main objective is to calculate—in
the form of asymptotic expansions—the eigenvalues of the
wave equation and in particular to investigate the amplitude
which describes the tunneling from one well to the other.
This investigation is neither simple nor trivial. A secondary
objective is to demonstrate the usefulness of our technique.

In Sec. 2 we present the solutions together with their
respective eigenvalues derived in the neighborhood of the
minima of the potential (regions I and II of Fig. 1). In Sec. 3
we calculate the solutions around the instability point at
x = 0 (region III). Sections 4 and 5 deal with the solutions in
the remaining or intermediate domains (regions IV, V, VI,
and VII). Section 6 is devoted to a discussion of the matching
of these solutions to one another in their regions of common
validity. Finally, in Sec. 7, we discuss the symmetric double
well, and we compute the resulting splitting of the energy
eigenvalues. This last aspect has also been considered by
Damburg and Propin.** However, our method is different
from theirs and, we believe, more straightforward.

2. EIGENSOLUTIONS AROUND THE MINIMA OF THE
POTENTIAL

We derive first the solutions in domains I and II of Fig.
1. In Fig. 1 the potential has the following form:
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| V(x)

FIG. 1. The double-well potential.

Vix)= —ax*b — xjc + x), (1)
where a,b,c > 0. The first derivative is
Vix)=ax(x —x_ )x —x_),
and
x . (b,¢) = 4{3(b — ) + [9(b — c)* + 32bc]"?}
(2)
(observe that x . >0 and x_ <O0).

It is readily seen that ¥?(0) <0 and V?(x . )>0. Also we
observe thatforb=c¢,x, = +¢/V2

QOur problem now is to calculate the eigensolutions in
the neighborhood of the minima of the potential together
with their respective eigenvalues. We use the S-wave equa-
tion in the form

Y - VIg=0, 3
dx

where A = 2uE /# in the customary notation. We observe
that Eq. (3) is invariant under the combined interchanges
x> —x,bec,ie, x , —»X, = —x, where

X, (b,c)=x (c,b). Expanding V' (x) around the minima at
x, we have

j+ $ B2l e (@

i=2

Vix)=V(x

Inserting (4) into (3) we obtam

T f + [A=Vix, )—lx—x, PV )]¢

o0

Z *) Vix, ). (5)
We now set
ey ) =2V ), (6)

where V‘z’(x . )is positive, and change the independent vari-

able to
o, (X)=h (x, Jxr—x

+)- (7)

The equation then becomes
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d? A—=Vix w?
2'/’ + 2( + ) _ + ¢
dw’, A 4
> Vix. ) &
=2 @) . iji 7Y (8)
=32V Px L) aht]

For large valuesof 2, the right-hand side of Eq. (8) can—to
a first approximation—be neglected. The corresponding be-
havior of the “eigenvalues” [A — ¥ (x, )]/h% can then be
determined by comparing the equation with the equation of
parabolic cylinder functions. The solutions are normalizable
only if

A—-Vix

+) _
h2 — 13

where ¢ , is approximately an odd integer, i.c.,

2n+ 1,n=0,1,2,... . The wave functions are correspond-
ingly the parabolic cylinder functions D,y . — o ). For
the complete solutions we set

A +

, 9
h . N &)
where A , Temains to be determined. We proceed in the
standard way.'’

By substituting Eq. (9) into (8) we obtain

A —Vix

)_iq;t

24 2 Vix,) o
Dy="*= e t_, 10
W=V S ey T o
where
? 2
D, = —dezi ~q+ w7,

Equation (10) can be solved by the perturbation method ex-
plained in Refs. 17-22. The first approximation ¢ = y'¥ is
the parabolic cylinder function D, ), (w), i.e.,

PO = ¥, =Dy _ ) withD,, =0.

For simplicity the subscripts + have been dropped.
The function ¢, obeys the recurrence formula®

oY, =lgq+20,., +gq -2, ,, (11)
where
g9+2)=1 (g9-2)=4¢g—1).

For higher powers we have

) —2i )
oY, = Y Sigi, ., (12)
j=2i2i— 4.
and a recurrence relation can be written down for the coeffi-
cients S;.?* The first approximation ¢ = ¢'* leaves uncom-

pensated terms amounting to

w P i
RO = [2“ _ s ) o )
h s VR ) k2
2A = 1 — 2 - .
=—Y,—- > — > Slgi,, e, 13)
h =3 h J=2i21— 4.
where
_ V“’( )
S' ’ ] q—i— ’
g4 = VO, ) 1Y Si{g. ).
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Hence, the expression for R ¥ may be written in the form

RY= 2 — 22 (9.9 +/1:%, (@), (14)
- %
where
[g.9]s =24 — $,(¢.0),
and for j#£0

(9.9 +Jls= — Silg.)),
and for i > 3, — 2i< j<2i,

(9.9 +/1 = —Si(gi)

Since D, ,; =D, —jand D ¢, . ; =ji, ;> aterm
gy, . ; in R can be removed if we add to ¢//” a term

/)¢, , ; except when j = 0. Hence, the next order contri-
bution of ¢ becomes

a 1 <2 lgg+il
1/}‘”:. 2 PR z '_._——'//q+j(w)’ (15)
=3 h J=2i2i— 4,..
J#0
which in turn leaves uncompensated a term
J 1 < [q;q +]]
RV = 2 — z —————RY, .. (16)
=5 h j=2i... J
j#0

This yields the next contribution of ¥:

= 1 & leg+jl & 1
2 _
v i§3 hi=? 1-:%,‘_. J rz=:3 hi—?
Jj#0
< le+iqg+i+Jls
*, 2, j+7 A
j+7#0
Proceeding in this way we obtain the expansion
¢=¢(0)+¢(l)+¢(2)+ cen, (18)

which is an asymptotic expansion in descending powers of A,
valid for*?

xX—x, =0(h1/3), o, (x)|<h '],
+

i.e., around x = x , . Another solution in the same domain,

i.e., in the region around x = x __, is obtained by changing

throughout the signs of g and /4 %. However, the sum

¥ 4+ ¢V + ¢ + ... is a solution only if the sum of the

termsin ¢, inR YR ), . . - (left unaccounted for so far) is set

equal to zero. Hence,

=2 1 +
0_ al, +Z h._z 5 [qq Jl;
oy
(19)
or
0= 1[q,q]g+ [g.9]s+ _26 -[-q’-q.+—j]3[q+j,q]3
h j=64,.. J
Jj#0
1
+o(53): 20

From this equation we obtain 4 and hence the eigenvalues.
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Thus,
2h, A,
_ [qzi +1 V9, ) 154 +7 (V‘”(xi))Z]
¢ V9, 2437 \V%x,)
o( 1 ) (1)
h +

where

Vox,) 12

VOx . ) —3bx, +3cx, —be+6x% ’
and

Vox,) —3b43c+12x,

VO ,)  —3bx, +3cx, —bec+6x%

Knowing 4 we can obtain 4, i.e.,

A, =Vix )+l h* +h 4, , (22)
corresponding to the two minima, where

Vix )= —ax’, (b—x,)e+x,)
and

h® = —24ax’, + 12abx , — 12acx _ + 4abc.
We observe that these expressions possess the symmetry dis-
cussed earlier, i.e., the “ 4  versions become the reflected
““ + * versions and vice versa under the combined inter-
changesx , <X, = — x_, boc. Theexpansion forA pro-
vided by (22) is valid for large values of 4, and small ¢.

For convenience we write the solutions just derived for
the domains

X=X

=0(I/h*),
’/’B(qi !h:t w;t(x*xj;”'

It follows from the symmetry of our original Eq. (3) that
knowing these solutions an associated solution ¢ is ob-
tained by the combined replacements x«<> — x and

X, X, ,ie,

'ZB =¢B(q¢ rhi— HO ( _x’x_i ))
These solutions are valid in the domain

—x—X —O(hm) h=h(x,),

which is in general the mirror reflection of the domain of the
solutions ¢,.

Now, from the symmetry of Eq. (10) it can be seen thata
further pair of solutions is obtained by the combined
interchanges

w—iw, ¢—>—gq, h—ih,

or

o— —iw, ¢—>—¢q, h——ih.

The ensuing solutions require a careful specification. We use
formulas given in Ref. 25. Using formula 19.4.6 of Ref. 25,
one can show that
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Re(— i)~ V2 +1p _ (1721 + 1 — i)

Fi—4g—1
B [(277()q1/2 . {Dyy g — @)
_ sin(iqﬁ)D“/Z)(q 3 1,(w)] ,
(23)

where Re means “real part of.” We now set

Y (w)=Rel [ilg+ 1)](—i 2+ ”D—(l/Z)(q+ yl— i) .
(24)

Then (see Ref. 25, line following formula 19.6.4) z/—/q (w) again

satisfies the recurrence relation (11). Moreover (see Ref. 25,

formula 19.4.2), it is that solution which together with

D, 5y, — (@) forms a linearly independent pair [here nor-

malized so that their Wronskian is 1, not (2/7)'/2 as in Ref.

25]. We write these solutions, valid for

x-—x, =0(l/h*?),

wc(qi ’hi ;wi (‘x’xi )) .
Another set of solutions ¥, valid in the domains
~x — X, = O(1/h*"7), is obtained by the replacements
X— —x, x , —X . The general solution in the first domain
around a minimum is then given by the linear combination

v=ayy + Y., (25)
where a and 3 are constants.

For later convenience we note here the following par-
ticular expressions [see Eq. (24) and Ref. 25, formulas 19.3.5
and 19.3.6]:

B 129017419 — 1
WO e 26e)
d 1rl/22(l/4)(q + 1)
(% ll’q(w))o = — m s (26b)
3,0 T sinltr/ g £+ 1) e

204 T [jig + 3)]
_ 12
(L 5,10)) ~ 2 sollo/g £ UL Lo + 1)
w 0
26d)

20745~ [4(q + 1)]
The asymptotic behavior of ¥, ,z/_)q is given by {Ref. 25, for-
mulas 19.8.1, 19.8.2)

¥, (w)oe ~ /4 li/Ha =1 [1 +0 (ﬁ)] , (27a)

'Zq(w)zr [£(q + 1)]e+“/4""2a)—('/2)(q+ 1) [1 +0 (ﬁ)] )
(27b)

These expressions will be needed below.

3. WKB-LIKE SOLUTIONS NEAR THE MINIMA OF THE
POTENTIAL

We now derive the solutions in regions V and VI of Fig.
1 as reached from the minima. The actual matching will be
considered later. Substituting (9) into (3) we have
d 2

dx'zp + [iq:t h2j: +4, h:t —5;’41 v(x)]:/)=0, (28)
where
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h,

Since ¥"{x ) = O it is readily seen that v(0) = 0 and
v'(0) = 0 and v"(0) for i>2 follows from Eq. (32) below. Next
we set

i) = o exp| £ 107, [ 0] (30)

The function y(x) satisfies the following equation:

vix) =

V)= Vix )]=~tx—x, P+ ---.(29)

d%y dy v
dx2 j:th: UI/ZEiAhi‘t Ul/z X
+(£qh2:t +Aihi),y=0, (31)
where
U(X) = (x_'xj; )2(1 +al(x¢ )(x_xi ) +a2(xi )(x"xi )2]
& (x—xi)" @
_igz_—T—v (O)’ (32)
2a
a=aix, )= N (4x, —b+0),
and
o . 2a
a2=a2(xi )— mi—)

Hence we make the important observation that under the
combined interchanges b>¢, x , - —x . ,

ax > —aixp)andayx | )+ aylx ).

Thus [see Eq. (31)], replacing v'/?(x) by — v'/?(x) is equiv-
alent to the replacements x— — x, b<>c,andx , —» —x .
In the following we consider the solutions of Eq. (31)
with the upper signs. For lower signs the solution in the same
domain is obtained by changing the signs of g and 4 2
throughout or by replacing v'/2 by — v'/%
Equation (31) can then be written in the form

2 (d?
Dy= 717( st +Ahx), (33)
where
d 1 v
D= —wrd Ly (34)

We observe that A4 is at most of O (0) in 22 when A% —>o.

Thus, to a first approximation we can neglect the terms on

the right-hand side and the solution to that order is
¥=x,,

where y, is a solution of D, y, =0, i.e,,

X, X)= ’U—I%"CXP[K (gx)]> (35a)
and
__ 4 (_ax_
K(Q»") - 2 vl/2(x)

- _q(g Infx—x,)+ 3 vz —x, )"), (35b)

i=1
and the 7,’s are coefficients which can easily be calculated,
e.g, Y1 = —a,/4, etc. Thus
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dx., ( 5 v g v
Ah A+ =2 44 7
2 TAM =\ g a Yy
2 U”
+ L (36)

Proceeding as in Ref. 17 we now express the right-hand side
of Eq. (36) as a sum over various y,, , ; (since the perturbation
procedure then becomes particularly simple); we then have
the following expansion:

d? )
Xo L dhy,= S @4+ Wary (37)
dx j=210
where for i#0

2
(g, +2i) = &7 + ‘g—“zi + %52:‘ — 165
and the coefficients 7, «, §, and € are obtained in a similar
way as in Ref. 23, and fori =0

2
(9.9) = 4h + {570 + %Ko+ %&—Aeo

=4h + 16y, + 8a,y, — 3a} — 24a,)

+ %(87’2 +a,—

— 4(872 + 8a,7, + 10a, — 4a?). (38)

The first approximation y = y, leaves uncompensated on
the right-hand side of Eq. (28) a sum of terms amounting to

RY = — 2 @9+ 20,4 - (39)
h ji=210
Following Ref. 17 the next order contribution to y is
2 ¥ lee+2)
(1}
X'=—= e X4y - (40)
h? ,4:%...‘ y Y
J#0
The coefficient of y, in R {¥ set equal to zero, i.e.,
(qu) =

yields an expression for A which is identical to that obtained
in the previous section to the same order of iteration (this is
an important aspect of our procedure).

The complete solution is obtained in the standard fash-
ion, leading to the sum

=1+ "+ + o

in descending powers of 4 2. The corresponding equation for
A4is

2 2
O=lga+ 5 3 BEH g gt ... @y
h* ;5. Y
J W1y
j#0
Successive contributions y @,y "), . . . of y form a rapidly de-
creasing sequence, provided that
Xq +2j [ . fx dx ] 2
29T Y —exp| — — | <ih?, 42
X, p| —J g <4 (42)

which clearly excludes the region around x = x . As men-
tioned previously, a second solution valid in the same do-

main is obtained by changing the signs of ¢ and 4 ? through-
out or by replacing v/ by — »'/? throughout. We write the
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Raf) + %47’2 -2ya, + a% —a,)

solutions, respectively, ¥, (¢,4;v"/?) and ¢, (g,h,v"/?), where
¥4 = xlx) exp[ + 44 *fv'/%dx] and

JA (q:h:vln) = ¢A (q,h, — U”z)

= bulg— — g — B0,

4. SOLUTIONS AROUND THE INSTABILITY POINT

Our next step is to derive the solutions in region III of
Fig. 1. Clearly, if we reverse the sign of ¥ (x) the potential will
have a minimum at this point, and we can calculate the ei-
genvalues by the method of Sec. 2. This time, however, we
expand the potential around x = 0, i.e., instead of Eq. (5) we
have

d’y + [A +abex? )y =
d 2
Again, we observe the invariance of the equation under the
combined interchanges x> — x, b<>c. Now we set

(ax* —alb— ).  (43)

h={—4abc}'*, (44)
and change the independent variable to
o =hx. (45)
The equation then becomes
d*y A o ]
.|._ _
dw?® h? 4 4 \ \
1 w @
=—b—c—— —1¢. 46
4abc{( ) h h? ]¢ (46)

Forlarge valuesof |4 |,1.e., a, the right-hand side of the above
equation can—to a first approximation—be neglected. The
remaining equation has the solution ¥ = D, ,,, _ (@),
where ¢ is given by

A/h*~lq. (47)

It should be observed that since the instability point does not
support bound states, ¢ is not an integer here (as in Sec. 2);
instead it is an auxilliary parameter determined by this equa-
tion. For the complete solution we set

A A4
— =g+ —, 48
=l (48)
where 4 remains to be determined by iteration.
The procedure of solution is now similar to that of Sec.

2. Thus, proceeding as above, we find

2hA=[— —21—3B(q2+1) 73 2(15q +7)]+0( )
(49)

with

a=3 (i - L) )

c b

and

B =6/bc,
and the complete solution of Eq. (37) is

Uy =90 4 £y 4 L (50)
with
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¢(0) = '/’q = D(l/Z)(q - 1)(‘") ’
and
(9.9 +/1;
=3 o 3 T ),
i i
j#0
and so on, where
(9,915 =24 — $5(¢,0), (51)
0
Ste= S L500., (52
and the coefficients S; are defined as in Ref. 17. Also forj#0
(9.9 +il: = — $ilg.J) (53)
and for i> 3, — 2i< j<2i,
(9.9 +i1i = —Silg.)). (54)

The solution ¢ is valid for

x= 0(#) , lolx)| <k 3.

The associated solution obtained by replacing in ¢, x by
— x and b,c by ¢,b, respectively, is seen to be identical with
Y5 in view of Eq. (50) and the fact that g, i.e., Eq. (48), is
invariant under the interchange b«>c.

Proceeding as in Sec. 2, a further solution .. is obtained
by effectively replacing 2 and @ by + ik and + iw and ¢ by
— g, this solution being valid for

|w(x)| <h 12

The solutions ¥,,¥. form a linearly independent pair in the
domain of the point of instability.

5. WKB-LIKE SOLUTIONS NEAR THE INSTABILITY
POINT

To derive the solutions in regions V and VI of Fig. 1 as
reached from the instability point we proceed as in Sec. 3.
Thus, we insert (48) into (46) and obtain

“;‘f + |4gh? + 8k + %%v(x)]¢=0, (55)
where

vix) =x*x —b)x —c), (56)
and

h={ —4abc}"*.

The method of solution of Eq. (55) now parallels the method
of solution of (28).

Hence, following the same procedure as in Sec. 3, we
put

R ("

Px) = ylx) exp[ + YR f v'?x) dx] , (57)
where A = — bc and the function y (x) satisfies the following
equation:

d h? d h? v'(x)

X t v'/x) 2X a1 2
+ (lgh? +Ah)y =0. (58)
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We consider the solutions of the above equation with the
upper signs only since for the lower signs the solution of the
equation can be obtained by changing the signs of g and 4 2or
by the combined interchanges x— — x, b<>c. Equation (45)
may be written

2 (dy
Dy = 2 (X + any), (59
where
2 d 1 v’
D, = — /11/2 v'/? dx A -9 (60)

Thus, to a first approximation we can neglect the terms on
the right-hand side and the solution is

=,
where y, is a solution of Dy, =0, i.e,,
X% = —7 —7=expl — K{gx)], (61)
wherec’ isa normalization constant and
12 px
K (gx) = q/12 , ;,—‘,i-f(-;
=q (; Inx + 5:0 }/,fx") (62)

and the 7,’s are given by

71 =L(-!— —_ i),etc.

4 \) c
Proceeding as in Sec. 3, we obtain
d?%, ( 5 AVE oy
Ah Ah+ —— ——
a2 A=\t e s T n
A1 v”
Sariar 3
which can be written in the form
d?y, -
o +4hy, = ; (99 + 2+ 25 » (64)
where fori =0
b—q 8 3(b—c)2>
. Ah+ — {16y, —8 e e
(g.9) = Ah + 6(72 N +/1 e
3(b —c)?
e
3 (b—¢ 3b—c) | 3b—0)
77—”272‘7“(‘ FERANE
2 2
(42 2nb—c)  (b—c) __1_)
+4(/1 + A2 + A3 A2
1 8y 10 4(b—c)2)
- - — 8 _ ).
4( __(b C)+ 7,2+ /1 /{2
(65)

The complete solution ¥, (g,h,v'/?) is now obtained in the
standard fashion leading to the sum'’

¢A =X=X«»+X“)+X(2)+ e, (66)

where
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lga+2%) (67)

2 —
X‘”=— Z T Mew

h?
1#0
and so on. Successive contributions y ,y ¢
rapidly decreasing sequence provided that

dx
U,,z(x)]qhz, (68)
which excludes the region around x = 0. A second solution
¥..(¢,h,v""?) in the same domain is obtained by changing the
signs of g and 4 2 or by the replacement x— — x, b<>c in the
above solution, i.e.,

Valgh*p') =y (— g, —h*p"%).

b ...ofyforma

exp[ -2 1/2

6. MATCHING OF SOLUTIONS IN REGIONS OF
COMMON VALIDITY

Knowing the solutions in every region of the indepen-
dent variable we can now consider their continuation in ad-
joining domains. Since the functions to be joined are asymp-
totic expansions, we do not call this continuation analytic. In
the preceding sections we derived the following solutions:

in Sec. 2,
¢B(qi ’hi ;a)j: )’
and
!ZC(qi !hi @ )‘I'ﬁﬂ( _q;t rihi ;iwt )’
which are valid in the domains around the minima, i.e.,

1
X=Xy <0(h2/3)

E
and ¢¥,¥., which are valid in the corresponding mirror
imaged domains

1
—x—X <0(h2/3)'

in Sec. 3,

¢A (q + »h + ;vllz(x)) ’
and

JA (q;t ’h + ;UIIZ(X)) = ¢A (q + ah + s — Ul/2(X)) ’
which are valid in the domains away from the minima, i.c.,

1
X=Xy >O(h2“)

this condition excludes the points x = x __;
in Sec. 4,
Yp(g.h;0)
and
Jc(q’h;w) <thp(— gihio),
which are valid around the instability point, i.e.,

1
140 (535);

in Sec. 5,

Y4 (q’h;vllz)
and
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Valghp'’?),
which are valid for

1
x>0(h2/3)

thus excluding the point x = 0.

We dub all solutions ¥; and ¢ which involve Hermite
or parabolic cylinder functions “oscillatorlike” and the solu-
tions ¢, and ¢, “WKB-like.” These solutions can now be
matched to each other in the following way (see Fig. 2).

First of all we note that the general solution in the do-
mains of ¥, and ¢, can be written

v=at, +BY,, (69)
where a and S8 are constants. The matching of the solutions

¥.,¥, to the oscillatorlike solutions around a minimum can
be easily obtained by going to a common region of validity of
Yo and ¥, 957

Considering the dominant contribution of ¢, for x ap-
proaching x , , we have (withg=¢q , ,h=h )

~ 9 2 (7
¢A—_——v”4(x—xi)‘l’2exp[£h fv dx]

Ce™ (1/4)h 2x2,

~ 2 "
o x—x )(1/2)lq+ 1) exp[ih (x X4 ) ] .
+

On the other hand,
L [4g + 1)
[hlx —x 7T
Hence, in their common region of validity
Ya=7dc, (70)

where

'Zc 2'/7., (@)=~

A-Vi(x)

by | be

| Jo %L\

x
X x ==
Ywke x"mwxa Puke 34’ WKB
[

x
\ byie & E. q:’wxa 3 WKB
O ¢A / X

‘ba Il;c

FIG. 2. The domains of various solutions.
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(1/2)g + 1), — (1/4)h*x%,
- B o)
I [}g+1)] h

Similarly, we obtain

Yo = Vs (72)
where

_ Ce( 1/4)h 2x3, 1

7= 1o 5)] 73

(C being an overall constant which, like the eigenvalue, re-
mains unchanged under the replacements g— — ¢, A—ih ).

It is not too difficult to calculate the first few terms®* of the
expansions on the right-hand side of these equations. This
establishes the continuation of the oscillatorlike solutions at
the minima to the WKB-like solutions of Sec. 3. Hence
¥ = ayd. + By, is the continuation of ¥ of Eq. (69) into
the region of a minimum. Similarly, we can obtain the rela-
tionship between the solutions ¥, and ¢ at the instability
point and the WKB-like solutions %, and ¥, of Sec. 5.
Hence, the problem which remains is the matching of the
WKB-like exponential type of solutions across the Stokes
singularities corresponding to classical turning points.

We proceed as follows. Equation (3) can be written

dly

T =X{xp, (74)
with

X(x)=Vix)—A

=Vx)~[Vix, )+lg . h* +4 R, ]

h
4_i “%qihzi _A:thj:

= p(x)

on using (9) and (29) with (6). The solutions to this equation
above the minimum but just below the turning point at
which A = V(x) are

dotrigh) = 2 [exp ([ x120x)| Yiwa). )

|

X_IMCXP[—‘I X1/2dx

]Hz(—X)—”“ sin[

and

X ~V*exp [ + \ f X”deH H(_,(r”‘*cos[

Above the turning point (i.e., on the oscillatory side) each of
the solutions ¢y On the right-hand side of the above rela-
tions is to be continued to ¢, and ¥,. In this case one has

(=X = %‘"l(x”m [1 - hsz'(x) +0(%)] (81)
and
(—xye= et fivo(55)] e

where v'(x) is related to v(x) of Sec. 5 by

1842 J. Math. Phys., Vol. 23, No. 10, October 1982

fx( — X )"2dx

and

Do (x.0:h) = Fl,ﬁ [eXp(— JXX ”zdx)] Y(x,q,k), (76)

where Y satisfies an equation which has been solved by Din-
gle.”® We have

1/4 h, 1/4 1
XVt = e i) {1+o(hz+ )] (77)
and
X1/2= i[v(x)]l/Z {1_ q +0< 1 )]’ (78)
2 h2 vx) h3,

where v(x) is given by Eq. (29). Comparison with (30) and (35)
shows that the WK B solutions join smoothly to the solutions
¥, and ¢, of Sec. 3. Thus, in their common domain [choos-
ing the overall constant C in (35a) equal to 1]

_h, 1
U = = b [1 +0(h ; )] (79
and
- h, - 1
B = e B [1 +0(h ; )] (80

Similarly, we can obtain the relationship between the corre-
sponding solutions ¥, %, and the WKB solutions above the
turning point, i.e., far below the maximum of ¥ (x). In fact,
each of the solutions ¢, and 1, shifts the turning point at
A = V(x) to an extremum, thereby hiding it in the WK B-like
solutions of Secs. 3 and 5.

Now the matching of the WKB-like solutions below
and above the turning point can be achieved by matching the
WKB solutions in the usual way and then matching these to
our WKB-like solutions. The connection formulas read® to
leading order

Ywie (X9, ) <> %W’wa(X,q,h )+ i@wxa(xrqrh )
and

Ywis (X,g:h ) < ([Pwks(X,9.h ) + 'ZWKB (x.q.h)),
ie.,

Jx(—X)”del + %]

T
+2-f.
7
-

Vix)= —vix)/bc . (83)
Hence, the relations between the WKB-like solutions ¢ ,,¥,
and the WKB solutions above the turning point are

h 1
b= ot [1+0(55) | (84
and
- h - 1
B = e Buns [110(55) |- (83)
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From the above results we observe that the solutions around
the instability point are trigonometric functions in order to
match the WKB-like solutions above the turning point. We
indicate here schematically how the matching is actually
done,?’ starting from the region around x _ :

Y5 (x+)—"ZA (x+)—"/_’wxn < (iYwks + JWKB)
—{i1,4(0) + 9, O)—{iv¥c(0) + 795(0)) .
Also
'Zc(x+)—"/’.4 (x> ¥wis < W dwks + i‘Z’wa)

=414 (0) + i O =>rdc(0) + 795 (0)
The matching to the left-hand side of the instability point
can be done in the same manner as explained previously.

7. THE SYMMETRIC DOUBLE-WELL POTENTIAL

The special case of a symmetric double well has some
particularly interesting features, as we will discuss below.

First of all we note that the general potential given by
Eq. (1) may be cast into a symmetric form either by putting
b = c or by the transformation

b+c c—b
x= - . 86
Y IRd 5 (86)
In this case the potential becomes symmetric with two mini-
maat + dandamaximumatthepointd(c — b)/(c + b),i.e,

ax*(b — x)(c + x) = a(bz_:,c)4
_dle—b))? ~
xpp— L=y v ayy—a).
(87)

The symmetric potential has two nearly harmonic wells as
we can see from the solutions obtained previously, i.e., the
parameter

g~odd integer =2n + 1.

A rough explanation for the asymptotic degeneracy is that
the two wells asymptotically decouple into independent os-
cillators and the effect of a second well on the energy (eigen-
value) is inversey proportional to the time a quantum me-
chanical particle would take to tunnel through the barrier,
by the uncertainty principle.”® Hence, the tunneling prob-
ability ~exp[ — 2(7(V(x) — E)"/? dx], where ¢, and ¢, are
the classical turning points. This in turn is proportional to
the energy gap. The energy splitting has been calculated pre-
viously®® and has been treated rigorously by Harrell.>® The
wave functions for a symmetric double oscillator using a
phase-integral approximation have been discussed in Refs. 4
and 31 and their normalization is considered in Ref. 32. In
Ref. 31 the quantization condition was applied to calculate
some energy eigenvalues for a special double-well potential
for which the energy eigenvalues have been calculated nu-
merically by Chan and Stelman.?

For the symmetric double-well potential we also ob-
serve that all the solutions are the same as those obtained
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previously if we put b = ¢. The only difference is that the
domains of validity of the solutions ,¢ collapse to one
domain, i.e., x — x, = O (1/h ¥?), where in this case

X, = —x_=X,= —X_=2Xxy(say)andh, =h_=h,

Now, the actual eigenstates must be even or odd about
the axis passing through the central maximum of the poten-
tial. The degeneracy is then split by the perturbation (i.e.,
finite height and thus finite cross sectional area of the central
hump of the potential) which couples the otherwise indepen-
dent oscillators, so that the symmetric state lies slightly be-
low the antisymmetric one.

We now proceed to calculate the deviation of ¢ from an
exact odd integer ¢, and thence the splitting of the asymp-
totically degenerate energy levels. For this purpose it is nec-
essary to construct wave functions ¢, which are, respec-
tively, even or odd under the interchange x— — x. Here we
make the important observation that this symmetry of the
wave functions which is related to the symmetry of the po-
tential is retained only as long as we do not expand around a
particular point such as one of the minima of the potential.
As soon as we select a minimum and expand the potential or
wave function in its neighborhood, this symmetry is violat-
ed. It is therefore essential for the construction of the even
and odd wave functions to consider solutions which are pure
functions of x. Solutions of this type are the WKB-like solu-
tions (30), which we now write ¢! *). Thus

Y. =¥ )ty ) (88)

apart from an overall constant, with
¢'( * )(x) =y, (q»h;vllz) ’

Yo =y¢*(-x). (89)
We have, therefore, on using (70) and (72),
Y. =rdclghoix) £ #slghaolx) (%0)

in the neighborhood of the minimum of the potential at x,,
(specified by appropriate indices attached to g, 4, etc.). In the
neighborhood of the other minimum these solutions involve
¥ and ¢, (see Fig. 2).

Figure 3 shows the typical shape of the wave functions
¥, along with the potential ¥ (x). The wave functions ¢ ,

Vix)
%\ \

FIG. 3. Typical shape of the even and odd solutions.
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characterized by integers g, are defined by*°

("'”—+)M =0, (¥_)es =0,

dx
W) is=+1, (%)ix = —1 (91)

These conditions are such that the Wronskian of ¢ _,%, is 1
[the constant Cin (71) and (73) is chosen to be 1].

Consider ¥ _ at x = x,- Then w(x,) =0and (y_), =0
yields, to leading order in A,

V¥, (0)~=7,(0) » (92)

which [on using {26), (70), and (72)] leads to
]

e-(l/z)hzx{,
2 I [3g+ DI [+ 3)]
_ (1)1/2 B e—(1/2lh’xé .

2 I'(}g+1)]

Performing the corresponding calculation for
(0¢,./9x),, = 0, we obtain to leading order

Y, () (@)
I ) N e ) =0, 54

which leads to

fg ]

(93)

e~ (1/2)h 2x3

cot[%(q + 1)]'_\_/(%)1/2h q }m .

Applying the same procedure to (¢, ), = + 1, we obtain

(95)

tan{i(q + 1)}2 - (f—>v2h e s 12 (ﬁ)ww‘ ! e R .
4 2 I [4g+ 1] 2 cos{(m/4)ig + V)}T" [§lg + 1)] (96)
Similarly, (9y_/dx), = — 1 yields
cot[l(q + 1)}2 - (1>1/2h e e V2] (1720 = 3, = (1781753 .
4 2) " TUg+1] 2% Vsin{(r/4)q + )T [ig + 3] -

We now expand tan{(7/4)(g + 1)} around
q=¢q,=3,7,11,...so that

tan{%(q + 1)}2(q —go) % +0l[lg—g°].  (98)

Then, from (93) and (96)

2\ e~ (1/2)h 2x3

2 /zh @
s—ao= =2 2) h F

where g, = 3,7,11, . . . and the signs +, — apply to
¥_, ¥, respectively. In writing down (99) for ¢, we have
neglected the second term in (96), which is of lower order in 4
than the first term.

Expanding cot{(7/4)(g + 1)} around ¢, = 1,5,9, .. .,
we obtain

(99)

cot[%(q + 1)]2 —lg- %)‘Z‘ +01(g — g0, (100)

so that
e (1/2)h 2x3

e 2( 2 )I/Zh @
TI=TAT) Y Tl 1
where g, = 1,5,9, . . . and the signs —, + applytoy,,¢_,
respectively.
We have seen previously that the eigenvalue 4 is ob-
tained as a function of ¢ [see, e.g., (21) and (22}]. Thus, ex-
panding A around g, we have

oA
A= Alg)+ (Z) 4.
q 90
From (22) we see that (94 /dg),, is positive. It follows that the
even states for which ¢ — g, is negative lie below the odd
states for which ¢ — g, is positive. Our formulas thus permit

(101}

(102)
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the explicit calculation of this splitting of the asymptotically
degenerate energy levels. They also demonstrate the enor-
mous usefulness of the parameter q.
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Demianski-type metric in Brans-Dicke theory
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A Demianski-like metric is obtained by means of a complex coordinate transformation in the

Brans—Dicke theory.
PACS numbers: 04.20.Cv

Newman and Janis' (NJ) have given a derivation of the
Kerr metric by performing a complex coordinate transfor-
mation on the Schwarzschild metric. Newman et al.? also
applied a similar technique to obtain the charged Kerr met-
ric (Kerr—Newman solution). Later Demianski, following
the same technique, developed a general metric which con-
tains both Kerr and NUT metrics as special cases. In this
paper, we have followed a similar technique and obtained a
Demianski-like metric in Brans-Dicke (BD) theory,* show-
ing that NJ' technique may also be applied to BD theory in a
wider context.

There is a BD version of the NUT metric obtained by
Sneddon and McIntosh® by a method developed by them.
They could not obtain a BD version of the Kerr metric by the
same method. McIntosh® employed a different method to
achieve this end. But his Kerr-like family of solutions does
not have the spherical symmetry when the rotation is zero
and the scalar field is not constant. The metric derived in this
paper does not only pass over to NUT-like and Kerr-like
ones in BD theory, as special cases, but also formally goes
over to BD, NUT, and Kerr solutions and is free from the
shortcoming appearing in the solution of McIntosh.® The
Brans—Dicke line element in isotropic form* may be written
as

ds? = ¢ [I’B/’] dt? 2ﬁn(1+B/r)4[—l-ﬂ]2§
1+ B/r 1+ B/r
X [dr* + Pd0? + sin®0 dg 2, (1)

wheren =1/4 and £ = (4 — ¢ — 1)/A.
The line element (1) may be written in the form

ds® = (1 — 2ro/A"du? — 2(1 — 2ro/F°du dF

— 71— 2r/7F [d6? + sin’0 dg *], (2)
where
r—ré, t—te™,
ro = 2Bé>, F=(14ry/2r), ()

du=dt+ (1 = 2r/Ff 7" 'dr,

o=n+&—1)/2
The contravariant components of the metric coefficients of
(2) may be written in the form

gy =1"n"+1"n" —
with

I#=8, n*=(1=2r/R" 8 — )1 —2r/7) ~°8},

mt = (1/2"27(1 — 2ro/F) ~572[8% + (i/sin 6)6% ], (5)

mtm® — m*m* (4)
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where m* is the complex conjugate of m* (the bars on r are
dropped).

The coordinate r is now allowed to take complex values
and the tetrad is rewritten in the form (» indicates complex
value of 7)

1n = 8%,
e [-b e -
r r i\r ¥
1—¢
e R
r r i\r r
1 1 1 b(1 1 —£72
v~ |1_ IR ST S L
" 2”2r’[ (ro(r’ + r)+ i(r’ r)}]

x [8 + (i/sin 6)5% ], (6)

,;,n=_1_[1 _ [, (L+L) +£(L_L)” e
2172 Ny r i\r r
X [84 — (i/sin 8)6%],

where b is an arbitrary constant defined in (8).
We now formally perform the complex coordinate
transformation

r=r+iF6,¢) 6 =86,
W=u+iG64), ¢ =¢ (7)

on the tetrad vectors, where F (0,¢ ) and G (6,¢ ) are real func-
tions of 6 and ¢ and are given as

F=acos@+ccosf@Intanf/2 +c+ b,
G= —acosé—2blnsinf —ccos@Intan 6/2, (8)

where a, b, and ¢ are constants. If we now restrict 7 and u' to
be real, we obtain the following tetrad

%

¥ =
/ 2y 4 2F) -0 L[, 2r +26F]—¢
”“:[1“ e 2] 6{;_—[1_ o 2
P2+ F 2 "2+ F
"= 275 F)[ B 2’02’ +1§1:F]_§/2[IHCSC 6%
r+i re+

— i{H + 2b cos 8 )csc 8% + 8% + (i/sin 8)64 ],
(%)

where
H=asin>8 —2bcos 8+ csin’ 81n tan 6 /2 — ¢ cos 6.
(10)
The metric coefficient g*” now takes the form
g =1*n" +1"n* —m"m” —m"m", (11)

® 1982 American Institute of Physics 1846



where m*' is the complex conjugate on m*. Using (9), (10),
and (11), the metric coefficient of the Demiafnski-like metric
in BD theory may easily be obtained.

A further simplification is now made by another coordi-
nate transformation’ so as to bring the required line element
as close as possible to the standard form.

The desired line element may finally be written as
(dropping the primes on 7)

2ror + 2bF]" 2
ds?l1 — ol T <O -
s2[1 S| = Hag)

2ror+2bF 2
[1— L ](rz+F)( + d6? + sin® od¢)
+2[ M] (H + 2b cos 6)(dt — H dg ), (12)

where
=(P +F*—2ry+2bF)+ (Hcsc 0 + 2bcot 6).
The expression for @ (scalar field) is
D = D[ 1 — (2ryr + 2bF)/(P + F3)]°, (13)
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A check has been made on the Brans-Dicke field equa-
tions and it has been found that (12) and (13) satisfy them.

If b = ¢ = 0, the metric (12) and the scalar field (13) pass
over to a Kerr-like metric in BD theory, and in addition if
71 =A = 1 and § = 0, the Kerr metric is recovered.

Ifa = ¢ = 0, the metric (12) and the scalar field (13) pass
over to a NUT-like metric in BD theory, and further, when
=24 =1,§ =0, the NUT metric is readily obtained.

Finally, witha = b = ¢ = 0, the metric (12) and the sca-
lar field (13) go over to the BD solution.
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Local perturbations of the dynamics of infinite quantum systems are considered. It is known that,
if the Mdller morphisms associated to the dynamics and its perturbation are invertible, the
perturbed evolution is isomorphic to the unperturbed one, and thereby shares its ergodic
properties. It was claimed by V. Ya. Golodets [Theor. Math. Phys. 23, 525 (1975)] that the above
condition holds whenever the observable algebra is asymptotically abelian for the unperturbed
evolution, and the perturbed evolution has a KMS state. The present paper contains a
counterexample to this statement, and a construction of a spatial representation of the Méller

morphisms.
PACS numbers: 05.30.Ch, 05.70.Ln

I. INTRODUCTION

Let us consider a quantum mechanical system that can
be described by a C *-algebra o and a group {@, } g of
*.automorphisms of .«7. We interpret .« as the set of (bound-
ed) observables of the system, and {a, ] as its dynamics. For
Aes/, t—a,(A ) is the time evolution of the observable 4. In
Refs. 1 and 2 it is assumed that t—a,(4 ) is continuous. This
seemingly innocent assumption excludes many important
cases from the discussion as, for instance, the free Bose gas.
It is, however, not vital for the conclusions to be drawn here,
so let us also make the assumption, for the sake of simplicity.
Being strongly continuous, the group {a, } has an infinitesi-
mal generator, § say,

a, = exp{t6). 1)
Now, let ¥ be any self-adjoint element of ./, and define
@, =exp[t(6 + [iV,-])]. (2)

{@, ] g is another strongly continuous group of *-automor-
phisms of o, which we shall call ““the perturbed dynamics”.
Now suppose that {a, ] has some nice ergodic property. It
may be that {e, ] is ergodic:

{ded|V,:a,4)=4} =C1, (3)
i.e., {@,} has no nontrivial fixed points (“constants of the

motion”). Or it may be that { & ,a} is asymptotically abelian,
ie.,

V4 pewr gl [A,a,(B )] Il |f:w 0. (4)

In these cases, it is interesting to know whether or not {&, }
shares the ergodic property. In order to answer these, and
related questions, it was proposed by Robinson’ to study the
limits

}’i(A)= htin a_ca,(4) (5)

— @

in the norm topology of .. Suppose these limits exist for all
Aes/ . (A sufficient condition for this was given in Ref. 1).

Then y, are isometric *-morphisms of .«, intertwining &
and @:

Y+ °a, =ar°7i . (6)

Clearly, if ¥, or y_ isinvertible, {&, } is similar to {e, }, and
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inherits its ergodic properties.

The maps 7, are called the “Méller morphisms”, by
analogy with the Mdller operators in scattering theory.
Now, in scattering theory, the nonunitary of the Méller op-
erators is generally thought of as due to to the existence of
bound states for the perturbed Hamiltonian. It turns out
that, analogously, we may consider the noninvertibility of
¥, asroughly equivalent to the existence of nontrivial fixed
points of {&, }, i.e., constants of the motion for the perturbed
evolution. In fact, if {&, } has a fixed point that is not a fixed
point of {a,}, then ¥, are not invertible.

It follows from a result of Araki® that, whenever there
exists an {a,8 }-KMS state w on .7 for some >0 (i.e., a
state, satisfying the Kubo-Martin-Schwinger condition* at
inverse temperature 8 w.r.t. {a, }), there also is an {@,5 |-
KMS state, and it is quasiequivalent to w. This holds regard-
less of the existence of fixed points for {&,}.

In view of the above remarks, Theorem 3 of Ref. 2 is
surprising. Indeed, we shall see that it is not valid.

{l. A COUNTEREXAMPLE

Let us assume that

(I) {7 ,a} is asymptotically abelian [i.e., (4) holds],

(II) the limits ¢, (4 ) in (5) exists for all 4€.7,

(III) for some 8 > O there is an {&,8 ] -KMS state & on .o/’
Let 7 be the representation of ./ determined by @ according
to the Gel’fand-Naimark—Segal (GNS) construction. It is
the content of Theorem 3 of Ref. 2 that, under these assump-
tions, there exist *-automorphisms 7_/ . of #(e7)", such that
for all A

v, omd) =70y (4). (7)
The following example shows that this cannot be true.

Let H be the self-adjoint operator — 3%/3x* on L *(R).
For geL *(R), let P, denote the orthogonal projection on g. If
geL 'nL *(R)issuch that fgdx#0, the operator H: = H — P,
has an eigenvector 2 #0.

Let 4 be the C *-algebra, embodying the canonical an-
ticommutation relations (CAR) over L *(R), and let &/ be its
even subalgebra. Then the groups {a, } and {&, } of automor-
phisms of &, defined by

a,(a(f)) = ale™f) and &,(a(f)) = ale™f), (8)

© 1982 American Institute of Physics 1848



are related by (1) and (2), with V' = — a(g)*a(g)/|ig|I*. {a.}
and {&,} both leave ./ invariant, and ¥is in &/

The system {.«,«} is asymptotically abelian because
explitH ) tends to zero weakly as |t |— 0. Furthermore, by
Kato’s theorem® on perturbations of rank one, the strong
limits
= lim ¢~ 9)

t— + oo
exist,and W, are isoyetries onto the absolutely contingous
spectral subspace of H. Because 4 is an eigenvector of H, it
follows that

hl Range (W, ). (10)
Now, define the *-morphisms ¢ , :Z—% by
vi @ =aW,f).

Then y, (4) are indeed the norm limits of & _,°c,(4 ) as
I— + o because of (8) and (9) and the continuity of a( f)in f.
Moreover, for any 8> O there is an {&,8 }—-KMS state on &
namely the gauge invariant quasifree state @ with two-point
function:

ala(fi)*alf)) = (SoF (H)f),
where

Fix)=(1+é&* L
Now, because 21 Range(W , ), a(h )*a(h ) commutes with any
element of the range of ¥, , a fact that contradicts (7). In-
deed, let 7 be the representation determined by @, and as-
sume that automorphisms y , satisfying (7) exist. Then
7y, (&))" = 7(</)", and this would lead to the conclusion
that 7{a(# )*a(h )) commutes with 7(.)", a contradiction.

Remark: The above example describes a noninteracting
one-dimensional Fermi gas in a rank one “potential”” P,. The
perturbed one-particle evolution has a bound state 4, and
consequently there is a constant of the motion for the per-
turbed evolution of the gas, namely, the observablea(h )*a(h ),
counting the particles in the bound state. As the unperturbed
evolution is ergodic (i.e., has no constants of the motion), the
two evolutions are not isomorphic, and 7, cannot be inver-
tible. If the claim to be disproved had been that y , are auto-
morphisms of &, our argument could stop here. However,
only the existence and invertibility of y , is actually assert-
ed, and it could be that ¥, ~', mapping 7(.«)" into itself, did
not leave 7.« ) invariant. Therefore we need a slightly differ-
ent argument, the one presented above, based on the fact that
any fixed point of & commutes with y , (&) if .« is asymp-
totically abelian for a.

lit. A PRELIMINARY RESULT

In what follows, we will have a closer look at the action
of 7y, («7)) on the Hilbert space H. The following result,
taken from Ref. 2, will enable us to do this:

Lemma I: Suppose conditions (I), (IT), and (III) hold.
Let { H,77,£ } be the GNS-triple associated to {.,@}. Then
there is £eH, cyclic and separating for 7{.27)”, such that the
state w, defined by

wld)=(£TA)E), (11)
is an {a,B }-KMS state, and

W

+
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w=aoy, . (12)

The vector £ can be chosen to lie in the positive cone® Z of

Remark: The reverse is also true: If there is an {5 |-
KMS state @ on ., then there is a £ in the GNS-space of
{o/,w} that implements an {&,5 }—-KMS state @, satisfying
(12). In fact, this reversed statement is the more useful one.
In examples where a is “simple”, the existence of w is easier
to establish than that of @. I choose to state the less useful
version in order to agree with Ref. 2. Let me emphasize on
the other hand that it would certainly not be advisable to
entirely interchange a and &, and to replace condition (II) of
the existence of  , by a condition (II), the existence of

Y.(4)= lim a_,oF,(4)
I~> + o0

In examples where a is “simple”, (fI) is much harder to test
than (II).

Proof: Let Z be the center of 7{/)", i.e.,
Z = 7)" i) . By the perturbation theory of KMS
states,’ there exists 7€ 7, cyclic and separating for 7{/)",
such that A— (7,74 )y) is | g,BJ -KMS. Now consider the
states Z—(n,Zn) and Z—(&,Z£ ). They are both faithful
normalstates on & . It follows that thereis a vector £ & *9
such that

Voer {62E) = (E.ZE). (13)
This vector § is also in the cone Z¢, and is cyclic and separ-
ating for Z. Let w be given by £ as in (11). It is not hard to

show that, because £€ 77, o is {a,8 }-KMS. And then &
must be cyclic and separating for the whole of 7{(./)".
Let us now prove that

View: im @oa,(4)=w(4). (14)
t— 1+ o

Suppose the contrary. Then there are Ae.«7, €>0, and a se-
quence {7, } of times, such that {¢,|—> o and

|@oa, (4) —wld)|>€, (15)
Now, the sequence {7{a, (4)}} _. musthaveaw*-converg-

ne:

ing subnet, because it remains inside the w*-compact set
{Xer()"| || X||<||4 )|} Solet {n(o)} beanetin N, such that
lim,n(o) = o and w* — lim,# (a,n(a}(A )) = Zewr(A)".
Then for all Be.&/

[#B)Z] =w* —lim[7B)Ha,,, (4)]

=w* ~lim [ Ba,  (4)])=0,

because { &/ ,a} is asymptotically abelian. So Ze.Z, and we
can apply (13). But then

lim (e, (4 )

=lim@Ea,, (4 E) = EZE) = (6.2¢)

=lim ({7, d)) =limola,,, (4))=old)

because w is a-invariant. This contradicts (15) and we con-
clude that (14) holds. Finally, note that for all Ae.«?,

nf{o}
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@%, A) = lim @°d _
- 4 oo

= lim @°a,d)=owA )l

>+ o

ca,(d)

IV. INVERTIBILITY OF y AND EXISTENCE OF y

For ease of notation, let us from now on identify Ae.o/
with the operator 74 ) on H = H, so that o becomes a C *-
algebra of bounded operators on a Hilbert space. Moreover,
let us focus our attention on only one of the Mgller mor-
phisms: ¥, and call it y.

In Ref. 2 a counterpart 8 to the map y: & — .« is intro-
duced. & acts on the commutant .«7‘, which is a von Neu-
mann algebra, unlike o7 itself. I shall give a direct construc-
tion of 6 below.

Lemma 2: Suppose conditions (I}, (I}, and (III) hold.
Then there is an isometry £2: H—H, such that for all Ae/,

YA 2 = NA.

Proof: Define 2,: 7 E—y{o/ )€ by

AL =74 ).

Then for all Ae.«Z, [[2,4£ ||* = |4 € ||

= (EHAPYAE) = ENA*A)E)
=@opd*4) = wld*4) = ({4 *4E) = |AE|*. As
A& =H, £2,extends continuously to an isometry
0:H—H with range, y(.«/ ). Now for all 4,Be.«/,

YA J2BE = 74 )V\B)E = VAB )& = 2ABE,
and the statement follows from the cyclicity of & for </ Jjj
Lemma 3: Suppose (I), {II), and (III) hold. Let £ be given
by Lemma 1 and £2 by Lemma 2. Let J be the modular conju-
gation H—H, associated with {.&/”,£ }. Then
J2=0J
Proof:Let 4 and 4 be the modular operators associated
with {.#” £ | and {&",§ } according to the Tomita-Take-
saki theory® and J and J the corresponding modular conju-
gations.
Let Ac.o/ be analytic for {a, }. Then by the intertwining
property (6) of ¥, (4 ) is analytic for {&,} and
Jay, A =Mag A .
= Jaiﬁ/{(]’(“‘ Né =;]A ”27’(‘4 )§
=YAPE =y A5 =04%¢
=JA'74E = NJag,A4)8.
Now, the linear space {@5,,(4 )¢ |4€.o/ analytic for alis
dense in H. Therefore J£2 = £2J. And because £ and £ are in
the same positive cone,’ J and J coincide, and the statement
follows.Jij
Lemma 4: Suppose (1), (II), and (111} hold. Let J, 2 be as
defined before, and let
0.~ L (H)A—-02 *AL2,
Ji ">t A—JAJ.
Then
ojoy =j | .
Moreover,
o Y\C .
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Proof: First we show that 8 (7'} C .«&/". Let Beo/', Ac.o/ .
Then, by Lemma 2,

[6(B)A] =[12*BN,A]=1*BNA — AQ *B(2
=0N*Byl4 )2 — 2 *y(4 BN
=N*B,yA4)}2=0.

So6 (B Je&/ 'forall Be#'. Furthermore, it follows from Lem-
mas 2 and 3 that, if 4e.o7,

gojoyd) = Q*JNA W2 =2 *Jy(4)J
= 0*JQA] =D *QIAT =JAT =ji4). B

Lemma 5: Again suppose that (I}, (IT), (ITI) hold. Then
6, defined in Lemma 4, is the unique map .o/’ — o/ satisfying

Vier Voo {8:BVA)E ) = (6,6 (BAL ). (16)
Moreover, 8 is linear, *-preserving, w*-continuous, and sur-
jective.

Proof: Let Aco/, Bes/’. Then, by Lemma 2, and be-
cause E = ()¢,

(E.BYA)S) = (026,BriA)02¢)
=(§M2*BNAL) = (§,0(B)AE).

Uniqueness of @ follows from the cyclicity of £ for o' Clear-
ly, @is linear, *-preserving, and w*-continuous. It remains to
provesurjectivity. Solet Be.w’; | B || = 1, say. Welook foran
Xe/' such that B = 6(X ). Now, because  is a bijection
& "—sf',j(B)is a well-defined element of o/ ";
||~ '(B)l| = 1. By Kaplanski’s density theorem the unit
sphere in ./ is dense in the unit sphere in .. So thereis a
net {B,} in .« with ||B,||<1and w*-lim B, =;'(B). Now
consider the net { joy(B,)}. Being included in the w*-com-
pact unit ball of ./, it must have a w*-converging subnet

[Bo(r) ]’
w*-lim joy(B,,) = Xe/".
But then it follows from Lemma 4 that

(X} = w*-lim 6ojoy(B,,,)

= w*lim jiB,,) =/~ 'B)=8B

because both 6 and j are w*-continuous.ji}

Remark: InRef. 2, (16) is the defining property of 6. The
w*-continuity and surjectivity of 8 are also proved there.
But, in addition, it is claimed that 6 has the morphism prop-
erty

VY per0(AB)=0{4)0(B), (17)

which is now easily seen not to hold if £2 is not unitary, i.e., if
N )€ is not dense in H. And, indeed, a close look at the
proof of (17) in Ref. 2 reveals that the w*-density of y(.«/) in
7" is implicitly assumed there. Once accepting (17), Golo-
dets can prove that y exists as an automorphism of &/ by
turning the argument around that has proved the existence
of 6 as an automorphism of .&#’. Actually, the existence of
the automorphism y and (17) are equivalent:

Theorem 6: Suppose that the conditions (I), (II), {III)
hold, and let 12 be given by Lemma 2, and € be as defined in
Lemma 4. Then the following statements are equivalent:
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(i) There is a *-automorphism ¥ of 2", such that

vt =7,

(ii) ) C 2",

(iii) 2H = H,

(iv) For all 4,Be.«/":0 (AB) =6 (4 )6 (B).

Proof: (ij=(ii): Suppose (i) holds. Then y is w*-contin-
uous, and therefore Y{/)" DY ") = M ", It follows that
NI =N = )Y (") =

(ii)=>(iii): Suppose (ii) holds. Let P = .().() *. Pisthe orth-
ogonal projection on y{«/)§, so Pey(</|', and therefore
Pes/’ by (ii). Now PE = £, s0 (P — 1) =0, and because £ is
separating for &', P = 1. It follows that 2H = H.

(iii)=>(i): Suppose {2 is unitary; define (4 ) = 2412 * for
all Ae/ . Then for Ac.o/ we have y(4 ) = 2402 *

=HA)202* =¥(d),s0y | & =7.yisclearly a *-mor-
phism, and we have to show that it is onto. Let A€.«/" and let
B =10 *40. AsJ commutes with £2,
B =J02 *JAJQJ = j~'089j(4 );s0 Be/ " by Lemma4. More-
over, ¥(B) = 2BN * = N0 *ANN * = A. We conclude that
any Ade/” is of the form ¢(B ), Be/".

(iiij=(iv): If 2 is unitary then, for all 4,Be.«/", 6 (4 )0 (B)
=0*ANN *BN =N *ABN = 6 (AB).

(iv)=>{iii): Suppose (iv) holds. Then for all Ae.&’

1851 J. Math. Phys., Vol. 23, No. 10, October 1982

|2 *4E ||* = (ZA*0D0Q*AE) = (£,02°4*00*A0¢)
=(£0A*0A)5) =(£0A*A)f) = (£0*A*A0¢)
= (£,A*AE ) = ||AZ ||, and because £ is cyclic for ",

£ * is an isometry. Hence (2 is unitary, and 2H = H |}
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Two integrals which appear in the study of the relativistic Bose gas are analyzed. The complete
low-temperature and high-temperature expansions are computed.
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1. INTRODUCTION

There have been many attempts in the past to study the
properties of a relativistic ideal Bose gas.'~® It is fairly easy to
derive integral expressions for the various thermodynamic
quantities. Unfortunately, the integrals obtained cannot be
evaluated exactly and various approximation schemes must
be employed. In the past, a number of authors attempt-
ed">*7 to obtain high-temperature expansions for the ther-
modynamic variables. The leading term of the high-tem-
perature expansions were easily obtained, but their methods
failed, in general, to determine further terms in the expan-
sion. In Ref. 8, we pointed out that the expressions used by
past authors failed to include the possibility of particle-anti-
particle pair production. When this feature was included in
the analysis, we were able to derive the relevant high-tem-
perature expansions. Here we will provide a detailed analysis
on how to obtain the full high-temperature expansions.

The plan of the paper is as follows. In Sec. 2, we intro-
duce the integrals to be studied. Sections 3 and 4 discuss the
high temperature expansions of those integrals. Our tech-
nique is to reduce the integral expressions to contour inte-
grals in the complex plane, which may then be computed by
summing over residues of single and double poles. This we
do in Sec. 3. In Sec. 4, we briefly describe the computations
which lead to the desired expansions. For completeness, we
also discuss the full low-temperature expansion in Sec. 5 and
indicate its use in obtaining the first relativistic corrections
to the standard nonrelativistic thermodynamic results. We
have included some relevant mathematical information in
Appendices A—C and have collected the resulis of the high
temperature expansion in Appendix D.

2. THE INTEGRALS

We consider the following general problem: Calculate
all thermodynamic quantities for a relativistic ideal Bose gas
in n space dimensions. To do this, we introduce two
functions:

1

1 [T
gn(yyr)_r(n)J(; X dx [exp[(x2+y2)l/2 _ry] -1 ](;)

hn(y,r)=ﬁn)

J""’ x" " 'dx [ 1 ]
o (47" Lexpllx® +%)"2 —ry] =11

(2)
These functions are related to the thermodynamic potential
02(T,V,u) in n space dimensions
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.O 2Tﬂ+l JOO .
—_— e —— x"~ 'dx
V' (4a)’T (n/2) Jo

X {In[1—exp[ — (x* + 3!/ + rp]1 + (r— — 1)}

= — 27 W V2AL (0 4 3)2] T

X{h,,+2(y,r)+h,,+2(y,—r)}, (3)

where y=m/T and r=u/m ( u is the chemical potential).
The two terms in (3) correspond to the contribution of parti-
cles and antiparticles, respectively. [Those authors who ig-
nored the antiparticles did not include the second terms in
brackets in (3)]. Given (2, one may calculate all other ther-
modynamic quantities by computing certain derivatives.® It
is therefore useful to obtain the following relations satisfied
byg, and 4,,:

e, — ry?
_gn+1=_ygnv-1+rnhn+l+_¥—hn~1’ (4)
dy n

a 3

2 gy =ymh, + ok, (5)
or n

ad — r
-—hnﬁ-l:_yhn—l_‘__gnfl’ (6)
dy n n

d y

Ehn+|=;gn71' (7)

Note that the recursion relations above connect g, and 4,
with even n among themselves and also connect g, and 4,
with odd » among themselves. This suggests that we will
have to analyze separately the cases of even and odd . Fur-
thermore, it is sufficient to compute the expansions for

h,,( y,r); then the expansions for g, ( y,r) may be obtained by
using (7). We therefore turn to the computation of the high-
temperature expansion of 4, ( y,r).

3. THE HIGH TEMPERATURE EXPANSION: PART |

We now analyze (2) in the limit of y—0 at fixed . Recall
that y=m/T and r=p/m so that this limit corresponds to
the high-temperature limit. For convenience, we will always
take y>0. Consider then 4, as a complex function of r. It is
easy to see that it has branch points at 7 = 1 and is analytic in
the complex 7 plane cut from 7 = 1 to 7 = . [It follows that
£ given by (3) is analytic in the complex r plane cut from
r=1t0 w0 andr = — 1to — . In particular, {2 is real
valued only for real r satisfying — 1<r<1. This condition
corresponds to the physical requirement that the occupation
numbers n, of particles and antiparticles be positive for all
momenta k.%]

The first step in the computation involves expanding
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1

O e, — P )
2)1/2 - ee :

—ryl—1 p=1
(8)

exp[(x* +y

Inserting (8) into (2), we may integrate term by term (see
Appendix A) and obtain

Firva(3)

X z erypp - "VZK(n — 11/2(}’P) , 9)

p=1
where K is a modified Bessel function. To insure conver-
gence, |7| < 1 and n > 2. In fact, we will be able to relax these
requirements later by the method of analytic continuation.
We are interested in obtaining an analytic expression

for the high-temperature (small y) expansion of 4, . As it
stands, (9) is inconvenient for this purpose. For example, if
r> 0, one easily sees that as y is made smaller, more terms in
the sum must be kept. Our goal is to obtain an expansion for
h, , where fewer terms need be kept as y—0. To accomplish

.

n n r+1) ,,Z(I—r)s ( n )
Fls,—;s ——+1; =g'/l—)I'(s——+1
? ‘(Sz 2 T 2 2

s s—n+1
=2 hy)
2F(z 2y *

h.(yr) =

this goal, we begin by making use of the Mellin summation
formula'® to evaluate the sum over p in (9). Using (A2) for the
Mellin transform of the summand, we obtain

n— 1

— Y
hn(y’r)'— +1)/2]

272 [(n
xf”’“’ ds rs)ris—n+ 15
c—iw  [Y1—=11IT(s—in+1)
XzFl(S,f-;s SR P 1 )

2 2 r—1
where Re ¢ > n — 1. To evaluate the contour integral, we
may close the path to the left (see Fig. 1). The value of the
contour integral around the large arc is zero in the limit of
infinite radius. Hence by the residue theorem, the value of
the integral (10) is given by the sum of the residues of the
poles of the integrand. (Note that all the poles are enclosed
by the contour of Fig. 1.} We now apply some hypergeome-
tric function identities to (10) to separate terms even or odd
inr:

(10)

s+1s—n+2 )
F — T2
“( 2 ;b

1

r(Er(=5+)

This is valid for |arg (1 + r)| <7 (which is equivalent to |r| < 1 if 7 is real). Note, however, that the left-hand side of (11} is
analytic in the 7 plane cut from r = 1 to 7 = «. Thus, later on we should be able to analytically continue our results to the
region on the real axis where — o <r< — 1. For now, we will assume that r is real such that |7| < 1.

Using (11) in (10) allows us to break up 4, into pieces even and odd in r. Therefore, we define

ho(yr) =4[k, (y.r) + ho(p, ~ 1], (12)
ho(yr)=1[h,(yr) = h,(y, —1)]. (13)
We then find
mon = (a) | &0 M) (ke ) 4
on=srrm(3) B Q) TR A e ().

The evaluation of (14} and (15) requires us to sum over the
residues (Res) of the poles of the functions specified. In gen-
eral, there are both single and double poles although this, in
part, depends on whether n is even or odd. We will therefore
evaluate the two cases of n even and odd spearately. Equa-
tions (14) and (15) are the basic equations which will provide
the high-temperature ( y«€1) expansion; we now turn to the
calculation.

4. THE HIGH TEMPERATURE EXPANSION: PART Il

In this section we will summarize the details of the cal-
culation of 25, ,(y,7) (i.e., n = 2] 4+ 1 is odd). We empha-
size that this function when / = 2 is relevant for the calcula-
tion of the ideal Bose gas in three space dimensions [see (3)].
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We will then make some brief comments on the calculation
of the other functions of interest. For the reader’s conve-
nience, we have displayed the final results for the high-tem-
perature (small y) expansions of the /, in Appendix D.

To compute the residues of the poles of 4 5, . | ( y,7) we
need to study the singularities in s of

= (2) () (52w (325%) e

We are assuming {for now) that |r| < 1; hence the only singu-
larities of f'(s) are due to the gamma and the Riemann zeta
function. Specifically, f (s) has single poles at s = 1,2,4,. . .,2/
and double poles at s =0, — 2, — 4,. . . . The residues at the
single poles are easy to calculate; we find that
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FIG. 1. The contour specified in integral (10) may be closed in the left haif-
plane since the integrand vanishes asymptotically on the arc at infinity. The
residues of the poles (either single or double) at integer s must be evaluated.

1T( — I)IZZIF(I+ 1) (1 _’,2)Ivl/2 (17)

Res( /(s)] = >

TR
2k — 1Yk
Res (/191 = (=) 2 ek - 1),

ri—k+1)

(18)
wherek = 1,2,. . .,/. In obtaining (17) we have used a number
of properties of the gamma function to simplify the expres-
sion.!! Note in particular that the hypergeometric function
in (18) is simply a polynomial in 7 because k — /is either zero
or a negative integer.

The computation of the residues at the double poles is
somewhat more complicated. First, at s = O we find

X T b [57— Wi+ 1) + ln(%)

-Gl

where 7 is Euler’s constant. The derivative of the hypergeo-
metric function can be computed by using the series defini-
tion of ,F,. At the end of the computation, the resulting
series can be resummed and we find

Res[ f(5)) =

(19)

{% F,(—;_%— 1;5;#)]S=0 = — P11 = E32P).
(20)

Finally, consider the residuesass = — 2k, k= 1,2,....The
calculation is easy because § { — 2k ) = 0. The result then is

4~ 1) (y )
R =L F(—k —k—L};?
R U =gz br)
XE'(—2k), (21)
where the prime refers to differentiation and £ is a positive
integer. Using the reflection formula for the zeta function,'"
we may show that
S'(—2k)=4— 1)2m) - *r2k+ 162k +1). (22)
Using (14), we add the results obtained in (17)+22). The end
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result is the expression for 45, ( y,7) given by (D1) of Ap-
pendix D.

At first glance, (D1) is quite a formidable looking ex-
pression {especially when compared with (9)]. However, we
empbhasize the advantages of our result. First, it is indeed the
high-temperature (small y) expansion we were seeking; in the
limit of small y, (D1) reduces to a very manageable result.
Second, the analytic structure in y and r is easily analyzed.
Note that all the hypergeometric functions which appear in
(D1) are polynomials in 7 (we assume / is a positive integer).
Actually, one must recall that (D1) was derived under the
assumption that |r| < 1 (and p>0'?). However, one may ex-
tend the results to the remainder of the complex plane by
analytic continuation [by noting that # 5, , | ( y,) is analytic
in the r plane with cuts running fromr = — 0 tor= —1
andr=1tor= w.]

We now turn to the other functions; first consider
k3%, . 1 (y,r). The main complication arises in the calculation
of the residues of the double poles. In particular, one needs to
compute various derivatives of ,F,’s with respect to their
arguments. Such computations are far from trivial and re-
quire extensive manipulations of special functions. We give
one such example:

[izFl(s-l— l,s—21+ 1;%;r2)]
s=1

ds ) )
= —p.F(l,1 — ];%;,.2)
reri) L o
_M(*l)rz FULLI+ 37
L[Sk + 8y )7
rer , ”
O Y T ri— k) 23)
where we have written
Se=r+uk+1=3 L. 2

p=1p
The end result is that the expression for 4%, , | (y,7) is the
most complicated one of all and is given by (D2) in Appendix
D.

We may now add the two expressions (D1) and (D2) to
obtain 4, ( y,r) [see (12) and (13)]. It is of interest to check the
analytic structure of 4, which should be analytic in the »
plane cut from 7 = 1tor = o (whereas # { and A { separate-
ly require an additional cut fromr = — « tor= — 1}. To
demonstrate that the sum of (D1) and (D2) has no cut along
the negative r axis, let us isolate the terms in A,,, , (y,7)
which contribute to the cut structure. From (D1) and (D2)
they are

he r)=—7Ty—2:—l—(—l)’(l—-r2)’“V2+reg, (25)
2041 }’» 2r(21+1)

21— 1
B, (9 = —2—— 2 LF (L] + 377 + reg,  (26)

rel+2)

where reg indicates pieces which are nonsingular for all real
r. We may simplify {26) by using (B4) to extract the term with
the singularity. Because
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arcsin(r) = + —127— Farccos(+7)= + %;tiln[ +r+ (= 1)V7], (27)

we note that when 7> 0 (excluding the point 7 = + 1)
arccosr/(1 — 7?)!/? is real valued, and when r<0,
arccos( — r)/(1 — r%)"/% is real valued. It follows that

a2 4 (12Tl (d )1
FiL LI+ = £(1=7) ri+y (drz) ,
+reg, (28)

which after some manipulation becomes

1
L+ g = £ (= T g
(29)
The sign ( 4- } which appears in (28) and (29} is to be taken
positive when r > 0 and negative when 7 <0. Inserting (29)
into (26), wesee that i, , (y,7)isregularfor — o0 <7< 1,as
we originally claimed.

Lastly, we comment briefly on the case of 4,,{ y,7). It is
readily apparent from (14) and (15) that for 4 3, we need only
calculate the residues of single poles. For 4 5,, in addition to
the single poles there is one double pole at s = 1. Thus, it is
fairly simple to compute the expansions for 45, and 45,
which we have written down in (D3) and (D4), respectively.
We may repeat the arguments of the previous paragraph to
show that A,,( y,r) has the correct analytic structure.

It is interesting to note that one can derive explicit ex-
pressions for A,,( y,r) and g,,( y,7) in terms of elementary
functions and polylogarithms. In Section 5 we will derive the
general expansions, which turn out to be useful in the low
temperature expansion as well. For now, we will provide a
simple example when / = 1. By making the substitution
o = exp[ — (x? +»%)"/?] in (1) and (2), we readily find

g(y,r) = Liy[e" =] —yIn[1 — "~ V7], (30)
hofy,r)= —In[1 — "~ "], (31)

The high temperature ( y—0) expansions may be easily
worked out by using (C6).

5. THE LOW TEMPERATURE EXPANSION

We now consider (1) and (2) in the limit of y— oo at fixed

r, which corresponds to the low temperature limit. We may
derive expansions for g, and 4, directly by making the sub-
stitution @ = exp[ ¥ — (x2 + »%)"/?} in (1) and (2). The re-
sults are

1

I (n)
1 _ n/2 — 1 _ n2— g
XJ’ dw( In w) Ry—Inw) (y lnw)’
) expl(l -yl —w

g.(»r)=

(32)

n/2 — 1

i) = o | do SR LRI RO g

exp[(1 —r)y] —w
Expanding the numerators under the assumption that
[In @/2 y| < 1, we may use (C1) to integrate term by term and
obtain
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L) & 1 LI
g.(yr)= r'(n) kgok!]"(n/Z-—k)(z)’)

x5 (% + & Li s ale= )

+F(%+k+ 1) Lik+n/2+1(e'r—l)Y)]. 34

_Tn/2) & T(n/2+k) (1 Y12
hulyor) = () k;)r(n/z_k)k!\zy)
XLig, n2(€" 1) (35)

If n is odd then (34) and (35) are asymptotic series in y as
Y— . In the case of n even, then the sums in (34} and (35)
contain only a finite number of terms up to k = n/2 — 1.
This verifies the remarks made at the end of the last section,
and confirms (30) and (31). Therefore, by using {C6), one can
actually use (34] and (35} as high temperature expansions,
provided # is even. On the other hand, one can always use
(34) and (35) as low temperature expansions by making use of
the series expansion given in (C1).

We illustrate the use of (34) by computing the nonrelati-
vistic limit of the charge density p of an ideal Bose gas. It was
shown in Ref. 8 that p is equal to the difference between the
number density of particles (n) and antiparticles (7), where

"= —;—3&( W, (36)
ﬁ=%g3(y, -9, (37)

withy = m/T and r = p/m. Using (34), we see that the lead-
ing term in the low temperature expansion of g, is

&y, =427 y)'/? Liy e = 1) (38)

As discussed in Ref. 8, the nonrelativistic chemical potential
is tyg = p — m. Let us define

Znr =e(’_1)y=ef‘NR/T‘ (39)
Then
8y, ~ =42 y))'? Liz plzgg' e~ %)
1
Ry e, (40)
NR

which is exponentially small as y—» o . That is, the contribu-
tion of the antiparticles is exponentially small in the nonrela-
tivistic limit. Therefore, in this limit, p = n and therefore by
(36) and (38)

n= (%_';T)m Lis/2(2nr) » (41)

which is the standard result.® The first relativistic correc-
tions to (41) may be easily calculated using (34).

6. SUMMARY

The solution to the complete high temperature ( y—0)
expansion of integrals (1) and (2) has been obtained. The re-

H. E. Haber and H. A. Weldon 1855



sults for (2) have been explicitly written down in Appendix
D. For thermodynamic applications, this allows us to obtain
the thermodynamic potential (3) (in an arbitrary number of
dimensions) from which all thermodynamic quantities may
be computed. In three spatial dimensions this requires evalu-
ating A $( y,r) from (D1) and yields

0 —

A T Y g _y 3/2
i + (1 27) (1 )
+ 1672 [ln(—)—}/+i—2r2+§r"]
Yy V¥ T2k + 1)5(2k+ 1)
( ) kzl( (41r) rk+ O k+3)
X, F -k —k— 2,5,7’2) , (42)

wherey = m/T, r = u/m. The hypergeometric function is a
polynomial in 7 of order k. By using (42) all thermodynamic
functions immediately follow from the relations

S— ( on )
aT
P ( on )
av
- _ 392)
0= ( au lrv’
U=TS— PV +puQ. (43)
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APPENDIX A: SOME IMPORTANT INTEGRALS

We list here two integrals used in the text.!! In deriving

(9), we need
0 xzne — plx? + p? 2y n
X o rm+ (—) K, (py), (Al
| S i+ (2) K. o) 40

whereRen> — 4, Rey>0,and p>0.
Second, in deriving (10) it is sufficient to know

[ apr = ekt
_ 77,I/2(2y)N

(1 —n)¥+e

2F1(F'+NN+5 /‘+5

IF'u+N)JIu—N)
I'ip+14)

T+ i) (A2)

where Re 2 > |Re NV | and Re p{1 — r)>0.

APPENDIX B: SOME PROPERTIES OF
HYPERGEOMETRIC FUNCTIONS

We quote some very useful relations for Gauss” hyper-
geometric function ,F,.">'* ,F, (a, b; ¢; 2)/T" (c) is an entire
analytic function of its parameters a, b, c for fixed |z| < 1. An
important relation used in deriving (11) is"
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oFi(28, 25 0+ b+ =)

_Iyra+b +5)

r(a+;)r(b+;) Fi(a, b §2)
ZyYlla+b

(B1)

where |arg (1 +z)| <manda + b +1#0, —1, =2, ...
In using the recursion relations (4)(7) the following two
results are particularly useful:

d b

= oFifa, bic) = ic_ Fila+1,b+ e+ 132), (B2)
d

= [2,F\(a, b; ¢ + 1;2)] = ¢~ ,F,(a, b; ¢; 2). (B3)

We note that all hypergeometric functions which ap-
pear in Appendix D are simple polynomials with the excep-
tion of

il 11 +3 rz)_(l ,2)1—1/217’__&_1_)

ri+y
X( di,.z )’ arcsrmr , B4)
Fili~Lg A =(1 —rz)’—lﬁ (Ed?)lﬂl [,2,_3
an(15)] o9

Finally, we briefly mention some properties of
JFalay, a,, as; by, by; z). First, suppose a; = b,; then
sFola,, ay as; by, as; 2) = ,F(a,, a5; by; 2). Second, it will be
useful to express ,F, as a sum over ,F,’s when possible. This
makes it easier to check recursion relations {4}{7). We give
one such example:

1/& .
Foll, 1,1 —13,2,7) = " SoF(—i 557 (B6)
j=0

which is useful in working with (D1). Finally, we note the
following useful relations found in Ref. 14:

Fala,bicie+ 1,d+ 2= ——Fla, b d+1; 2

d

- d3F2(a,bcc+1 d; 2)
(B7)
and
Fabec+1ld+1z)— — ¢—1
fa—1)(b—1)
X Ffa—1,b—1c—1;2—1].
(B8)
APPENDIX C: THE POLYLOGARITHM
The polylogarithm Li, (x) is defined (for n > 0) as'®"’
—Ing) !
Li, (x) = j = . Cl
nlX) = F( ) 1 ,,2’1 (C1)

The following properties are useful:
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4 Li,(x) = M, (C2)
dx X

Li,(x) = — In(1 — x), (C3)
Li,()=8() (n>1) (C4)

It is useful to deive a series expansion for Li, (e ~7) about
y = 0. To do this, start with the well known identity

1

- k+1
Ty S
2k —
><§(2k)(—2—;) . (C5)

Successive integration of (C5) n times will yield Li, (e =%) :

(= 1yLife) ="S (=W Eln—k)

K=o k!

( _1)' [lny Sn—l]_m

RS r) = —2 — Aty

22+ 1) (=ha

21— 1 (_ 1)1
2[ri+1)?

1)k+ l(2k

P —1)6R2k)( y V*
A 2k +n—1) (21r) ’
(C6)

where S, is the sum of the first # reciprocals [see (24)]. Note
that as it stands, (C6) is only valid when # is a non-negative
integer. The proper analytic continuation of (C6) is derived
in Ref. 18 and we quote it here:

Lie) =P —apyr=2 4 $ IZVEOZK) )

APPENDIX D: TABULATION OF RESULTS

We list here the complete high temperature expansion
of 4, (y, r) that results from the calculations described in
Secs. 3 and 4, where y is assumed to be positive. [The func-
tions g, (v, 7) are immediately obtained by computing one 7
derivative as in (7).] There are four possiblities since the part
of h,(y, r) that is even in  or odd in r is calculated separately
[see (14) and (15)] and the index 7 may be either even or odd.
Note that S, is the sum of the first k reciprocals [see (24)].

(3

{ln(y )+5[r W+ )] + IA,F,(1,1,1 — I§2r2)]

4
1

+ 2rii+1) &%
(=1

e 2=k 01—
2( )( ) Tk+1)

2) F(—k 1=k} P)

2F(l+1)(y) =" 4

ho ()=

" ,.( )l+1 ¥y 201 —1
 r(i+1 ( ) {F(l)
+ ’2‘( ),‘F(k+(1)§(ik)+ 1)

(S + 81 _i_1)
r(k+g)r(l—k) kzl(

HIQS, (-1

y Y& L2k + 162k +1)
3 - ( ) I“(k+1)1‘(k+l+l)2F'(_

n( L)k 1 -5

(2 )_’kzF.(k+1,k+1—1;g;r2)+

I —k; 4 ), (D1)

(= )'*'rE

ALFR(L LT+ 572
2rl+3) 2l +Er)

e LR (2 V() 4y L) S5

r&)yri+k) £(2k)
2 e T (2K)E (2K) . ,
X F(1—k, 1 —k ’2"2)+1‘(1)k2.( 1) Tkt 2) ( ) FL L1 —Lk+1L,k+37A
N N ’Z(Sk i1+ Siik—j-1)
—or — V(2K )E (2K = j D2
G)";‘( Tkt )(4 ) z o F(j+ Wi+ I k- I+k—)) (b2)
hab,n = L —211_)1((21”_'2)1_1 (In A1 = P)] =y — () + 271 — 1),F5(1,1,2 — 12,37}
_ Lyt rg-1 1w LU=k —Ye@I—2k—\(p\* o oy
4(2) r(g+1)+2r(1+;)k§o( ! r(k+1) \2) K=k l—k—L47)
l+1r(l) pH-2 _ kr(k)F(Zk)LZk L o
=l F(2l) kzl( . I'ik+1) (27r) £l I+Li=kgr), (D3)
b4 = 1¢ ri—k-— W2l -2k — 2)(}; 2k + 1
h21 ’ . _ 1.3
b= r<l+;) 2( Tk+1) ) il —kl—k—§37)

T Ti+y Tk +1)
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u-2 & [Rk+ )G —1—k)E(2k)
&S, : (2

\4”) (1 — k,%—l—k;g;rz) (D4)
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Rigorous iterated solutions to a nonlinear integral evolution problem in

particle transport theory
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After a preliminary functional study of the operator associated with the relevant Boltzmann
equation, which is shown to be a contraction operator, a nonlinear integral evolution problem
occurring in the diffusion of the particles of a mixture is solved by resorting to a rigorous iterative
scheme, in the case without removal. According to this scheme, an explicit recursive
representation for the general iterated solution of order  is developed. Structure and behavior of
the solution so obtained are investigated and commented on.

PACS numbers: 05.60. + w, 51.10. + vy, 02.30. — f

INTRODUCTION

We refer to the following physical situation. At the time

t = 0, a spatially uniform, pulsed source, say Q (v,?)

= Q.S (v) (¢ ), injects Q, test particles (t.p.) (per unit volume)
with the velocity distribution S (v) and such that

Sr,dvS (v) = 1 in an unbounded host medium, consisting, in
turn, of some other particles to be distinguished as field par-
ticles (f.p.). The host medium is taken to be free of t.p. up to
t = 0 so that for the initial t.p. distribution function f(v,?),
right after the pulsed injection, we have f(v,0) = Q, S (v).
With respect to this initial datum we want to study the be-
havior of f(v,2) for any ¢ > 0 by accounting for the three fol-
lowing binary events, that are supposed to take place
between the particles of the mixture under examination.
Whereas t.p. are removed, say, through absorption, by f.p.,
we assume instead that the t.p. can interact with each other
through either scattering or removal (by absorption), the lat-
ter event being introduced to generalize the mathematical
effects due to removal rather than having a strict physical
meaning. We have thus to face a nonlinear evolution prob-
lem for the distribution function of the t.p. considered.

The physical situation sketched above has been recently
the object of several investigations aimed at focusing the
mathematical problems connected with the existence, uni-
queness, and structure of its solution. This has been essen-
tially done on the basis of two main hypotheses concerning
the cross sections and the scattering probability, respective-
ly. More precisely, the 1/|v| approximation for the cross
section and the model of isotropic scattering between rigid
spheres for the scattering probability have been systemati-
cally exploited. In this context, we recall the works of Krook
and Wu'” and Bobylev,? who first obtained independently
the exact solution for the isotropic distribution function in
the absence of any removal. Successively, and for the same
physical situation, a series of papers by Ernst* and by Barns-
ley and Turchetti’~® have contributed significant progress to
the knowledge and understanding of the problem.

In this paper, still referring to the 1/|v| approximation
for the cross section and to the case without removal, but
leaving the scattering probability unspecified, we succeed
not only in establishing some general results concerning the
existence and the uniqueness of the solution of the problem,
but also in defining an iterative constructive scheme leading
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to explicit iterated solutions of some “practical” interest.
This is achieved by starting with the so-called “scattering
kernel” formulation of the relevant nonlinear integro-differ-
ential Boltzmann equation, and then by reformulating it in
the equivalent integral form.

In Sec. 1 the general theory of the problem is expound-
ed. In particular, we prove—for a general scattering prob-
ability and for a general velocity distribution S (v)of thet.p.,
emitted by the external source—the existence and the uni-
queness of the solution to the nonlinear integral evolution
problem to be dealt with on the basis of a simple application
of the contracting mapping principle. The contraction pro-
perties of the operator associated with the problem under
consideration are guaranteed only up to a finite “critical”
time 7, that is shown to be a function of the scattering colli-
sion frequency Cs between the t.p., the intensity Q, of the
source, and the functional properties of the scattering prob-
ability. In Sec. 2 we present, instead, on the basis of the the-
ory of the approximate methods for the solution of operator
equations,'° the results for the sequence of the iterated solu-
tions fo(v,t ), f3(v,t ),~-of the problem, and give the explicit re-
cursive representation for the general £, (v,¢ ). By choosing
folv,t) = QoM (v), where M (v)is the Maxwellian normalized
to unity (with the physical parameters determined by the
initial distribution § (v) and by the conservation laws of the
scattering mechanism), we are also able to show that all the
iterated solutions so obtained not only satisfy the initial con-
dition at 7 = 0, but also as #— o tend to the correct limit just
given by the Maxwellian M (v). This circumstance can be
interpreted as showing that the “critical” time T"can actually
be extended much farther than the value estimated here.
. THEORY
A. Statement of the problem

The physical situation sketched in the Introduction is
adequately described by the nonlinear integro-differential
Boltzmann equation, that in the frame of the “scattering
kernel” formulation and for >0 read as'"'2

g{ + [CaN + Cnlt)] f(vit) = L(v1)

ECSJ av' av'f(v',t) f(v",t)m(v, v —v),
R.JR,

veR,, te[0,), (la)
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and is to be integrated upon the initial condition

S(¥,0) = QoS(v). (1b)
In Eq. (1a)
ve = CaN, (2a)

where N is the assigned total density of the f.p., is the con-
stant collision frequency related to the removal of the t.p. by
the f.p. in the 1/|v| approximation for the relevant cross
section. The appropriate real positive constant Cy is indeed
equal to |v|og(]¥]). Analogously,

vt) = Cn(t) = (Cs + Cg)nlt), (2b)
where
n(t) = f dyfivt), 3)

is the unknown total density of the t.p., is the total collision
frequency, scattering plus removal, of the t.p. among them-
selves, still in the 1/|v| approximation for the cross sections.
In this case Eq. (2b) follows from

Valwt) = [ "Iy —"la Iy = v )S1v"0),
R,
a=3SR, (4a)

with

v —v"]|o,(lv—v"))=C,, {4b)
C, being an appropriate real positive constant. [Compare
also C; in Eq. (1a)].

We recall also that the scattering probability
(v',v"—v) obeys, by definition, the normalization condi-
tion.

J dvr(v',v'—v) =1, (5)
R,
whereas for the scattering-in integral we have, in general,
dvigvt)= f dv' vg(v,t) f(v',t). (6a)
R, R,

In the present context, it is easily verified that

.[wgmn=C¢%y (6b)

B. The continuity equation

Equation (1) is made fully explicit once we know n(z ).
An autonomous equation for n(t } is, indeed, obtained by just
integrating both sides of Eq. (1a) itself over the domain of the
velocity v. Assuming that the exchange of the order of inte-
gration (over v) and differentiation (with respect to ¢ ) is per-
missible, we get in fact for n(t ) the following nonlinear ordi-
nary first-order differential equation of Riccati’s type

n(t)= — Coln(t) — Can(t), (7a)
which is the continuity equation holding for any 7 and S.
The general solution to Eq. (7a) satisfying the initial condi-
tion

n(0) = Q, (7b)
isl 1,12
?:RN:

nit) = QoCr N [(CaN + Q,Crle BY — 0,Cr ] " (8)
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We observe that, for large ¢, n(z ) behaves exponentially like
exp( — Cr Nt), as physically expected.
C. The integral formulation of the problem

Equation (1) can be now integrated along the trajectory
of the general t.p. to yield

Svt) = QoS (v)Tt)

+ Csf j fdv’ dv” du
RyWVR,JO

XT (u)m(v', V' —v) f (V' u) f(v",u),

(9)
where we set
T(tu) = exp| — Cx Nt — C §',n{u')du'], (10a)
with
Tyt) = T(1,0). (10b)

Equation (9—which is of Volterra’s type with respect to
time—is a nonlinear integral equation for f (v, ), and de-
scribes the evolution problem following the application of
the pulsed source Q, S (v)d(¢ ). For any fixed 7, the kernel of
Eq. (9) becomes fully explicit once we introduce in its time-
dependent factor T (¢,u) the expression of n(t ), Eq. (8). There
results that

T(tu)=6(t)0 ~'(u),
with
g(t)=e

(11a)

— CrAt —EgNtq-C/CR

(11b)

[(CxN + QuCr) — QuCre

D. The case without removal

We shall consider hereafter Eq. (9) in the limiting case
when both C,, and C, vanish, that is when no removal is
present. In this case, Eq. (8) for n(t) reduces to

n(t) =Qo, (12)
which is the simple conservation principle, holding now, for
the t.p., whereas Eqgs. (11a) and (11b) give

Titu) =0t —u)=e %7 (13)
that is, T (z,u) not only is separable, but it is also of displace-
ment type.

Equation (9) can be then rewritten in an operational
form as

f=4f, {14)

where 4 is the nonlinear inhomogeneous operator defined by

Af=0Q,S(vje >

14
+ Csf f Ja’v' dvidue %Y
R,/R./0

XV, v =) fV,u) f(v"u).
(15)

We shall briefly study next Eq. (14) from the point of view of
functional analysis.
E. The operator A as a contraction operator

The proper Banach space to work with is the space E of
the functions g(v,t ), defined on R, @ [0,7'}, which are contin-
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uous in ¢ for almost every veR,, and summable in v for any
te[0,T]. If

el =_LdVI¢(v,t)l, (16a)

denotes the L, norm with respect to v, the norm in £ is
defined as

llelll = max |ig|,. (16b)
[0, T']

We know that 7 is a nonnegative function in R; @ R, ® R;,
summable with respect to v. Let B denote the closed ball of E
centered at the origin with radius @, (in other words

ll@lll < Qo if @€B). It is easy to check that A maps B into
itself, namely, 4BC B. As we may exchange the relevant in-
tegration orders, we have in fact for peB

1
— CeQo — CgQy(t — u)
4 ,<oe ™+ C [ due™ ¥ o

e 112 _ lllell[%), ~cses 17
< 0, +(Qo O )e » (17)

and consequently
4@ 1<Qo (18)

as required
We shall show now that it is possible to choose 7> 0 in
such a way that 4 is a contraction operator on B. By account-
ing for the symmetry of 7~ with respect to the velocities before
collision, namely
7V, v —v) = 7(v" ,v'—>v), (19)
we verify successively that
Ap — Ay
t
= Csf due - "’J av' dv'z(v v —v)
(+] R, JR,
Xl (v'u) + Yv,u)llo(v"u) —Y(v',u)],  (20a)
14
- C ot — u)
g — 491, <Cs [ due™ S g + vl o — l..(200)

ll4g — Ag]||<2(1 — e~ )|l |o — y]lI. (20c)

The opertor A satisfies thus a Lipschitz condition, and a
sufficient condition for it to be a contraction is

T <In2/CsQ, 21)

Another estimate for 7" can be obtained if we assume that the
linear integral operator generated by the kernel

k (v',v') = m(v',v"—v) (depending on the parameter v) is a
continuous mapping of L, (R;)into L _ (R;). Let N (v)denote
its norm. If we make the further assumption that NeL,(R;) [a
sufficient condition for both the previous assumptions to be
true is that there exist yeL,(R;) such that 7(v’,v"—v)<con-
stant y (v)], we may write

Ldv" (Vv =)@ (v',u) — Yv",u)] | <N (v)|@ — ¥l|..,
' (22a)

and
g — AY|<CsN (v) f due” %o — yl.llp + ¥l
(22b)
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from which there follow that

g — ay|<2N 1 —e” “*)llp — ¢l (232)
and then the new estimate
1, 2N|
CsQo 2||N“ -1
We realize thus that Eq. (23b) actually enlarges the previous
condition for 7, Eq. (21), when ||V ||<1. A sufficient condi-

tion for the latter inequality to occur is that 7 is bounded,
and there exists at least one pair v'y, v”,, for which

(23b)

sup 7V, v —v)
¥.v'eR; 8 R,
= max (Vv —v)=7(vy,v," V), {(24a)
(v.v")eR; e R;

so that
|V ||<J dv supm(v',v"—v) =J dv m{vy',v,"—v) = 1. (24b)
R, V.V R,

We notice that no restriction on T would appear in the case
||V || <4. Now, if one of the above restrictions for T'is in order,
A satisfies all the requirements of the contracting mapping

principle on B, and therefore there exists in B a unique solu-
tion to Eq. (14). This is in agreement with the physical expec-
tation that the solution f'{v,? ) is a nonnegative function with

S, d@¥f(v,t) = Qo

Il. ITERATED SOLUTIONS
A. Statement of the problem

In studying the successive approximations scheme for
the actual solution to Eq. (14) we recall that,'’ in the hypoth-
esis of the previous section, if fo(v,? ) is arbitrarily chosen in B,
then the sequence {f, } of the iterated solution

fi=Af_, (n=12,.), (25a)
converges in the norm of £ to the unique solution of Eq. (14)
belonging to E, and very simple a priori estimates for the
approximate solutions can be given, namely [compare Eq.
(21)]
21 —e ST

2¢” %7 _

I1/—Ali< Diifo—4hll. b)
The main shortcoming is that the time variable is restricted
to a finite interval [0,7'], where T cannot exceed a critical
value [see Egs. (21) and (23b}]. We shall construct in the
sequel a practical iterated solution by means of a suitable
choice of the starting point f;,, for which the proper behavior
for t— o is reproduced to any approximation order.

We refer to the physical case in which the stationary
version of Eq. (14) has a solution QM (v), with
Sw, dv M (v) = 1,and M (v)is a solution to the nonlinear inte-
gral equation

M(v)= f av' dv” (v, v —v)M (V)M (v"), (26)
R, /R,
expressing equilibrium of the collision term. [In principle,

M (v) might be even different from a Maxwellian distribu-
tion.] We expect then that

limf{v,t) = QoM (v), 27)
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as it necessarily occurs when an H-theorem exists.

Let us now try to choose f,€B in such a way that f,
satisfies such a requirement. Confining ourselves, for the
sake of simplicity, to a stationary f,, we take f, = Qu¥(v),
with ||#]|<1, and get

Alvt) = QoS (vle ™ S 4 g1 — ™ )

XJ X av'av'a(v' ;v —v)(v' )P(v"). (28)
The limiting c;)néition, Eq. (27), is thus fulfilled if and only if
L A av' av'm(v v vV igv") = M (v). (29a)

Combining this with the integral equation for M yields

[ [ av avatr—atw)+ s — o <o,
R, JR,

(29b)
which, upon integration with respect to v, gives
|M <+ ¥| |M — || =0, namely #(v) = + M (v). We are led
thus to the unique possible choice fy(v,? ) = QM (v). The be-
havior of the higher iterated solution remains, however, tobe
investigated. In any case, the following decomposition is
proposed:

fovt) = QM (V) + g, _1(V:t), (30)

and the iteration scheme for the g,’s is

g, (vt ) = Qo[ S(v) — M(v)]e =%

8a (Vi) = Qo[S(v) _M(v)]e—CsQn‘

"= gy

+20, ¥

I=1 j=

M=o =1 gy dn—1m

+ Qo Z 2 z
=1 m=1 j=0
where we use the position
Vip) =J av' av’ a(v,vV'svM V') (v)=WMep)
R, /R,

Wiod) = Wihe) = f jdv v TV vV (V).

After evaluating the integrals with respect to #, we end up with

. ‘d(n,l) )
g.v1) =0~ S FUl(v(CsQot )

S Ve “Cﬂ“csgofdu(chouVe‘

3 WIFGTUFL ”)CSQof du(CyQou) +e ™" T NS T SO,
]

+2Cq Qof due” 5o~ “)J dv' dv”

R, JR,

XV v —v\M(vg, _,(v",u)

+csfdue*05"*""“’ J f dv' dv"
R. VR,

Xalv',v'—vig, (v ulg, (v",u) (31a)
starting from
glvt) = Qo[S(¥) — M(v)]e =" (316)
We now prove by induction that
2" icsoumh _
galWst) = Qol;e ,—ZOF VICsQot )’ (32a)

where
dinl)=n—-1-nrl+2" (I=12,.,29,
r=0for/=1r=1+ [lg,(l—1)] forl=2,..,2"
(32¢)
It is easily verified that d (n,1) = s, and that the maximum
value of d (n,])is 2" ! for 2"~ 2<i<2" ~ .
B. Proof of Eq. (32)

Equation (32) is trivially true for » = 0 with
F%®) (v) =S(v) — M (v). Let us assume that it is true for the
index n — 1, and evaluate g, (v,f ) by means by Eq. (31}. We
get

(32b)

{1 — 11CsQou

(33a)

(33b)

(33¢)

=0
ol A= I—1 din— 1) k! -
~20, 3, ¢ (——-)—(CQ ST S T R
=2 j=o =y (-1
=1 —ldn—1l)dn—Lp—1) C i+ (p—1
- 'PCSQ‘"p _ (l +.]) F(n—l) F(n—l)) ) (C Qt)k
Qopgz =1 j=o o -1 Wi r ‘kgo i
2" _ , =1 g 1hdn—1p-1) i+ ) 1
0 3T e 3 —%;:W(F&;—”FL":W z b—Wic,our,
p=2"_1+1 ,=p_2n—1 j=0 i=0 (p— )
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where

= Vam_ 1

M(v)+2 2 E

-1 "_ld(n—ll)dln—lmj

+'3y

I=1 m=1

2 _
—V(F(l':/—lt)):
J

Fiy(v)=S(v)—

1)1+l

(i +J)
= (1+m_1)i+j+l

j=12..,d(ml)=n

i=0
F{ =
Rearranging the summation orders yields then
 Cep A1) ]
g, (W)= Qe TS FUCs Qo)
i=0

n—1

—QOE

p=2

d(n 1,p) (P

E (CsQot ) ——
,lp —
k!

pCSQot

p—1 din— 1}y +din—1Lp—1}

+3 3 (Cs Q)

I=1 k=0

1)"

din—Lp—1)

% U ¥/ :
i = max(0,k — j) (p - 1)l+1+

N n—1

IR

=1y l=p-2m—1

din—1p—1) (l +])|
_ l)i+j+l

(F("_ 1I’F(n - 1))]

-

4

k=0

din—1,1)

X

j= max(0k “F(n = 1p— 1)) i= maxfO.k —)) (D

Now, in order to check whether or not Eq. (32) is recovered,
we must interchange the summation order between / and k.
For this purpose we have tostudy d(n — 1,/) +d(n — 1,
p — ) versus I. It can be verified that the trend is always
symmetric with respect to the midpoint / = p/2, and is
monotonic in each of the half ranges with a maximum at

! = [p/2]. To evaluate this maximum we have to prove the
following result:

din—11)+dn—1m)<dnl+m) (I<m<2"~"), (36)

the equality sign holding if and only if m = 1 or/
»2U&dm — 11 The case m = 1 is trivial. When m > 1 and /
> 2U&lm =11 then, putting

s — 1 = [lgolm — 1)] = [lg,{/ — 1)] we have

[ig,(l + m — 1)] = s, and thus

din—1l)+dn— 1,m)
=[n—-1—(s+1]{l+m+2+"'=d(nl+m)

(37a)
When m > 2 and / = 2!%4m — D1 we have again
[igo({ + m — 1)] =sand
dinl +m)—dn—1])—dn—1lm=2""=1=0.
(37b)
When m =2 and / = 1, we have immediately
din—1,1)+d(n—12)=dn3) (37¢)

There remains thus to check only that the sign < holds in all
cases excluded so far. Setting now r — 1 = [lg,{/ — 1)}, it is
easily realized that there are only two alternatives:

() Vgl +m—1)]=s5s—1, (i)lg(+m—1)]=
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VIEGY)

(F(" - ”,F(" - l)),

1)1 d{n—1,p)

“ -1

din—-11)+d{n—1p—1)

W(F(" —1) F(n - lb)

(34b)

(34¢)

k!

)k+l ( "’*‘”)

din—1,}}

j=max[0.k —d(n—1,p—1)]

(Cogu Lt

(35)

—
In the case (i) we may write

dml+m)—din—1l)—d(n—1,m)
—s=1=-nl—-2=m—dsl)pm—-2""50,

(38a).
whereas in the case (ii) we get

din—1ly—d(n—1,m)
dis+11)>0,

d(n] + m)—

=2 (s—1) —2"=2°~— (38b)

as follows now since / <2°~ ' and, consequently,
d(s + 1,1) < 2°. This completes the proof of Eq. (36).

Let us now goback tod(n — 1,/) +d(n—1,p—1),
whose maximum is reached at / = [p/2]. Since [p/2]and
P — [p/2] either coincide or are adjacent, the previous
lemma applies, and we have

din—1L1)+d(n—1p—1)

<d(n—1,[p/2])+d(n-1p — [p/2]) = d (n,p).

(39)

Ifwedenoteby s = h (n — 1, p, ko)<[p/2] [withp = 2,3,...2"
and k,<d (n,p)] the smallest intersection of the straight line
k = k, with the stepwise function

k=d{n—1l)+d(n— 1p—!)whennandparefixed,and!/
is running along its domain depending on the chosen values
of n and p [compare Eq. {35)], the final inversion of the rel-
evant summation orders can be performed, to recover just
Eq. (32a) with
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Frm=—20g+ 20— =1’

Fi
din— 11) k'

A= (1= 1)k
(1_ 1)} I—hn— L)

-1
VFR"Y
d(n—1,p)

2 p=hin— Lij) k=max[0j=d(n— 1,0 - p)|

din — 1,1 — p} (l+k)'
______W Ftn— 1)’F1n —1) ,
i = max(0,k — j) (1_1)‘+k+1 ( Pk 1-‘,’,)
1=23,.2",  j=0l..dnl) 40)

U denoting the unit step function.

Equation (40) allows us then to construct one by one all
the coefficients F; ' (v). The index 4 (n — 1,1, j) can be deter-
mined easily by using the following recipe, which is equiva-
lent to its definition.

If the equation

(n—1)— (n—3 — [Ig,(l — 2] — 1) — 2216 =2 =
(41a)
is satisfied, then we have 4 (n — 1, /, j) = 1. Otherwise, one
puts successively # = 2,3,...,[/ /2] in the equation
(n—3—[lgolh~1)h —(n—3 — [lgll ~ A = 1)])I = h)
+ 22Utk =1 _ pUsl =k~ 1)y _ (41b)

until it is satisfied; such a value is 4 (n — 1,/, j). There always
results

hin—12,j)=1,
hin—12"0)=2""",

n>1,0<j<2n — 2,

4
n>1. 41c)

C. Conclusions
Inserting Eq. (32a) in Eq. (30), we have thus that

;m—1

Liwt)= QM)+ Qy 3 Fliy vle

_Ic 0'd(n‘l,lb - )
+Q 3 e TS R WIC 0 ),

=1 ji=1
n=0,1,2,.. (42)

is the nth iterated solution to the nonlinear integral evolution
problem described by Eq. (14).

About this general approximate solution of order n we
may comment as follows:

(i) according to Eq. (25b), its convergence in the norm of
E is guaranteed even if only for a finite “critical” value T of
the time, as estimated in Eq. (21) or Eq. (23b);

(i) as +—0, Eq. (42) tends to the correct limit Q, S {v), Eq.
(1b). It is, in fact, readily verified that
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n = 1
> Fiyv)=5(v)— M(v) (43)
=1

(iii) as #— o, Eq. (42) tends also to the correct limit
QoM (v), Eq. (27). This circumstance amounts physically to
an increase of the estimated critical 7.

In this respect, we have not attempted, indeed, to ex-
tend the value of T by considering f(v,t,) with £,< T as the
initial datum of a new evolution problem,; it seems, however,
very likely that this task may actually be accomplished, and
the value of 7 may be extended up to infinity, following the
line proposed in Ref. 9.

To conclude, let us examine briefly two particular cases
for which an exact analytical solution to Eq. (14) is easily
obtained. The first case is characterized by setting
7(v',v"—v) = M (v). In this case W (¢, S — M) =0, and
V(iS—M)=W(MS — M)=0so that for any » all the
F{?\(vps for I>1, j> 0 vanish except the F'{ (v)’s that are
equal to S (v) — M (v). Consequently, for any n we get

fo(vt) = Qo{M(¥) + [S(v)— M(v)]e” %},  (44a)

that is just the exact analytical solution to Eq. (14) in this
case.

In the second case we take instead S (v) = M (v). As
Wipy)=0ifp =00ry =0, and V(p) =0if ¢ = 0 we ob-
serve that all the F"}(v)’s for any n,/, j are zero so that for any
n we get

Satvst) = QoM (v), (44b)
coinciding with the exact analytical solution to Eq. (14) that
is now in order.
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On the inconsistency of a photon creation mechanism in an expanding

universe
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We show here that if the quantum equivalence principle (QEP), as it was formulated in previous
papers, is applied to the massless vector field, an inconsistent unphysical photon creation is found.
This timelike and longitudinal photon creation is obtained when the 4-potential 4 # is quantized in

a covariant way.

PACS numbers: 11.10. — z, 04.60. + n

1. INTRODUCTION

In previous papers (cf. Refs. 1 and 2) we developed the
quantum field theory in curved space-time for massive and
massless vector fields. In these papers we only quantified the
material field, while the gravitational field was introduced as
an unquantized external field through the curved space-time
metric. For this purpose we used the Green'’s functions gen-
eral theory (cf. Ref. 3), which consists in generalizing to
curved space-time the tensor kernels 4 #¥(x,x")and 4 #”(x,x’)
of the flat space-time, constructed from the Pauli-Jordan
function.

We showed that (unlike the flat space-time), for general-
izing the bivectorial kernel G#"(x,x’) [curved space-time
generalization of the kernel 4 #¥(x,x’, m = 0)] it is not suffi-
cient to know the biscalar kernel G,(x,x’'), curved space-time
generalization of the kernel 4 ,(x,x'). We also showed that
the kernel G #*¥(x, x') is not unique. That is to say, the formal
properties that the kernel G #”(x,x’) must verify do not deter-
mine it uniquely. Therefore, there is no unique way to define
the positive- and negative-frequency parts of the vector field.
This problem was pointed out in Ref. 1.

In the scalar case, a similar difficulty occurs for the
biscalar kernel G,(x,x’). In Refs. 4 and 5, and by using the so-
called quantum equivalence principle (QEP) for scalar fields,
we found an adequate kernel G {¥'(x,x’) on each hypersurface
2 of the curved space-time (that we suppose globally hyper-
bolic). The formulation based on this idea (cf. Refs. 6 and 7)
leads to the existence of particle creation at the expense of
the gravitational field.

If we extend this idea to the massless vector field—giv-
ing on each hypersurface X of the curved space-time ade-
quate Cauchy date for the bivectorial kernel G {¥*(x,x'}—a
photon creation is obtained. This fact is in disagreement with
the commonly accepted result that, in a metric conformal to
the flat space-time one, there is no creation of massless parti-
cles (cf. Ref. 8). For the electromagnetic field, by quantizing
the equation for the stress tensor F*¥, the conformal invari-
ance of such an equation allows one to choose, in a natural
way, a unique base for all ¥,. Here we consider the equation
for the 4-potential 4 “ in a particular gauge and, therefore,
such a choice cannot be made. Consequently, a creation of
particles is possible.

In this paper we analyze such a creation by finding the
time evolution of the creation and annihilation operators
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and we show that there is an inconsistency because unphysi-
cal (timelike and longitudinal) photons are created. The ap-
pearance of such “photons” in the intermediate steps of the
argument, connected with the nonobservable 4-potential
A*, was madein order that the theory be relativistically sym-
metric and covariant.

2. QUANTIZATION OF THE VECTOR FIELD

In this section we summarize the most relevant aspects
of the quantization of the massless vector field in curved
space-time.

We work in the particular case of a spatially-flat Rob-
ertson—-Walker metric, i.e.,

1

v 00 _ | i
g"=0, u#v, g , & 20)

wherea(z ) is an arbitrary function of time z. In this metric the
scalar curvature R is

, i=123(2.1)

R= — 6(% + Hz) : 2.2)

with @ = da/dt and H = a/a (Hubble coefficient).
The components of the contracted curvature tensor
R,." are
R, =2"+ad, R, =0, pu#v
(2.3)

Starting from an adequate action integral {cf. Ref. 1) the
following field equations are obtained:

- izvaf+5HaOAf+(2H2—§)Af
a
2H
==25,4°, (2.4a)
a
V] 1 240 0 R 2 0
G5 A~ —VA°+3HI, A° -+ 6H? |4
a
3
=2H Y 3,47, (2.4b)
j=1
3 R
dA°+ ¥ 3,47 +3HA = —B, (2.4c)

j=1
where B is an unphysical auxiliary scalar field.
The Lorentz condition is established as a condition on
the physical states, i.e.,
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(V. 4#)7|phys) = B ~|phys) =0, (2.5)

which ensures that the mean values of V-4 and B vanish. In
(2.5),{V, 4*)” and B ~ are the negative-frequency parts of
the scalar fields V-4 and B, respectively.

We define the inner product in the vector field case as
follows (see Refs. 1 and 2):

) = —i [ | .00, — 108 ]ar. 26

Using the definition (2.6) of the inner product the posi-
tive-and negative-frequency parts of the field 4 “(x) are de-
fined by

- o

A¥x)= — i<G""'(x, x'\m=0)4, {x’)> ; (2.7a)
and '

o ®

AMx) = — i<G‘”’(x, Xm= 0);A¢(x’)> : (2.7b)
where
S
G*(x,x'\m = 0)

=4[G*(x, x'\m =0) + iG{(x,x',m=0)], (2.8a)
é‘“/(x, x',m=0)

= 3[G*(x, x',m = 0) — iG4(x, x',m =0)] . (2.8b)

In Eqs. (2.8) the bivectorial kernel G*¥(x, x',m = 0) is
the solution propagator of Eq. (2.4a), i.e.,
A¥x)= —{G*(x, x',m = 0)4, (x')} . (2.9)

Such a kernel is the curved space-time generalization of
the kernel 4 #*{x, x',m = 0} of the flat space-time. It gives the
field commutator

[4#x), 47 (x")] = iG*{x,x';m =0). (2.10)
The kernel G#”(x, x') is the curved space-time general-

ization of the kernel 4 {*(x, x') and must satisfy the following
conditions® (Lichnerowicz conditions generalization'):

Grix, x) = G4(x, %), (2.11a)
GY(x, x') = G{Hx', x), (2.11b)
4,6 x,x)=4,Gx,x')=0, (2.11c)
G*(x, x') = i{GH*";G7 . (2.11d)
(phys|(4*:4,)|phys) ;=

= (phys|(4"4,, ) |phys) >0, (2.11¢)

where
A4 x)=i(G4A,) .

Besides, the bivectorial kernel G4"(x, x') must fulfill the
following equation (see Ref. 1, Sec. 7):

V.GYx, x') = — VVGyx, x'), (2.12)

where the kernel G, (x, x') is the curved space-time general-
ization of the kernel 4,(x, x’,m = 0).

*
Let {¢ : juid i } be a base of complex solutions of Eq.
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(2.4a), orthonormalized according to (Ref. 10)

<¢llzs;¢k’s'p.) =Ny a(k - ]_(:) ’

—

(2.13a)

<$ 8 M) =0. (2.13b)

In this base, the field 4 #{x) can be expanded as follows.
3 *
Bly) — 3 Iz t pu
A = [a%k > [aﬁ Supta dr ) 219

with

a
ks

(2.15a)

Il

M (A, )

and

a' = —n.(F XA (2.15b)

ks
The operators a' and a satisfy the commutation
ks s

relations
[a “ ]= — 0k — k'),
ks k"s‘ e .

[a ,a ]=[a* at ]=0,
ks k's ks k's

(2.16a)
(2.16b)

and can be interpreted as the creation and annihilation parti-
cle operators, respectively.

The kernel G#¥(x, x', m = 0) as a function of the base
has the expansion

G#*(x,x')

=i[a% 3 u. [w Wb W)= L (x')].

— — — —

(2.17)

This expansion is invariant under a general base transforma-
tion which preserves the orthonormality conditions (2.13)
(Bogoliubov transformations). This fact ensures the unique-
ness of the kernel G#”'(x,x’).

The following expansion for the kernel G4 (x,x'),

61 = [ 4% 3 nfer 00d i)

+ér s ) .13

satisfies the conditions (2.11). The condition (2.12) is satisfied
»*
taking into account that the base {¢: Juf ¢": } satisfies
‘¢ =C*¢" v 2.19
Ve, =Cr8, L) (2.19a)
where {¢k }u{q)‘; } is a base of complex solutions of the mo-

tion equa?ion for the scalar field takingm =0, and C . de-

pends only on k . Besides, it can be proved that

vu¢l;s = - Ck(ﬂo; + 173S)¢k - (219b)

Ceccatto et al. 1866



Equations (2.19) ensure that the generalized transversa-
lity conditions (see Ref. 1)

V8,8, ) =C, 0o + 1500k — ).

are fulﬁlled n

We have shown in Ref. 1 that Eq. (2.18) is not invariant
under the Bogoliubov transformation which preserves the
condition (2.19). This fact proves the nonuniqueness of the
kernel G#”(x,x') .

The particle-number operator is defined by

(2.20)

N=pd*d, ) =4:(4%4,,): . (2.21)
Using (2.14) and (2.18), it is easy to obtain
= 3 t
N= Jd k 2 7xd, a’i‘ . (2.22)
The condition (2.5) enables us to show that
(phys|N |phys)
- 3 t t
= fd k (physlak‘l.alil + ak}a,iz |phys) ¢, (2.23)

i.e., the contributions of the pseudophotons (timelike and
logitudinal) are mutually cancelled.

The definition (2.21) clearly shows that the particle
number operator is G #¥(x,x')-dependent. That is, the opera-
tor N is not unique.

In the flat space-time this difficulty is overcome by re-
quiring Lorentz invariance for the theory. This requirement
leads one to choose the plane wave as a base in which the
expansion (2.18) must be done. In curved space-time, there is
no analogous symmetry group. Hence, extra conditions to
(2.11) and (2.12) must be introduced in the formulation for
determining the kernel G #¥(x,x'} and the corresponding par-
ticle-number operator .

A similar difficulty appears in the scalar case. This
problem has been treated in Ref. 4 and 5 by using the so-
called QEP. In the next section we will generalize this idea to
the vector case.

3. THE QUANTUM EQUIVALENCE PRINCIPLE FOR THE
MASSLESS VECTOR FIELD

In the scalar case, the QEP proposes giving up the idea
of determining a unique G,(x,x’) for all the curved space-
time. Instead of this, it proposes the existence of a different
G #)(x,x") on each hypersurface X of curved space-time (sup-
posed globally hyperbolic).

For determining the kernel G {¥'(x,x’) the strong equiv-
alence principle and simplicity arguments are taken into ac-
count. Hence, the following Cauchy data on the hypersur-
face 3, t = const are given'%:

GPlxx')|s =4,l5), (3.1a)
VoG Flxx') 3 = Vo G Flx,x')| 5 = Vodls), (3.1b)

where S (x,x’) is the length of the geodesic arc between x and
x'.

The most important consequence of these assumptions
is that they lead to a particle creation at the expense of the
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gravitational field. We have proved besides that the density
of created particles is finite (cf. Ref. 5).

To generalize these ideas to the vector case, it is neces-
sary to find on the hypersurface 2 a unique kernel
G & »(x,x'), which satisfy the conditions (2.11) and (2.12).
Since the kernels G#¥(x,x') and G4¥(x,x’) are solutions in
both variables of the field equations (2.4), the condition
{2.11d) is equivalent to the following relations on the hyper-
surface 2, t =7

f 425" {Vor G xx")G Y, (' x")
z

— G ex" Vo G (2"} =0, (3.2a)
a*(r) j d*x"{VoVo- G4 (xx")G Y - (' x")
— VoG (xx")Vo- G, (%' ")}
=& (xx') = # SRE—2), (3.2b)
a’(r)
[ 2% 090 610" 90 6 ")
=z
— VoG# (xx"\Vy Vo G- (x' x")} =0, (3.2¢)
and the condition (2.12} is equivalent to
[VFG‘;N(X’-’C')]IE = = V‘/Gl(xerNz , (3.3a)
Vo[V.GY (xx) ]|z = — VoVYGi(xx)| 5, (3.3b)
Vo [V.GY ]Iz = — Vo VVGiixx) 5 (3.3¢)

Vo Vo[qullwr( x|z = — Vo VoV7Gy( %, x')| 5.
(3.3d)
To deal with the relations (3.2) it is convenient to write
them by using the Fourier integral representation. Owing to
the symmetry properties of the metric (2.1) the kernel
G#( x, x") must be a function of # = (¥ — ¥'); therefore, we
have
ik (% — %)

67 (x.0)s = e e LT Y PRI

and analogous expressions for VOG #| 5 and Vo VoG4 5.
Using these expressions in Eq. (3.2), we obtain the
relations

7, Ve 6127 (6T,els)

G"” s}F (Vo~GY',,~ |x)=0, (3.4a)
fk (V()Vo' Gll‘pﬁlz)‘?_ k(G l”p” IE)
_F (VG F (VoG |s) = LT
!‘.( o1 |2) —~k( 4} tp |2) (277)306(1_)
(3.4b)
z, (‘70v0~G*:*"u)ff_k(vo"Gr',,~ P
(VoG“” I} VoVor GY,|5)=0 (3.4¢c)

Then, we see from Eq (3 4b) that the mixing data
VoVo G4”| 5 is fixed when the data G4, V,G*"| 5, and
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Vo G4*|5 are given.

In the following we assume that the Cauchy data
G*%|5,V,G%"|5,and Vo, G4, which satisfy Egs. (3.3) and
(3.4), are known. That is to say, we have a unique kernel
G ¥ x, x'} on each hypersurface 3 of the curved space-
time. Hence, a photon creation takes place when going from
a hypersurface 2, ¢ = 0 to another ¢ = 7. It is possible to
show (see Sec. 6) that the created unphysical photons are not
mutually cancelled.

4. EQUATIONS FOR THE BASE OF SOLUTIONS

In this section, and according to the above assumption,
we are going to determine on the hypersurface 3 the base in
which the decomposition of the vector field 4 #( x) in its posi-
tive- and negative-frequency parts must be done.

*
Let [¢ :s} u[¢’; ] be the “good” base of complex
solutions of Eqs. (2.4a) and (2.4b) in which the kernel

G*¥( x, x') has the expansion (2.18). Using Eq. (2.18) and the
orthonormality conditions (2.13) we get

(8" (RGT, (X)) = =47 (x), (.12

(gjs(x);vo'Grﬁu(x',x)) = — Vo.¢:x(x’). (4.1b)

Taking into account the expression (2.6) for the inner
product, Egs. (4.1) on the hypersurface %, t = 7 result:

ia*(r) f 4]V (MG, (¥ox) = 4% (WG
5 ks ks
4" (x), (4.22)
ia*(r) f d 3x[ V0¢: (x)Ve G, (X, X)

— 61 (XVT Gl X ] = Vo (x). (420)
If we know G4V(x, x')| 5, VoG4 ( x, x')| 5, and

Vo G4¥(x, x')| s Egs. (2.13), (2.19), and (4.2) enable us to de-

termine the adequate initial conditions for ¢ ‘; on the hyper-

surface 5, t = .13
According to the symmetry properties of the metric
(2.1) we propose the following form for the base'*:

ik %

6" (x)=r" [t . (4.3)

Taking into account Egs. (2.4a), (2.4b), (2.13), and (2.19)
it is possible to show that f ’; must satisfy

k* R

£ 0+ 3H (1) + (7 -2 6H2)fzx(t)
= —2HSkF (1) (4.42)
N . (K® R ;
Fi W+ SHT, 0+ (7 -2l 2) s,
(4.4b)

= 2iHk "fzs(t),
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(£ LS, (O =", (4.52)
e onf ,, e)=o0. (4.5)
and
L0=C [ 7,004 7, 10). (4.6a)
—ikjfk(t)zék[fio(t)-i—f’l'(s(t)], (4.6b)
where
(g0 )

_ @ 2t )[(vo o ))hﬂ (t)— gt)(Vo h ))]44.7)

and we have called fk (z) the time-dependent part of the sca-

lar base ¢k (x) =fk (t) exp( — ilix’).

Equaiions (4.2) for f ‘; {t=r)and V,f : {t = 7} resultin

(277)3/2a3(7-)i[ (Vof:S(T)) A :.H (7) —f‘:s('r)B Zﬂ (T)]

=/ (), (4.8a)
2P 2ar)i { (v0 f‘;s(r))ﬁ L n=re ey (T)]
=Vo /7 (7), (4.8b)
where .
A :.ﬂ(r) =7 (G.l5) B:#(T) =F (VG uls),
' ' ' ' (4.9)
BY (=% (VoGl.ls), C) (=% (VoVGl,ls):

Owing to the symmetry property (2.11b),
AY =4 v, BY =8 v, CV =C v,

k.-y - k',u- k.-[l. — k‘;p k:u - k.,uA

(4.10)
Taking into account (4.10), Egs. (3.4) and (4.8) result in
A (7B (1) =B (1A (1)=0, (4.11a)
Ak. (T)Ck‘(’r) — Bi'(r) =‘a2(7-)]I , (4.11b)
Bkb(T)Ck.(T) — Ck.(r]ﬁk (r)=0, (4.11¢c)
Ay (1)-B (fk ()= —ialrk (1),  (412)
B (rb (N—C (i ()= —ialry_(r),  (@4.13)

where we have defined the matrices Ak s Bk , ]ﬁk s Ck , and
I, the elements of which are 4 , B v , B, cv , and
k:y k'-‘u k»-y k:,u.
respectively. Besides, we have set
a=2m)"*%a?, x: Ef: DA VEVOf’: . (4.14)

k

s

T
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Taking into account (4.11a) and (4.11b) it is possible to
show that Eq. (4.13) is dependent on {4.12). An analogous
fact occurs in the scalar case (see Ref. 4).

From Eq. (4.12) we obtain

y_(N=D (rx_(r), (@.15)
where
D ()= A '(r)|B, (1) —iar)] (4.16)

In the matrix notation, for £ = 7, the orthonormality
conditions (4.5) are

y (% =y ks (1= —in. /2w, (@.17a)

-y 9 (T)x’fm =0 (4.17b)

y (k. (7)

The transversality conditions (4.6) for ¢ = r are equiv-
alent to the equations

xﬁo(f) + xﬁ} (r)= yﬁ(T) , (4.18a)
y [H+y (=€ (), (4.180)
where
1 P | .
7}; = C* Ofk ’ 7/k _F—k{fk i
o N - ko7
(4.19)

J LI
B,i c (Vof Hf).

(for obtaining BZ , the motion equation for the scalar case

has been used).

The system (4.15)—(4.18) is compatible (and dependent)
if

D (T)?’ (=8 (7}, (4.20)
whlch can be proved by straightforward calculations by us-
ing Egs. (3.2), {3.3), (4.9), (4.16), and (4.19). The fulfillment of
relation (4.20) is a consequence of Eq. (2.12).

To solve Eqgs. (4.15}—4.18) it is necessary to generalize
the usual choice of the polarization vectors in the flat space-
time. These equations, which define the initial conditions for
the base at 1 = 7, are analogous to the following equations of
the flat space-time:

fr = _ jkfH
fr = —ikf (o),
é'zsfis’# =Ny »
and
k#
Gt TR
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with

f"()—

1 e — kT

ks (2 )3/2 (2k)1/2'

According to Eq. (2.19) (cf. Ref. 11), the adequate gener-
alization to curved space-time of the k # vector is
k* e V., — k2

& Ry e 0 21
k

In the flat space-time the polarization vectors e‘; , and

¢* are chosen as follows:
kO

& =(0k/k), e =(1,0). (4.22)
k3 kO

Consequently, in curved space-time, and according to
(4.18) (4 21), and (4.22), we choose

(07’ b x: = 0). (4.23)

By replacmg in (4.17), and taking into account (4.15), it
is easy to verify that x‘; , and x’; , are correctly orthonorma-
lized for the value C . = ik /a(r). This value of C , can also

— —

be obtained by requiring that Eq. (2.19) is satisfied in the flat
case.

For determining x" and x" we must solve the remain-

ing equations (4.17), ie., s

M
2, 0%, ) =3, o), (= — i
(4.24)
y (nx (1) —y (fx (N=0, rr=12
and - - - -
B*nx_(0~B (N (1=0,
vy -y Mrn=0 r=12.  (@25)

Equations (4.25) are the orthonormality conditions be-
tween x, {r=1,2)and X o™y They can be obtained from

(4.17) taking into account (4.15), (4.20), and the following
identity:

Briny (1) =B (1yi(r)=

5. TIME EVOLUTION OF THE PARTICLE NUMBER
OPERATOR

The present formulation of quantum field theory in
curved space-time leads to particle creation at the expense of
the gravitational field. As is well known (cf. Ref. 8), the Bo-
goliubov transformation can be interpreted as the mecha-
nism to analyze such a creation.

(N (Ngpp

et 4 467

(4.26)

} be a base of the space of complex
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solutions of Eq. (2.4a) and (2.4b) that satisfy the initial condi-
() (7
tions (4.22) and (4.26) at the time t = 7and {¢ : }u [¢ :#] the

base that satisfies analogous initial conditions at the time

t = 7', both orthonormalized according to (2.13). The most
general transformation (Bogoliubov transformation) which
links two bases is

(Np (T ) (7' )geps
= d3k’ .
¢ k.s f SZO ( k k 58" 3 ‘s’ + ﬂk.k"ss' ¢ k"s’)
(5.1)
Owing to the metric used we are going to take as a base

of solutions those with well defined momentum k . Thus, it is

easy to notice that [using (4.3)] the expression (S.T) isreduced

to
l"’),u 3 (T);L (7" e
Z ( +8  f )
= — kss ks

(5.2a)

and

(Thaepe 3 (*)oepe ()
fo=3 ( e S +B* S:_ff“). (5.2b)

s§=0
From this relatlonshlp between the bases and taking
into account the expression (2.14), the following relation be-
tween the creation and annihilation operators can be
obtained:

(;) = i (a an +p* (;H ), (5.3a)
k.s’ =0 k’.\'s’ k4S k.ss' — k.s

() 3 - (7)1t ()

a k~s' = SZO (ak.s:' a k'x + Bk.ss' a —.k s ) (53b)

Making use of Eq. (5.2) and the orthonormality condi-
tions (2.13) in 7 and in 7, the following conditions for the
coefficientsa andf  result:

k ss' k ss’

a a* - ﬂ ﬁ * = - nss” ’
0 k ss' k s"s — ks — ks's' (5.43)

=0

R

“ I Me

(5.4b)

Using (5.3} it is possible to calculate the mean value of
the density of particles in ¢ = 7 if we know such a value in
t=0.

If we suppose that the initial state in £ = O be the vacu-
um state [0),, we get

[k om o). = [a% 3 18 o 59

55 =0

Now we will discuss the particle creation in an alterna-
tive way, taking into consideration the time evolution of the
creation and annihilation operators.

We define
(T (M — ik R
P (Xn)=¢ (Zn=f (e ~, (5.6)
k‘s k.x kr’x
(M
Fe (T) =f (T)’
k.s k.s
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V" (£r)= Vb

(T
Vo F :‘ (r)= Vof

(EA=Vf e L6

The functions ;b‘; (®,7) and V0¢: ( %,7) are defined

like this throughout the space-time and they constitute the

collection of the initial conditions for the basis.
()
By developing the field 4 #{ x) in the base {¢ : }

{T) aepe
u{qﬂk }, we get
(7) my (Tt (7 x,

A¥x) = Jd3k2 (x)+a ¢ x)] (5.8)

For x = (%,7), according to (5.6) and (5.7),

Arn)=[a% $la, @7 (14t @F" )

— ik 2
Xe 7,
(5.9)
(Th
where we have used a‘k” =a, (r) and a = az (7).
Similarly, - '
Vod ¥ X,7)

_ f %k Sgoliak's(T)VoF‘:s(T) + a*ikS(T)V(,;’”.k:(r)

— ik X

Xe . (5.10)

Since (5.9) and (5.10) are valid for every 7, the field equa-
tions (2.4a) and (2.4b) require that the initial conditions ¥*

ks

and V,F* andthea anda' operators changeinsucha
ks ks ks p

way that the quantity.

i [aks(r)F:s(’r) + a*_ ks(v');’“_ ks(r)].

el

= i [ak (7)Vo F* (7')+aT_k (T)VOF“M(T)] . {5.11)

satisfies Eq. (4.4) and the equation

-d—[i[ (T)F“ (7’)+chr kST

dT s=0

0} 2}

If we call h # and h # 2 base of solutions of Egs. (4.4)

normalized so that
)

{
he (1) =80, Voh* (n)=
' ' (5.12)
2) @
ke ()=0, Voh* (=8,
the general solution of these equations is
Ceccatto et al. 1870



(5.13)

s=0

EI S @
Iz — H u .
h k(t) S {Cﬁs h l‘.s(t) +D’i’ his(t)]
We must impose on solution (5.13) the following initial
conditions:

pein =3 [a P e oF ], s
and ) ‘ ) )

Lpe| =3 [a @V F* (7)

dt k t=r1 S=°[ ’f.s ° If.s

*
+a' . (1)Vo F* . (r)] . (5.15)
From Eqs. (5.14)and (5.15), we get the following expres-
sionfor C and D

5 ks

C = 23: [ak '(T)Fi (7) +a'r"k '(T);"_k (7')] ,  (5.16a)

=0

Dks-—.i (T)VOFS (+a (r)VoF‘ (T)]
o (5.16b)
Taking into account (5.13) and (5.16) we obtain
B () = 3 [aks(t)F’;s(t)+a*_ks(t);7“_ks(t)]
3 & (7)
=3 |e i 0+a af 0], e
where
f“ (¢) = z F’ (r)h“ (t)+V F’ (T)h" (t)] (5.18)

is the base orthonormahzed int=r.
Similarly, as a result of Egs. (5.11), results

Sleomroea om0

=3 |e oW 4, mvaie 0] 519

where

Vo(fﬂ: (¢)= z [Fr (T)Voh*‘ (t)+V0F’ G2 B (:)]

s=0

(5.20)

From Egs. (5.17) and (5.19), and taking into account the
orthonormality conditions (4.5) and the definition (4.8), we
find

3 (7') 1T
a (7-)_77:: Z ( ’k o ks’(T)

=0
+(f“;f* )a* (r)],
k~s —k»s'u 7k's'
and

3 (™) (7)
t N = — o,
@ 0= 3 (77, e

=0

(5.21a)
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(') (n
(f T A )a*_“(r)]. (5.21b)

Using Eq. (5.21),and 1f |0, represents the vacuum state
in ¢ = 7, the mean value Nk {r,7’) of the density of the k ,s

type created particle fromt=rtot =1 is
? — t ’ ’
N, (1i7) = O] (), ()]0,

3 lf’bu (f)* 2
= —;017” (f /is’f_k,,‘)

From (2.22) the mean value of the created particle den-
sity is

3
N(r,7) =fd3k S 1N _(n7).
s=0 xS

(5.22)

(5.23)

6. THE UNPHYSICAL PHOTON CREATION

We will prove now that the created timelike and longi-
tudinal photons are not mutually canceled for all 7, i.e.,

N (T,T)—N (rr);eo
Usmg Eq. (2. 19) we obtain

V4 = Jd3k [’7(ak3 —ako)fk

_tkt gt « |,7%
a(a_k’3 a_io)f_ﬁ]e , (6.1)

where the function fk (¢) verifies the equations (see Ref. 4)

fo+ 3Hf + k—jf =0, (6.2)
(4:%) — e AR
=8k — k), (6.3a)
and . o
(fk ;fﬁk):o' (6.3b)

By expanding the scalar field V-4, according to Eq.
(6.1), in two bases with initial conditionsont = rand ¢t = 7,
respectively, we obtain

b (1fE) 5T (F () =b (ST 45T ()
XFO 0, (64

where we have set

b =@ —a )ii,
£k w0l g

b =@" —ad' )(—iﬁ).
k k3 k0 a

Using Eq. (6.3), we find from Eq. (6.4)

(6.5)
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()= (FOL N 0+ (£57 )BT e (66

bLr) = (£ L + (£ )L

(6.6b)

Taking into account the commutation relations (2.16)
fora and az , the subsidiary conditions (2.5) on ¢ = 7 and

ks
Egs. (5.21), (6.5), and (6.6), it is easy to prove that
[bk (), b I'(r')] =0, (6.7)
- {phys|b : (r’)bk (r')|phys), =0, (6.8)
- (phys|V4 (7')|phys), =0, (6.9)

[b (rha (T')]

" (r) )
s &7 ) (i)
T (6.10a)
[b (), aT, (T,)]
) . U :
= 7.8k — k') ()(f“ S ) +(f‘;,gfkr3“)]'
T (6.10)

From Eq. (6.5) it follows that

x_ _ =_ t _at t
[ak3ak3 akoako] b[‘. ko a’f.obf +bﬁb£
(6.11)
If |0), is the vacuum state in ¢ = 7, defined by
a (7)]0), =0, then
‘ t t k?
T(0|ak3(7' )a“(r)—ak.o(f )ak'O(THO)T 20
t N _ of ’ ,
( 2O la, () =a! (7B, ([0}
(6.12)
k2 mow o @
sl AN ARV ANNE
+ C.C.

According to Eq. (4.6), (4.19), and (4.23) we have

C;«’# (;)* (;)* )= a(T;)caz(T) (‘ % })* ) E

and by using Eq. (6.2) we obtain
U k2 (@ @
(Fofe,) =am(rn).

Hence the mean value of the density of created unphysi-
cal photons at ¢ = 7' is"®

(6.13)

(Nks - Nk()) o (OIaZ3(T,)ak ()= a:o (7')a ko(TI)lO)T
_ 21(}' _(;')* e (6.14)

We remark that the right-hand side of (6.14)is just twice
as large as the limit for m—0 of the density of created parti-
cles for a massive scalar field (see Ref. 5.). As was proved in
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that paper, such a creation (at least for k— o0 ) does not de-
pend on m. Consequently,

<N -N #0.

ks kO ) t=r
Finally, it can be proved that
N =N >0.
k1 k2

CONCLUSION

We have shown that, independently of the chosen
Cauchy data for the bivectorial kernel G4 (x,x’), an unphy-
sical photon creation takes place and it is connected with the
particle creation for a massive scalar field in the limit m—0,
as can be seen from Eq. (6.14).

The chosen Cauchy data for the biscalar kernel G,(x,x’)
[see Eq. (3.1)], which are the simplest that allow one to for-
mulate a model for the massive scalar field where the density
of the created particle is finite, lead to a mass-independent
particle creation (at least for ~— 0 ). Hence, the creation of
unphysical photons is non vanishing. To avoid this difficulty
it seems to be necessary to choose other Cauchy data for
G,(x,x’',m) such that the scalar particle creation vanishes
when m—0.
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The scalar product (phys| |phys) ¢ 1sthe Gupta scalar product defined by
(phys]A {phys) s = {phys|é4 |phys) where the operator £ verifies £4,

=Adi=123 o= — 4, £2=1,£|0) = [0).
"Weuse 7, =0ifs#s ;o =1,7;, = — 1,i=1,2,3.
'Equations (2.20) correspond to the transversality conditions: k€ ;)

=kl =0k, €5 = -—|Iil,andk,‘ef(‘,,=

L€l =0,k ey |k | of the flat space-time.

12The mixing data V,V, G {¥'xx')| ; remain determined by knowing the
data (3.1), because an analogous relation to (2.11d) for the kernels G (x, x')
and G,{x, x') exists (see Ref. 4).

3We note that the system (2.13), (2.19), and {4.2) does not determine univo-
cally the initial conditions for the base. This fact is connected with the
invariance of (2.18) under particular base transformation (see Ref. 4).

“We define k -& = (k,x' + kox* + kyx*)and k2= (k? + k3 + k2). In the

ikt

flat space-time the function f ’; ~e: e~ ", where E": are the polariza-
s s s

tion vectors.
5Let us note that the result (6.14)isa consequence of the assumption made
(£)

in Sec. 3, that is, to consider a different G 4" (x, x’) on each hypersurface £

of V,. On the other hand, the result (2.23) was obtaining by supposing the
existence of a unique kernel G%”(x, x'} for all V.
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On mapping approaches in axiomatic quantum field theory
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We here state a collection of results in axiomatic quantum field theory obtained under the general
philosophy of “mapping approaches.” It is hoped that these results will stimulate further
investigations along this direction, especially in connection with the problem of the existence and
the construction of nontrivial four-dimensional quantum field theories.

PACS numbers: 11.10.Cd

. INTRODUCTION

This paper presents some substantial results in axiom-
atic quantum field theory'? under the general philosophy of
mapping approaches. The precise formulation of various
mapping approaches studied here will be clear from theo-
rems to be stated. From a general point of view, a mapping
approach, in the restricted sense studied here, consists of a
linear map ¥ from some function space @ (R¢) on R?(d>2)to
some function space Q@ '(R?) on R?’ (d'>2) and of studying
the properties of the set { K, n = 1,2,.--} of multilinear func-
tionals K, (f,, for-r f,) Over @ (RY) X Q (R¥) X X Q (R} (n
copies), defined by

Kn(fl’fz,-‘-)fn) = K:I(Vfl’Vst’Vf:z ),
fi€Q(RY), VfieQ'(RY),

i=12,.,n

where K ;, is a multilinear functional over Q'(R’) X Q'(R%)
XX Q'(R*) (n copies) for each n = 1,2,..., with the set
{K,,n=1,2,..] possessing some additional structures.
{K,,n=12,.} might be a set of Wightman distribu-
tions," in which case Q '(R?') is identified with .*(R? ), the
Schwartz space on R?', or it might be a set of expectations of
some random variables occurring in some random field*-
possessing some specific properties, in which case Q "(RY)
might be identified with .#(R?), Z(R¥) (the subspace of

& (R?) consisting of functions of compact support), or the
Sobolev space #°~'(R¥) on R¥.

The results we have obtained include, among others, an
improvement of Nelson’s method*~ of constructing d-di-
mensional quantum field theories (d>>2), and we hope that
further studies of various mapping approaches would lead to
further developments in solving the problem of the existence
and the construction of nontrivial four-dimensional quan-
tum field theories.

We now present in the following an overall view of the
results in this paper.

On Sec. Il

In this section we present a mapping method of con-
structing quantum field theories of a lower space dimension
from any given quantum field theory of a higher space di-
mension. We obtain generalized free fields from a free field,
By means of a further limiting procedure, we can obtain a
free field from a free field, with the masses equal.

1873 J. Math. Phys, 23(10), October 1982

0022-2488/82/101873-08%02.50

On Sec. 1l

In this section the following problem is studied: Given a
random field ¢ over® % ~'(R?)(d = 3 or 4) on some prob-
ability space ( 2, 2, u) satisfying certain properties, what
can be said about the multilinear functional I, over
FL(RYX F(RY) X - X (R (n copies) defined by

L (fis oo Ju) = E [@ (1) X b (hy) X+ X b ()}
feSRY, heF'RY, h =Mf,

where E denotes expectation and M is some real continuous
linear map from . (R*) to 2~ '(R¥)?

For d = 4, we find that if M satisfies certain simple pro-
perties then the set {I',, n = 1,2,...] defines the Euclidean
Green’s functions®® of a four-dimensional quantum field
theory if each I',, is Euclidean invariant, where I, is the
unique continuous linear functional on . (R*") obtained
from I', according to the Schwartz kernel theorem. This
result is an improvement of Nelson’s work,® where the map
M is restricted to be the identity map (Nelson treated the case
Q' = .7 is Ref. 5). (See Note at the end of subsection IIIB1.)
Our results for d = 4 introduce an extra degree of freedom
into Nelson’s program.

The case d = 3 is concened with the deep problem of
generating four-dimensional quantum field theories from
three-dimensional probabilistic structures ( including three-
dimensional Euclidean Markov fields®~) via some mapping
approach.

i=12,.n,

On Sec. vV

In this section a theorem on the generation of quantum
field theories from certain four-dimensional Euclidean in-
variant probabilistic structures over 2~ '(R*) [including
Euclidean-Markov fields** over 5~ '(R?%)] is presented as a
simple application of a theorem in Sec. I1I.

A remark
Theorems 1 and 2 in Sec. III and the theorem in Sec. IV
can be generalized to any dimension d satisfying d>2.

Il. FROM HIGHER DIMENSIONAL QUANTUM FIELD
THEORIES TO LOWER DIMENSIONAL ONES
A. The theorem and sketch of proof

We first state the central theorem in this section and
then we give a sketch of the proof.
Theorem: suppose we are given a set of Hermitian scalar
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Wightman destributions { #7,”*¥*! n =1,2,..} in
(M + N + 1)-dimensional space-time (M >0, N > 0, the
time dimension is always one and is the first dimension}, and

suppose we define a distribution %~ ¥+ for each
n=12.. by

M fo Lo f)
=¥ MV fieg fr98..f,28)

where
fEFRM+Y, i=12,..n
g (R") and real.

Then the set { %, !, n=1,2,--] is a set of Hermitian
scalar Wightman distributions in (M + 1)-dimensional
space-time.

Sketch of proof of theorem: It is easy to show that each
# " M +! defines a continuous linear functional over
F(R"™+Y). We have also

(i) Proof of relativistic invariance: obvious.

{ii) Proof of local commutativity: Let x = (Xg,X,...,X ;)
and y = (y,, ¥1,--- Var) be spacelike separated vectors in
(M + 1)-dimensional space-time; then
X = (XgsX 1o XpgsXag 4 192X as 4 ) aDA

Y=Y Vir Yars Yar 4 15+ Var - n) are spacelike separated
vectors in (M + N + 1)-dimensional space-time, for any
x€RyeR, i=M+ IM+2,. .M+ N.

{iii) Proof of positive definiteness: We use the reality of g
and the expansion of any F,€.(R'™ * V) as a linear combina-
tionofh;, ®h, ®-®h, [m general, an infinite linear combi-
nation, and convergence is a convergence in the Schwartz
topology of . (R™ + )], where {h,, k =0,1,2,--} forms a
complete linearly independent basis of #(R™ * ).

(iv) Proof of hermiticity: obvious.

(v) Proof of spectral condition: We have

M+
WM Nuysupse

u,
+ oo + oo
f f f dv, dv,--dv,

WnM+N+l(ul’Ul;u2’v2;"' n’Un]
X g(v,) X glvy) X -+ X g(v,),

where w,eR¥ ', v, ARY, i = 1,2,...,n; we then consider the
Fourier transforms (W, * ')~ of the diffenence variable dis-
tributions W, ™+ (£ .6, 8 )= W LMY 1(ul,uz,...,u,,)

n=12,.,with§ =u, —u; , j=12,. — 1, and we
can then show that the joint energy—momentum spectrum of
the lower dimensional structure is contained in the projec-
tion of the joint energy-momentum spectrum of the higher
dimensional theory onto the zero hyperplane of the extra
momentum variables. (Note: we use ~ to denote Fourier
Transform throughout.)

{vi) Proof of cluster decomposition property: let 7 be a
spacelike vector in (M + 1)-dimensional space-time; then
(1,0,0,...0) with N zeroes following 7 is a spacelike vector in
M + N 4 1-dimensional space-time.

B. An example, a proposition, and a remark

(I) Example: 1t can be easily shown that a Hermitian
scalar free field in (M + N + 1)-dimensional space-time
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gives a Hermitian scalar generalized free field in (M + 1)-
dimensional space-time.

{II} We now state the following important proposition,
the proof of which is obvious.

Proposition: Let {7, ¥ N+ p=12..} be the
set of Wightman distributions corresponding to the Hermi-
tian scalar free field of mass m in (M + N + 1)-dimensional

space—time and we define, for each n = 1,2,---:

7//4"M+ l,k,c(fl,fz,...,f;,)

= 7//-,1,(m)M+N+ " fi e 08, [ @8,
feSRMAN i=12, .1,
2. %€ (RY), g.'real, ¢>0k =12,

where g, are chosen such that (g, ')~ are real and satisfy

[(g.“)(p)]? T cX8(p), peR".
If we let
WMLl f o f) = klgn WMk foe o f),

then { 77, =< n = 1,2,...} defines the Hermitian scalar
free field of mass m in (M + 1)-dimensional space—time for
some suitable c.

Thus we can, by the above mapping method and a suit-
able limiting procedure, arrive at a free field of a lower space
dimension from a free field of a higher space dimension, the
masses being equal.

(II1) A Remark: It is a natural question to ask whether,
given an arbitrary higher-dimensional field theory, there ex-
ists a lower-dimensional field theory suchthat the joint ener-
gy-momentum spectrum of the lower-dimensional field the-
ory is the same as the restriction of the joint energy—
momentum spectrum of the higher-dimensional field theory
to the zero hyperplane of the extra momentum variables.
The problem is open. We hope that the above mapping meth-
od and a suitable limiting procedure, or some variations,
might be of help in studying this problem.

I1l. ON THE CONSTRUCTION OF FOUR-DIMENSIONAL
QUANTUM FIELD THEORIES FROM PROBABILISTIC
STRUCTURES

A. Some definitions

1. Definition of a d-dimensional probabilistic X-structure
(¢, (2, 3, p)) over 7~ '(R°), ford>2

A d-dimensional probabilistic X-structure over
~(R?) is a real random field ¢ over ¥~ '(R?) on some
probability space (£2,2,u) such that:

(i) ¢ (g)eL ?(2, 3, u) for ge¥~ '(R?), p=1,2,--, and
such that E {¢ (g,) X & (g,) X - X ¢ (g,)} is separately contin-
uous in each g;, fori = 1,2,....,n, n = 1,2,-;

(ii) There is refiection covariance in the x, variable in
connection with a representation of the reflection group of
the x, variable on (2, X, u), where x,, is the first coordinate of
the point (Xg,X;,....X; 1) in R%

(iii) The following “weak Markov property” holds:

E{u| Z(A}=E{u|Z©@A)},

where u is an integrable random variable belonging to 2 (4 ),

Te Hai Yao 1874



with
A={x,>0, (X1 %5 %5 _ )R},
A= {xo<0, (xyx0a_yJER ),
A ={x,=0, (x,Xp...xs_,)€R? " '}.

(See Notes at the end of this subsection for explanations on
notations and terminology in the above definition.)

2. Definition of a map M, from ¥ (R*) to ¢~ '(R?)

(@) Some preliminaries: Let fe.(R*). The fe.#(R*). We
can expand [ L %(R*) expansion):

=3 csz¢i(po)f¢f‘l')—"” Y,"6, ¢)

Ly ’ l

+ 3 C‘,-i’1¢.~(po)¢L(1'va‘2’(9,¢)

Ly | |

J even

J even
where p = ( po, P1» P2, P3) and is conjugate to
(X0sX 1 X25X3), (Xo»X 1sX25X3) being a point in R* on which fis
defined, p = (py, P2, P3), [Bl = +(p)* + P2 +p5)'"%,
p ={(|p|,8, @) in spherical polar coordinates, and

Y, 8, ) =d") P,"(cos 8 )cos mg,

Y,®6, ¢)=dZ P,m(cos 8)sin mg,
v being an indexing of (/,m) (/ = 0,1,2,--+
m= —1I, — [+ 1,.,0 — 1,/)such that v is even if (/ + m) is
even and v is odd if (/ + m)is odd (v =0,1,2,--),d!}) and
d'? being normalization constants and {#,, k =0,1,2,-}
being the set of Hermite functions. We may choose d{!} and
d?) such that

JJYV' 6, @)Y, "6, p)dcos 0dp =86, ., ,

J'_[Yv‘ 0, $)Y,,%6, § )dcos 0dp =6, ,, .

We also have

f f Y, "6, ¢)Y.,”(6, @ dcos 6 dg =0,
for all v, and v,.

(b) The map M: The map M, from . (R*) to %~ !(R>)is
now defined by

- (Ip1) cos v
h —_ ci (Po JVE
(p) 2‘3 wj®i( Po) T

J even

+ 3 chsin
ivij

.

.

.(Ipl) sin vé
1/2 (21,.)1/2

J even
{[#~'(R?]~ convergence)

where h = M, fe77~ (R®), given fe.# (R*) with the above ex-

pansion for f, and where p = ( p,, p;, p»),

P=(pipoh| Bl = +P,* + p,%, and p=(|p|, ¢ ) in polar

coordinates.

Notes on (1): {i) A random field ¢ over 7~ '(R) is a
stochastic process indexed by %~ (R?), which is linear and

such that if g,— g in %~ '(R?), then ¢ ( g, )—¢ ( g) in mea-
sure.

(ii) (a) A representation of the reflection group of the x,,
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variable, denoted by G, is a homomorphism 7— T, of Ginto

the group of measure-preserving transformations on the

probability space (2, 2, 1) on which the process is defined.
{b) Reflection covariance in the x,, variable means:

T,{¢(8)} = plgon™"), neG.

(iii) If BC R?, then Y ( B ) denotes the o-algebra generat-
edbythe¢ ( g)withgin %~ '(R?)and supp gC B.Z ( B)also
denotes the set of all random variables which are measurable
with respect to the g-algebra S ( B).

(iv) E {-| 2 ( B)} denoted conditional expectation with
respect to 3 ( B).

B. Statement of theorems
1. Construction of four-dimensional quantum field theories
from four-dimensional probabilistic structures

Theorem 1: (a) Let (#,(£2, 2, u)) be a four-dimensional
probabilistic X-structure over #°~}(R*). Let also fe.(R?),
M
and f—>h = Mf, he~'(R%), be areal continuous linear map

from #(R*) to 5~ !(R* satisfying the following assump-
tions:
(1) Support of fCR? , implies that

support of hCR?,
R =R, XR},
R, = [0, o).

(2) @ fis mapped under M to ®@h, for fwith support of
SCR?, where

(O f) (xox1,X2X3) = S — X% 1,%5,%3),

(Oh )(X0,x 1,X0%3) = b ( — XX 1,X5,X;5)-

(3) I, (f1s Sosees /1), fOr €ach n = 1,2,.-., is invariant un-

der the simultaneous action of any element of ISO(4) on

allf,,i = 1,2,...n, where I, is the multilinear functional
on F(R*) X L (R*) X - X . (R?* (n copies) defined by

L, (fuforfa) = E{¢ (h) X & (h;) XX b (h,)},

[eL(RY, hedl'RY, h, =M
Then, for each n there is a unique tempered distribution I",
on R* satisfying T, (f,® f,® 8 f,) =, (i [o0r [)
such that the collection {T',, n = 0,1,2,-..}, with I’y = 1, sat-
isfies all the Osterwalder-Schrader axioms®® for Euclidean
Green’s functions in four-dimesions except cluster decom-
position {for a four-dimensional Hermitian scalar quantum
field theory).

(b) Further, if the set
{E {¢ (8n, )X & (8, )X X (g, )}, n= 1,2,---} satisfies
cluster decomposition for arbitrary g, €#°~ (RY),
i=12,.,n n=23, then theset {I',, n =0,1,2,.}
also satisfies cluster decomposition.

Theorem 2: Let /V be a continuous linear operator in
L *(R*) satisfying

(i) Nk is real for k real, with ke L %(R%).

(i) Nke L *(R? ), for ke L (R ), where L %(R? ) is the
subspace of L *(R*) consisting of square integrable functions
on R* with support in RY .

(iii) (a) (VK )(x) is even in x, if k (x) is even in x,,

(b) (Nk )(x) is odd in x,, if k (x) is odd in x,, for keL *(R*),
X = (X0,X1,%5,%;)eR*

[this is equivalent to the statement

i=12,...n.
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(ON)u = (N@)u for ueL *(RY),
with
(OV)(X0,X 1,X2,X3) = V[ — XX 1,X5,X,)  for vel (RY).]

N
Then the map N: f —h = N f for fe.(R*)C L (R*) is a real

continuous linear map from . (R*) to 2~ '(R?) satisfying
assumptions (1) and (2) of Theorem 1.

Note: Theorem 1, supported by Theorem 2, forms an
improvement of Nelson’s work® [Nelson treated the case
where 57~ (R*) is replaced by .’ (R*); Theorem 1 still holds
with 2~ '(R*) replaced by .#(R*) and with the “ reflection
property” postulated®]. The improvement is that whereas,
given a certain probabilistic X-structure (¢,({2, =, u}) over
7~ '(R*), Euclidean invariance of
E{¢(f.)X8(f,,)X X (f,, )} for arbitrary f, €5 (R?),

i=12,.,n, n=1,2,, is required in Nelson’s work, in
our case only Euclidean invariance of
E{¢ ML IXS ML )X XS MS, )} for just one map M
belonging to a certain wide class is required.

2. Construction of four-dimensional quantum field theories
from three-dimensional probabilistic structures

Theorem 3: (a) Let (¢,(£2, 2, ) be a three-dimensional
probabilistic X-structure over 2%~ '(R?). Let also f&.(R*),

M
and f—h = M f, he#~'(R’), be a real continuous linear

map from % (R*) to 7~ '(R?) satisfying the following as-
sumptions:
(1) support of fCR? implies that
support of hCR?,
R =R, XR3
(2) ®@ fis mapped under M to @h, for f with support of
fCRE,
where
(@ f)xoX s X00X3) = f = XX 1,X2,X3),
(@h )xp,x1,%5) = h [ — Xp,X,%3).
(3) . f, foseos [ ), for each m = 1,2,..., is invariant under the
simultaneous action of any element of ISO{(4) on all £;,
i = 1,2,...n, where I',, is the multilinear functional on

n

F(RY)X F(RY) X - X (R*) (n copies) defined by

Lo fis foron fo) = E{$ (R) X B (hy) X X & ()},
feFRY, heX YR, h,=Mf i=12,.n

Then, for each n there is a unique tempered distribution I',
on R* satisfying T', (£, ® fo® - ® f,) = L, (fi, froeees i)
such that the collection {T',, n = 0,1,2,--}, with I’y = 1, sat-
isfies all the Osterwalder—Schrader axioms®™ for Euclidean
Green’s functions in four-dimesions except cluster decom-
position {for a four-dimensional Hermitian scalar quantum
field theory).

(b} Further, if the set
{E {¢ (8n, )X & (8,,) X X (8, )}, n= 1,2,--~} satisfies
cluster decomposition for arbitrary g, €2~ '(R?),

i=12,.,n, n=23,. then theset {T',, n =0,1,2,--}

also satisfies cluster decomposition.

Theorem 4: Let M|, be defined as in subsection ITIA. Let
N be a continuous linear operator in L,(R?) satisfying
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(i) Nk is real for k real, with ke L %(R3).

(ii) Nke L R ), for ke L (R3 ), where L %(R3 ) is the
subspace of L %(R?) consisting of square integrable functions
on R* with support in R2 .

(iii) (a) (Vk )}{x) is even in x, if k (x) is even in x,,

(b} (NVk )(x) is odd in x, if & (x) is odd in x,, for
kel 2(R?), x = (x4,%,,X,)eR?

[this is equivalent to the statement

(ON)u = (N®@)u for ucL }(R%),
with

(O)(x0% 1,X5) = U — XX 1,%,)  for vel 2(R3).)

Then the map NM,, is a real continuous linear map from
F(R?) to 77~ '(R?) satisfying assumptions (1) and (2) of
Theorem 3.

Theorem 5: Let M, be defined as in subsection IIIA.
Further, let (¢,(42, 2, 1)) be the free Euclidean Markov field
over % '(R?.*Then {T,, n = 0,1,2,--} is the set of Euclid-
ean Green’s functions for the free Hermitian scalar quantum
field in one time dimension and three space dimensions, I',,
being defined in terms of ¢ as in Theorem 3 via the map M,
n = 1,2,.... The masses in these fields are the same.

C. Proof of theorems

Here we present proof of Theorems 1 and 4. Proof of Theo-
rem 2 and 5 is obvious. The proof of Theorem 3 is parallel to
that of Theorem 1.

1. Proof of Theorem 1

We proceed to show that the set {I',, n = 0,1,2,.--} sat-
isfies Osterwalder—Schrader axioms®® for Euclidean
Green'’s functions provided that assumptions (1)(3) are ful-
filled and that cluster decomposition property for the ran-
dom field ¢ holds.

(@) Proof of distribution property: The set of tempered
distributions [T, ,n = 1,2,.--] defines, by restriction, con-
tinuous linear functionals on . ”(R*Y), n = 1,2,~.. T, de-
fines, for each n = 2,3,--, the difference variable distribu-
tions S, _, which, by restriction, defines a continuous linear

functional S|, on #(R*" ~ "), which is also continuous
with respect to some | |/, norm. (Note: In the above, the
notations . O(R*"), #(R*"~ "), and | |;, norm follow Ref.
8).

(b ) Proof of Euclidean invariance: by assumption (3).
(c) Proof of positivity: Let Fy,F,....F, be given (4 < oo ):
F,eC, F,.e” (R*") (1<m<4), and
support of F,, (x!",x"1,....x!")
CR? XR? X xXRY  (m copies),
xUeR®, i=1,2,..m.
Positivity flows from the inequality

A J—

> T, .0F, ¢ F,)>0,
m =10
n=20

forany Fy, F\,... Fyy A =012, (Y)

which we shall prove, where
OF, (x"x?,  x!™)=F, (Ox1,0x171,...,0x ™),
Bx[il = ( - x([)l])x[]‘],x[zllaxgl])’

for x'1 = (x[1 x| xb,xl),

i=12,.m,
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and the overbar denotes complex conjugation
Now there exist sequences F; Iy e F.j= 1,2,-, such

that Fy€C, Fy — Fo ijej/’(]R“’") (1<m<A ) with
support of F,(x!",x*,.. x!™)

C R! XR*® X--XRY (m copies)
B“) =R, x R3
R, =(0,)
and F,; — F,, in the Schwartz topology of .#'(R*").
We] have
A P
Y I.,.@F,@F,)
m=20
n=0

[11mI‘,,,+,,(@ ® F,,j)]

J— o

= 33
X MM‘

A —
z m+n(@ij®Fnj)

m=0
n=20

l'

o

7

>0

if we can prove

A —_
z rm+n(@FMJ®

m=0
n=0

where @F,; is defined as for OF,, .
We now prove statement (Y'): We can write

F j(x[ll,xlll ’xlml)
m yoer

z )”j.i,ifni,,, Xu; (x[”) Xu;, (x[21) X XU; (x[m])

4‘5‘" even

Fnj)>0’ J: 1,2’".’ (Yl)

[.#(R*™) expansion ]
where

u, x(81) = ¢~ 1/ ”w (x®) forxl®'>0, §=1.2,.m,
u, (x'°)=0 forx[‘s]<0 5=1.2,..m

with {9, , is = ({0802, i0,40,82,8 = 0,1,2,-] being
the set of Hermite functions on R* [i.e., ¢, (x®)) = o ofxL21),
¢g.(x,‘s])x¢g,(x[5])><¢f,(x[‘” ) with {¢,, k=0,1,2,- } being
the set of Hermite functions on R]. We note that we can so
arrange things such that only even i, § = 1,2,...,m, occur in
the summation: This is indicated by the wording i even. We
can show that

| rdyigeeei l

Qs

<
3
IT 0 + 89X (1 + £ XX (1 + £y}
x=0

for s = 1,2,.-., where Qs depends only onj and s for fixed
F,;. This is seen as follows: For any fe.#(R), the expansion
coefficients in the expansion

f=3 G4

where{d,, k=0,1,2,
R, satisfy®

|Ck |<Qs/(1 + k)x;

[.#(R) expansion],

} is the set of Hermite functions on
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where Q, depends only on s for fixed /; here s = 1,2,

The function u,€.%(R*) is mapped under M to an ele-
ment v,€# ~ (R%). Since M is real, continuous, and linear,
we can say that v, is real and further

1=0,1,2,.
<K { bt bt | s
oK il { oo g
where K > 0 and is independent of /, || ||, denotes the

&~ '(R*)norm, and || ||4, is defined, for 5 and r being non-
negative integers, by

+ +
il = f J- dxodx,dx,dx,
X 2 )Y

0<p<B 0<gy + 1 + @2 + <1
q0r91:92:9:>0

on d 91 dQ2 dQJ
dxo% dxl‘h dxzqz dxs‘h

X = (XX 1, X2%;5)ER.

(1+x%

We have

S s | X E{|8 )X ,)XXx8,; )|}

lﬁ”:even
<3 Pt |X G Xl =X o X -
£ wven

with G,, depending on m only [since ¢ ( g)eL? (12, Z,u),

p = 1,2, for any ge#~'(R*, and since
E{¢(v,)Xév,)XXé (v, )} is separately continuous in
v, V;,5--0;,  With respect to 7~ '(R*) topology];

< 2 |l”z

fyigeeipgy

| X G XK ™ Xty llg,r X 1281 11,
4" even
XX 4 g

<B™G, K™ 2 i, |

Hhiirim
dghyre

4 even

x]‘[{(l+z"") X (14 &) XX (14}
<

since
3
4]l <B X [ (1 +1%), 1=0,1,2,~
x=0

for some ¢ > 0, B being a constant for fixed # and r, and since

Qj,s

I'lj,i,i,«-im |<

2 _o{(1+80)°X (14 &) XX (1 + #%9)°}

for any s = 1,2,
We now let

-3 2 i

me= 0,,z

é v, ) X é (v, )X X (v, }-

@ even

Then a,eL '(12, Z,u).
Further, we have

support of v, CR?
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since
support of u;, CR?, .

Hence we can construct asequencev, ., 7 = 1,2, foreach/,
such that

Ll ]

T» 0

in '~ '(R* topology and such that

support of v,, CR? .

This follows from the fact that the sequence

{T,,, n = 1,2,-.} of translation operators (where T, cor-
responds to translation through 1/» in the positive x,, direc-
tion) in 7 '(R*) converges strongly in %~ '(R*) since the
set {T,,, n = 1,2,~-} is uniformly bounded in norm (by 1)
and since the sequence converges weakly on the dense subset
of 7~ '(R*) consisting of continuous functions on R* with
bounded support (note: this argument is due to the referee
andreplacesapreviouslonger proof). Thené (v, . €3 ( A Jand

é(v,.) — & (v,)in measure, where A = R* . Consequently,
we have
$lve2(A)

The proof of this goes as follows: There exists a subsequence
7., 0 = 1,2,-, for each /, such that

¢ (Ul.r,, ) a::o é(v,)

almost everywhere in (£2, 2 ( A ),u) if we choose the conven-
tion that any sub-o-algebra of (12, 5,u) contains all elements
of measure zero in the o-algebra (2, 2,u). Therefore, ¢ (v,)
€X(A)sinced (v,, )€ (A)

Thus we also have ¢ (v, ) X ¢ (v, ) XX (v, JeZ(A)

for all i ,iy,...,0,, (i being even, § = 1,2,...,m). Therefore,
4 nly-I,

Z Z /{j,i,i,~~~i,,, Xé (Ui, }X¢é (Ur’,)x"'x¢ (Ufm)»

m=0 yfyeeri,,
n=20 = (0} (0)--(0)
' even
(0) = (0,0,0,0).

belongs to 2 (A ) and L (2,3 ( A ),u), where
Ii=(IQIP IR 1) and IY = 0,1,2,- for v = 1,2,3, and
I =024, Since L '{(2,3 ( A },u) is complete and since

ENIS 37 i X0, )X (0, )X+ X8 (v,)

m=0 i,
n=0 = LLy-L,,
4 even

<€
for Ly = (L9,L VL ALY, [:5 = (fg”,fg",f?’,f?’) with
LY and L P evenand L (5‘”,1/: Y > some N (e)forv =0,1,2,3,
given any €, we conclude that

a;,eL (2, 2 (A)p).

Let T, be the reflection operator corresponding to the
reflection p: xg— - X, X,,%2,X5 kept fixed {see Notes in Sec.

I11IA). Then we have, with A° being the complement of A in
R* and dA being the boundary of A in R*,
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E [(Tp&j )aj]

= E[(T,@)E{e] 2149}]

expectation

= E[(7,d)E{a]| 2(04)}]
weak Markov
property

= E[@)E{a|201)}]

property

= E[E{g[204)}E{e] 2(0)}]

= E[|E{a,| 2(04)}]
>0.

[This proof of E {{T,&;)e; ] >0 is analogous to that of Ro-
sen’s for Euclidean Markov fields over .#(R?).°]

On the other hand, we have, by assumption (2) and re-
flection covariance,

4 — -

2 rm+n (@ij®F"j) =E[(Tpal)a/]
m=10

n=0

Hence we have proved statement (Y '); hence statement (Y'),
and hence positivity, follow.

(d) Proof of symmetry: Qbvious.

(e) Proof of cluster decomposition:

Lemma: Let yeR®. Then a rotation (proper) % in R*
exists such that % ~'9 = £, where £ = ({,, 0,0, 0)and #
denotes the inverse of 2. Also let f.¥(R*). Then

fAv] z'@('@*lf‘)}»g’ /{>O’
where

SintX) =flx — An),
(R fax) = (27 f)fx —A5), xeR*.
[Note: we define ( .« f Jix) = f (« ~'x) for any rotation (prop-

o

er) « in R* and for any f.%(R*).]

Proof of lemma: Let k = %~ 'f. Then we can prove

( 'g?k)/ln = 9?(1‘,1;)
where

(Rk )y x) = (Zk)x — An),

i) = K (x — AL).

Cluster decomposition for the set {I',, n =0,1,2,~-}
then follows, using the above lemma, from rotational invar-
jance of the set and cluster decomposition property of
E{$(8,, X8 &,)XX¢g,,)} forallg,

e YRY, i=1.2,...1n,n =23

2. Proof of Theorem 4

Letfc.%(R%) Then M, feL *(R* C ¢~ '(R%), and NM, is
a linear map from #(R*%) to L (R*C % ~'(R?) and hence a

linear map from (R to "~ '(R*). Futher, let f; — f in

Schwartz topology, where f,e ¥(R%), i = 1,2,-, and
fe.7(R%), then M, f; converges, as i— o, to M, fin L *(R%)
topology, and hence (NM,) f; converges, as i— oo, to (NM) f
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in L %(R?) topology and hence in &~ '(R®) topology. Hence
NM, is a continuous linear map from .#(R*) to #°~ '(R?).
It remains now to show only, as a consequence of the
properties of the map N, that the map M, is real and satisfies
assumptions (1) and (2) of Theorem 3. We proceed as follows:
(@) Proof that M, is a real map: Let fe.(R*) and f real.
Let u = M, fe% ~ '(R%).Let further &( p) = v,( p) + iv,( p),
where v, and v, are real. Then the map M, is real (i.e.,
u = M, fis real for freal) if and only if

Ul(—E)=vl(e)’
v —p) = — v p)-
This condition is satisfied by the map M, since
Yihr—6m+¢)=(— 1)'*'"Y':2(9,¢)]
YA —67+¢)=(—1""Y{6p)
{77/2>9>0, 27> ¢>0,
1=0,1,2,-, m=0,+1,., %1
cosvimr+¢)=(—1)"cos v¢] 27> ¢330,
sinvir+d)=(—1)sinvg ) v=0,12

(b) Proof that M, satisfies assumption (1) of Theorem 3:

Let
W}?(Pla?blh)* |p|) Y“)(e )
AP
YN py, P P3) = _@ll,)—ln Y%6,p)

¢j”2” cos V@

IBII/Z \/E;

¢j(12” sin vg

‘ ll/2 \/2—17

Then (W“’ jf,’,] 0,2,-, v =0,1,2,.-.) forms a complete

orthonormal basis in L (R and also (¥ ,¥ 2, j = 0,2,--,

v =0,1,2,--) forms a complete orthonormal | bas1s in L %(R?).
We know that fe #(R*)C L%R* and u = M, f

e L3R} C# ~'(R%). We have, letting y|, , , be the charac-

teristic function for the closed interval [a,b ],

O0>b>a> — w:

_‘Z;L'(Pv P =

Zﬁ'(l’v p)=

(Xiab1® @L"“)Lzm‘
= (;[a.b ] ®—qu)L ARY)
= (Xio6 1 ® ij»f>1-’m‘)

= <;[a,b 1 ® @w,f>L’(R‘)
=0

for all j (even) and all v, if
support of fCR?,
and similarly

W o 1@?’”)L2m‘) =0
for all j (even) and all v, if
support of fCR? .
Consequently,
support of u CR?
if
support of fCR?
Hence M, satisfies assumption (1) of Theorem 3.
(¢} Proof that M, satisfies assumption (2) of Theorem 3:
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The proof is obvious if we notice that
$:( — po) = (— 1)4:(po) for alli = 0,1,2,---.

IV. GENERATION OF FOUR-DIMENSIONAL QUANTUM
FIELD THEORIES FROM FOUR-DIMENSIONAL
EUCLIDEAN MARKOV FIELDS

In this section we present a theorem on the generation
of quantum field theories in four-dimensional space-time
from four-dimensional probabilistic X-structures over
#~'(R*) which are also “Euclidean invariant.” Such struc-
tures include Euclidean-Markov fields over 7~ '(R*) stu-
died by Nelson in Refs. 3 and 4.

Theorem: Let (¢5,(12, Z,u)) be a four-dimensional pro-
babilistic X-structure over &~ '(R?) satisfying

E{(T,$2)(8,) X(T85) 80,) X X (T £, )}
= E {$s(8)Xbx(8) XX b5 &5, )} ()

where g, €% (R*) and (T,8)(g,,) = b5(8,;°5~")
i=12,.,n, n=12,, foranyscISO(4). Let P(4 ) be any
real polynomial in the four-dimesional Laplacian and define
the multilinear functional I",‘5-%14)

over.” (R*) X Z(R*) X -- X ' (R*) (n copies) by

L,EPEN A farn )
=E{$:(PA)f)XSe(P(A) )X ~XBe(PA) )}
feZRY, i=1.2,..n

Then I",'574) defines a certain tempered distribution

[, %f4l on R* for each n = 1,2,---, and the set

{r, &f4),  n=0,1,2,-} with [,#74) = 1 is a set of Eu-
clidean Green’s Functions for a four-dimensional Hermitian
scalar quantum field theory not including the property of
uniqueness of vacuum.

Proof: This theorem is an immediate consequence of
Theorem 1 in Sec. III since P (4 ) is a real continuous linear
map from ' (R*) to 7~ (R*) satisfying assumptions (1) and
(2) of that theorem and further since, for each n = 1,2,-,
I, ‘®*14) s jointly invariant under any element of ISO(4) as a
consequence of condition (O) on (¢,,({2, 2,u)) and the fact
that P (4 ) commutes with the action of any element of ISO(4)
on any element of .#(R*).

We now present a remark on the above theorem.

Remark: The theorem can be obtained by noting that
the probabilistic X-structure (@,({2, Z,u)) gives rise to a
Hermitian scalar quantum field theory in four-dimensional
space-time with field 8 and that P(0)@,, together with a
restriction of the same unitary representation of the Poin-
care group and the same vacuum, also form a four-dimen-
sional Hermitian scalar quantum field theory, where O is the
d’Alembertian in four-dimensional space-time. What we
want to emphasize here is that the theorem is also an ex-
tremely simple consequence of Theorem 1 in Sec.IIL.

ACKNOWLEDGMENTS

The author here thanks R. F. Streater for conversations
after the establishment of the main results in this paper and
to C. W. Chan for discussions on some mathematical points.
He also wishes to thank Y. M. Park, S. Ruijsenaars, and A. S.
Wightman for conversations. Further, a correspondence
with A. Jaffe and a remark by K. Osterwalder are gladly

Te Hai Yao 1879



acknowledgd. Lastly, he is happy to acknowledge the kind
hospitality of the Dublin Institute for Advanced Study
(where the * mapping idea” first arose), the Physics Depart-
ment of Princeton University, and the Mathematics Depart-
ment of Hong Kong University.

'R. F. Streater and A. S. Wightman, PCT, Spin and Statistics and All That
(Benjamin, New York, 1964).
2R. Jost, The General Theory of Quantized Fields (Amer. Math. Soc. Publ.,

1880 J. Math. Phys., Vol. 23, No. 10, October 1982

Providence, R. 1. 1965).

3E. Nelson, J. Funct. Anal. 12, 97 (1973).

“E. Nelson, J. Funct. Anal. 12, 211 (1973).

SE. Nelson, in Constructive Quantum Field Theory, edited by G. Veloand A.
S. Wightman (Springer, New York, 1973}, p. 94.

SK. Osterwalder and R. Schrader, Commun. Math. Phys. 31, 83 (1973).
K. Osterwalder and R. Schrader, Commun. Math. Phys. 42, 281 (1975).
#K. Osterwalder, in Constructive Quantum Field Theory, edited by G. Velo
and A. S. Wightman (Springer-Verlag, New York, 1973), p. 71.

°M. Reed and B. Simon, Methods of Modern Mathematical Physics, (Aca-
demic, New York, 1972}, Vol.1.

Te Hai Yao 1880



Maxwell’s equations in axiomatic quantum field theory. Il. Covariant and

noncovariant gauges
P. J. M. Bongaarts
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The outlines of a general formalism for the description of the Maxwell field in the framework of
axiomatic quantum field theory were given in a preceding paper. It was based on the use of locally
convex topological spaces connected in a natural way with the distribution properties of the #-
point functions of both the 4,,(x) and F,,, (x) fields. In this paper this approach is developed
further. We discuss in particular aspects of the reconstruction theorem, gauges and their
equivalence, and symmetries and gauge transformations. Finally a systematic and unified
derivation is given of the various Lorentz covariant and noncovariant free field gauges together
with the properties of the associated 4, (x) operator field theories.

PACS numbers: 11.10.Cd, 03.70. + k, 02.30. + g
I. INTRODUCTION

A general, mathematically rigorous formalism for the
quantized electromagnetic field, in the spirit of Wightman’s
axiomatic approach to quantum field theory, was developed
in Ref. 1. The special problems of the Maxwell quantum field
such as the difficulties connected with the simultaneous oc-
currence of the two fields 4, (x) and F,,, (x) and the incom-
patibility of manifest Lorentz covariance with a positive-
definite metric in the space of state vectors were met by ex-
tending the standard Wightman framework in a suitable
manner, facilitated by the use of algebraic concepts due to
Borchers.

The leading principles in this generalization of Wight-
man theory are, in the first place, the importance attached to
the reconstruction theorem which states that a quantum
field theory is completely determined by its system of r-point
functions, i.e., vacuum expectation values of products of
field operators, and, in the second place, the fact that in the
light of the reconstruction theorem the fundamental math-
ematical structure of the Wightman formalism is not that
given by the Hilbert space nature of the state space but the
underlying structure of locally convex topological spaces
connected with the distribution properties of the n-point
functions.

Borchers’ algebraic version of Wightman theory is par-
ticularly well suited to this point of view because it treats
systems of n-point functions as continuous linear functionals
on an involutive topological algebra constructed as tensor
algebra from the basic space of test functions used for smear-
ing the field operators. As a consequence, the reconstruction
theorem takes the form of a special case of a well-known
general theorem on the representation of algebras.

In its original form the Borchers formalism uses only
positive linear functionals and is then completely equivalent
to standard Wightman theory. The essential mathematical
ingredient in the reconstruction theorem is, however, not
positivity but continuity. It is therefore natural to extend the
formalism to arbitrary continuous linear functionals leading
to representations in topological vector spaces more general
than Hilbert space, with inner products that are not neces-
sarily positive definite. This is exactly what is needed for a
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general theory of the quantized electromagnetic field on the
principles just indicated. In this extended form the Borchers
formalism gives a natural generalization of Wightman the-
ory in which the Hilbert space property is no longer a general
requirement for the spaces in which the field operators are

defined but appears as an additional property only at places
where this is desirable for physical interpretation.

The fundamental difference between our approach and
work such as that of Strocchi et al. (see Refs. 2 and 3 and, for
further developments Ref. 4) is that we do not employ auxil-
iary, noninvariant Hilbert space structures, which are math-
ematically very awkward and, moreover, have no physical
meaning, but make instead a consequent use of the locally
convex spaces that are given in a natural way by the proper-
ties of the n-point functions. This involves us in mathemat-
ical methods that are slightly less familiar than Hilbert space
theory, but this is more than compensated for by a consider-
able gain in coherence and transparency of the resulting for-

malism.
For the description of the 4,,(x) and F,, (x) fields we

start with two distinct Borchers’ algebras. There is an alge-
bra @' =3*_, (8" %), with ¥ a space of test func-
tionsf #(x), suggested by the heuristicexpression4 ( f) = f4,,
(x)f #(x) d *x for the potential operator, and a second algebra
dF=37_, o(®"5?), where ¥’ consist of antisymme-
tric functions ¢**(x), because of the expression F () = (F,,
(x)¥#""(x) d *x. The algebras are related by an algebraic homo-
morphism 8, generated by a linear map d {or d,):

S 7P defined as (dyy* = 23, . The continuous lin-
ear functionals on the algebras, i.e., possible systems of n-
point functions for the 4,,(x) and F,,, (x) fields are then con-
nected by the transposed map 8 ;: .&/"*— /"%, and this
takes the place of the classical relation d, 4, —d,4, = F,,
All this can be found in detail in Ref. 1, where also the first of
the two basic results on which our formalism is built is given
as Theorem 3. This states that the image of the transposed
map 6 consists of all systems of F-field n-point functions
that correspond, through the reconstruction theorem, to op-
erator field theories in which the first Maxwell equation
d.F, +3d,F, +d,F,, =0holds as an operator equation.
This allowed us to introduce the concept of gauge as a system
of A-field n-point functions in the inverse image under 6 /; of
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a given F-field system, and also as the corresponding 4,, (x)
operator field theory. Although the state spaces of F and 4
theories are in this way a priori distinct, we showed that they
are connected by a canonical “partial” isometry which in
special cases can be used as an identification map.

In this paper the formalism is developed further and is
finally applied to the case of the free field, where a rigorous
and systematic derivation is given of the various Lorentz
covariant and noncovariant gauges together with their prop-
erties as operator field theories. In Sec. II special mathemat-
ical aspects of our version of the Borchers formalism neces-
sary for the subsequent sections are discussed. Particular
attention is paid to aspects of the reconstruction theorem
and to the subject of transformations and symmetries. In
Sec. III there is first a brief review of some results from Ref.
1, and then a definition of the concept of gauge equivalence.
A characterization of this in terms of n-point functions is
given in Theorem 3.1, the second result that is basic for the
formalism. Remarks on different gauge conditions and a dis-
cussion of various possible meanings of the term gauge trans-
formation make up Sec. IV. In Sec. V the systematic treat-
ment of the free field gauges is started and the general form
of the translation invariant two-point function for the free
A, field derived. To facilitate the subsequent investigation of
the operator field properties of the various free field gauges,
we study in Sec. V1 in a general setting what we call “Gaus-
sian” states, i.e., systems of n-point functions determined by
a two-point function in the way that is typical for free boson
field theories. The main characteristic of such a system is
shown to be that the associated operator field theories have
canonical realizations in terms of systems of creation and
annihilation operators in Fock or “many-particle’ spaces.
The Fock space structures involved are of a more general
nature than those occurring in standard Hilbert space free
field theories. They are based on “natural” locally convex
topologies, in accordance with the spirit of our approach. In
this respect this is different from and in fact more transpar-
ent than recent work on indefinite metric second quantiza-
tion with auxiliary Hilbert space structures such as e.g., Ref.
5, although in Ref. 6 these additional structures have become
already less important. In Sec. VII the discussion of the free
field gauges is resumed. The general form of the Lorentz
invariant two-point function for the free 4, field is derived,
and it is shown that a Lorentz invariant free field gauge al-
ways leads to an indefinite metric space. Two distinct impor-
tant classes of Lorentz invariant free field gauges are dis-
cussed, the generalized Landau gauges and the generalized
Gupta-Bleuler gauges, characterized respectively by the
conditions 3#4,, = 0and d"d, 4, = 0, as operator equa-
tions for the field 4,,. In Sec. VIII the Coulomb gauge is
investigated, as the most important and typical example of
noncovariant but positive metric gauge. Its properties as an
operator field theory are worked out in some detail, in par-
ticular the precise meaning of noncovariance under Lorentz
transformations. This provides a characteristic example of
the interplay of locally convex aspects and of a physical Hil-
bert space structure arising in this case in a natural way.

The main reference for this paper is Ref. 1, which will be
denoted as L. It contains among other things a brief review of
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the Borchers formalism as needed for this work; see, howev-
er, for more details Refs. 7-12. The references for Wightman
axiomatic field theory are 13-15, and for the theory of topo-
logical vector spaces 16—19. There is an unfortunate but un-
avoidable double use of the terms homomorphism and iso-
morphism in this paper, denoting on one hand maps that
preserve algebraic, i.e., multiplicative structure, and on the
other hand continuous linear maps between topological vec-
tor spaces having the important additional property of being
relatively open, see, e.g., Ref. 16, Chap. 17, or Ref. 19, Chap.
III, Sec. 1. Hopefully the context together with additional
remarks will prevent confusion. We use heuristic “general-
ized function” language for distributions at some places, in
particular in Secs. V, VII, and VIII, where this makes for
easier reading and where a reformulation in the correct test
function language is obvious and straightforward. Finally
we consider in this paper only Lorentz transformations be-
longing to the connected part of the Lorentz group.

Il. REMARKS ON GENERAL MATHEMATICAL ASPECTS
OF ALGEBRAIC WIGHTMAN THEORY

The principal theorem in standard axiomatic field the-
ory is the reconstruction theorem, which says that an opera-
tor field theory is completely characterized, up to unitary
equivalence, by the vacuum expectation values of products
of field operators, from which it can in fact be recovered by
an explicit construction. In Borchers’ algebraic version of
Wightman theory this theorem has a simple form; it is a
special case of the general relation between cyclic represen-
tations of an involutive algebra and its positive linear forms.
This relation is, of course, well known from C *-algebra the-
ory and its applications in statistical mechanics and field
theory. The term GNS (Gel'fand-Naimark-Segal) represen-
tation which we shall occasionally use has its origin there.
An advantage of the special context of topological algebras
constructed as tensor algebras of test function spaces com-
pared to that of C *-algebras is that in the relation between
linear functionals and representations the role of positivity is
less important; only continuity is essential. Therefore, the
reconstruction theorem remains true, after minor modifica-
tions, in our generalized approach to algebraic Wightman
theory, in which, with an eye to application to the Maxwell
field, positivity has been dropped as a general requirement.

For a more explicit discussion of this and related as-
pects of this approach we consider the general situation
where we have a Borchers algebra o7 =2%_, & (®"7")
constructed as a topological direct sum of completed tensor
products of a basic complex vector space 2~ which we sup-
pose to be a nuclear Fréchet space with continuous conjuga-
tion. (The spaces 7~ that we use are the spaces of multi com-
ponent test functions on R* that will be listed in the next
section.)

Weintroduce some convenient terminology: By a repre-
sentation of o/ we shall mean a homorphism # of . into the
algebra of linear operators in a complex vector space #°,
equipped with a nondegenerate Hermitian form (-, -) (not
necessarily positive definite!), such that (£2,,

m(a)d,) = (mla*)2,, 2,), Vac/, ¥ 12,, 2,7 [The linear
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operators 7{a) are of course defined everywhere in #°.] A
vector £2 in 77 will be called strictly cyclic if the map from &
to # defined by a—»m{a)(2 is surjective. The representation 7
for which such a vector exists is also called strictly cyclic.
Two representations #, and m,, in %7, and 77, are called
equivalent if there exist a linear bijection W: 57,7, iso-
metric, Le., with (W, W2')= (2, 2'),V 2, 2'e5,, and
such that W (a) = m,(@)W, Vae s

Lemma 2. 1. Two strictly cyclic representations 7, and
7,5, in F7°, and 77°,, are equivalent if and only if for some pair
of strictly cyclic vectors £2, and {2, the equality ({2,,
m(a)2,) = (12,, myla)f2,) holds for all ae./.

Proof: On one hand, if 7, and 7, are equivalent and £2,
strictly cyclicin 77, then 2, = W2, is strictly cyclic in 77,
and the equality holds: on the other hand, if for strictly cyclic
£2, and 2, one has (2,, 7,(a)2,) = (12,, 7,(a)2,), Vac,
then 7,(@)f2 —m,(a)f2, defines a linear map W with all the
properties required, because 7(a)f2, = 0 (2,,

(b *a)2,) =0, Vbes/ < (2, m,(b *a)f2,) = 0,
Vbeot & mla)2, =0.

A representation will be called continuous if 7% is a
locally convex Hausdorff topological vector space, for which
the Hermitian form (., -) is separately continuous (it will then
be called an inner product on 7°) and if the bilinear map from
o XK to ¥ defined by (a, £2 y»>m{a)(? is separately con-
tinuous. Two continuous representations are called topologi-
cally equivalent if they are equivalent and the isometry Wisa
topological isomorphism.

For continuous strictly cyclic representations one can-
not, from the equality of “expectation values” ({2,
m(a)2,) = (12,, m,{a)12;), conclude that the representations
are topologically equivalent. A slightly modified statement
holds, however. To obtain it, one observes the following: If
for a strictly cyclic, not necessarily continuous representa-
tion 7, with strictly cyclic vector £2, the expectation value (£2,
m(a)f2 ) happens to be a continuous function of g, then the
surjective map y: & —#", defined as y (a) = m{a)f2, can be
used to induce a locally convex Hausdorff topology on 57,
for which the Hermitian form (-, -) is separately continuous
and the representation m continuous. This topology is, of
course, just the quotient topology on the quotient space
o/ /Ker y transferred to 777, it makes y into a surjective to-
pological homomorphism, giving the continuity properties
and also the fact that we have in this way the strongest possi-
ble topology in # for which = is continuous. This implies
that a continuous, strictly cyclic representation has on its
representation space a ‘‘natural” strongest topology, the to-
pology induced by the continuity of (2, 7{a)f2 ).

Lemma 2.2: Two continuous, strictly cyclic representa-
tions with representation spaces equipped with the “natu-
ral” topologies are topologically equivalent if and only if for
some pair of strictly cyclic vectors £2,, £2, the equality (¢2,,
m(a)2,) = (12,, m,{a)f2,) holds for all g in 7.

Proof: The only point worth mentioning is that the iso-
metry W is a topological isomorphism because y: & —%",
and y,: .« —7", are topological homomorphisms.

Let w be an element from the topological dual .o that is

real in the sense of w(a*) = w(a), Vae.o/ . Define .7,
= {ae/ |w(ba) = 0, Vbe.o/ }. Thisis a closed left ideal in .o
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(For w>0, i.e., (a*a)»0, Yae, this coincides with £,

= {aeo/ |w{a*a) = 0}). Let y be the canonical surjection
o —o/ /¥ . Then w defines a continuous, strictly cyclic
representation of &, the GNS representation:

Lemma 2.3: The representation of .« defined by taking
K = of /¥, as representation space with inner product
(x (@), x(b)) = w(a*b ) and as operators 7r{a) the operators giv-
enbymia)y (b ): = y (ab ),isacontinuous, strictly cyclic repre-
sentation, with strictly cyclic vector £2,: = y (e), e unit ele-
ment of .. The representation space 7 carries the
“natural” topology and one has w(a) = (£2,, m(a){2,), Yac./.

The proof of this lemma is also very simple and follows
from the preceding remarks. It is therefore omitted.

Lemma 2.2 and 2.3 together constitute the reconstruc-
tion theorem in the present version of algebraic Wightman
theory.

We shall mainly use elements @ in &/~ that are not only
real but have also the normalization w{e) = 1. Such elements
will be called states on 7. The strictly cyclic vectors 2 corre-
sponding to such @ through the reconstruction theorem
have then unit length.

If a state is positive, i.e., if w(a*a)>0, Vae./, the GNS
representation space #” is a pre-Hilbert space. After com-
pletion of # to a Hilbert space, we are back in the situation
of standard Wightman theory. 77 then appears as the invar-
iant dense domain on which the in general unbounded opera-
tors (a) are defined and the continuity properties of the
representation become continuity properties of expectation
values with respect to vectors from this domain.

Transformations and symmetries are an important as-
pect of any field theoretic formalism. In the Borchers for-
malism as it is employed in this work it is natural to describe
transformations by means of algebraic automorphism of ./
Such automorphisms should commute with the conjugation
* and as linear maps should be topological isomorphisms.

The most important and at the same time simplest of
such automorphisms are those generated by real (i.e., conju-
gation preserving) linear topological isometries 7'in the basic
test function space 77, according to a,(f, ® - &1, )

= (If)) ® - ® (Tf,), £,€7". This is the way Lorentz transfor-
mations appear in the theory. One has, for example, for the
A4, (x) field theory, where 7" = /'Y &/ = .o/, for every in-
homogeneous Lorentz transformation (u, A ) a topological
isomorphism T, ,,: .=, given by (T}, ,, f}(x)

= A" f*A ~'{x — u)), which in turn defines an automor-
phisma,, , : 7"

There is a second class of simple explicitly given auto-
morphisms. These depend on real elements A of the topologi-
cal dual 7 and are defined by extension of @ e = e, a f

=f+Afle a,(fi8f) = (fi +A(fle) e fr+ A (file)
=hefi+ A )L+ ALA+ AR (S YL L7,
etc. These a, shift expectations values of single field opera-
tors. They will not be used in this paper, except as basis for a
single remark on gauge transformations in Sec. IV, but are of
importance in further developments connected with the defi-
nition of scattering states and appear in particular in the
discussion of “displaced Fock representations” in the ter-
minology of Ref. 20, or noncentered Gaussian states in the
more general terminology of Sec. VI.
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An automorphism a determines a symmetry if a state @
isinvariant under a, i.e., w(a(a)) = w(a), Yac/. As one veri-
fies easily the relation 7(a)f2,—m(a{a))f2, defines then a lin-
ear map U of the GNS representation space # onto itself,
which is a topological isomorphism, isometric with respect
to the inner product in 57, leaves (2, invariant and has the
property m(a(a)) = Um(a)U ', Yaes . If the state w is posi-
tive, U can be extended to a unitary operator in the Hilbert-
space completion of 7%7; we are then back in the situation of
symmetry in standard quantum theory. In the example of
A, (x)field theory the GNS space of a Lorentz-invariant state
carries a representation of the inhomogeneous Lorentz
group by isometric linear isomorphisms, transforming the
fieldoperatorsA (f)asU, o 4 (f)U ; 4, = A (T, 4 ,f),which
corresponds to the heuristic relation U, 4,4, (x)U ; A,

=A",A {Ax + u), the conventional transformation rule
for a Lorentz covariant vector field operator. It is a charac-
teristic feature of the Borchers formalism as we use it that the
representation U, 4, as a representation in terms of isomet-
ric operators has strong smoothness properties, independent
of a possible positivity of the invariant state. [In fact, for the
free 4, (x) photon field there are no positive Lorentz invar-
iant states, as will be proved in Sec. VIL]

It is useful to consider transformations in a somewhat
more general setting.

Let .«/, and ¢/, be two Borchers algebras. Let a be a -
preserving, continuous algebraic homomorphism of ./ | into
&, and w,, w, two states on &7 ,, & , respectively, such that
o, is the image of w, under the transposed map a":
o e, w(a) = w,(ala), YV aed .

Corresponding to « there is a canonical “partial” iso-
metry between the GNS spaces of w, and w,. Let the GNS
representations be 7, and ,, in the spaces &##°, and %,
mlala ) 2,—m (a2, V aes/,, defines a surjective linear
map W from a subspace ¥ of %7, onto #”,, because
wy(b,afa,)) =0, V¥ b,eo,, implies w,(b,a,) =0, ¥V b e/ .
One verifies that this map W is isometric, maps 2, onto (2,
and has the “intertwining” property Wmy(a(a,)) = 7 (a,}W,
V a,e.¢/,. It also agrees with @’ in the sense that if a vector
.7V C 9%, corresponds to the state v, on .7, according
to vy{@,) = (s, malas)th,), ¥ a,e.7 5, then the vector
Wi,e.% | corresponds in the same way to a state v, on .&/ |
which is just @'v,. In general, Wis not continuous, and nei-
ther is 77 closed. If Ker W = 0, as is the case for a positive
state m,, then W ~! exists also and can then be used to identi-
fy %, albegraically with the subspace #%". If a is also a
homomorphism in the sense of topological vector spaces,
then W can be shown to be an open map, and, therefore,

W ~', when it exists, a continuous map.

Symmetry as defined above is a special case of this situa-
tion where .o/, = ./, @, = ®,, and a with continuous in-
verse. The isometry U, implementing the automorphism a is
just W ', defined in this way to have agreement with con-
ventional transformation formulas.

A less trivial case is the general connection between
A, (x)and F,, (x) theories for the photon field, a basic feature
of our formalism. In this situation ., = &%, &, = &7,
and « is the algebraic and topological homomorphism 6,,.
The state w, is a state of the F, (x) field, w, a possible gauge

Hny
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for w,. The isometry W the canonical map from 7
7F,

The case where ¢, = &7, = &/, ©, and w, gauge
equivalent {to be defined in the next section) and  not neces-
sarily invertible will be used in the discussion of gauge trans-
formations.

A
on onto

. GAUGE EQUIVALENCE

In classical electromagnetism two different potentials

A,, are equivalent when giving the same field strength F,,,
=d,4, — 3,4, Inthatcasethedifference4 ;, — 4, canbe
written as a gradient J,, ¢.

In I we showed that in a Wightman formalism for the
quantized electromagnetic field the relation between poten-
tials and field strength is fundamentally a relation between
systems of n-point functions. From the n-point functions for
the potential operator 4,, (x) one obtains the n-point func-
tions for the field strength operator F,,, (x) by means of the
map @, defined in I and corresponding to the heuristic
formula

LL VgL, Y, (‘xl’ e xn )
= €L gy O, 07 K s Xa) (3.1

with 8;} = 3/0x]’, the usual summation convention, and €/,
the permutation symbol in two indices, nonzero only when
p, 7is a permutation of i, v and then equal to +4- 1 according
to the sign of that permutation.

A system of n-point functions w/, , _, ,, associated with
a F,, (x) theory satisfying the ordinary Wightman axioms
and in which d, F,, 4+ d,F,, + d,F,, = 0holds as an oper-
ator relation can always be obtained in this manner from a
system of functions @ ., . This was proved in I, as a state-
ment on the image of the map 8 ; (Theorem 3). Such a system
wh . ., together with the 4,, (x) operator field theory obtained
from it by the reconstruction theorem as discussed in the
preceding section was called in I a gauge for the given F,_, (x)
theory. There is an obvious notion of equivalence for two
different gauges:

Two A, (x) field theories will be called gauge equivalent
if their n-point functions w? _, give in formula (3.1) the
same n-point functions o/, ,. _, ., . The main result of this
section is that the differences of such 4, (x) n-point functions
can also, in a certain sense, be written in terms of gradients.
This will be formulated in a precise and compact way in
Theorem 3.1. To see that we have indeed a rather natural
generalization of the classical situation, it may be helpful to
state the theorem first in more heuristic form.

Theorem 3.1 (heuristic formulation): Two 4, (x) theor-
ies are gauge equivalent if and only if there exist (tempered)
distributions ¢ !}, (x), .., x,),n=1,2,,1=12,..,n,
such that the differences of the n-point functions for the
A,,(x) fields can be written as sums:

"
+A A — 1 {n,1]
Oy, ™ Gpos, = Z aﬂ: ¢lh"',“: T (3.2)
=1

This theorem provides an explicit characterization of
all possible 4, (x) field theories gauge equivalent with a given
A, (x) theory. Such an equivalence class is very large as it
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involves the choice of an infinite sequence of arbitrary distri-
butions ¢ !}, . Only a small part of these possibilities
have practical value and will occur in the standard theory of
the quantized Maxwell field. On the other hand, the notion
of gauge equivalence based on the formulad |, =4, + 4,4,
as operator relation, with d, ¢ the gradient of some operator
field, an idea which also might suggest itself as a generaliza-
tion of the classical situation, is definitely too narrow. This
will be argued in the next section and will be evident from the
explicit discussion of the free field in Secs. VI and VII where
the more general idea of equivalence through the n-point
functions will be needed to connect some of the well-known
free field gauges.

To prepare for the rigorous version of Theorem 3.1, we
collect some material, part of which was already introduced
in L.

The basic test function spaces .*' ), j = 1,2, 3, 4, that we
employ are defined as spaces of complex valued, multicom-
ponent ¥ (R*) functions; all antisymmetric tensor functions
¥ “Pix) for j = 1, *¥(x) for j = 2, all vector functions f*(x)
forj = 3, and scalar functions ¢ (x) for j = 4. The spaces ¥
are obviously nuclear Fréchet spaces.

We consider linear subspaces {C .7V, j=2,3, 4, de-
fined as

SR = (P = ey,

S = fe N =0 e S,

S = (¢esS g =3a,. /" 5.
The #}{ can be defined equivalently as

7B = (Y0, =0,

FP = { fe 3[4 =0

fj: & (x)d *x = 0}.

Forj = 2, 3, this was proved in I {Theorem 1). Forj =4 we
give a proof along the same lines, using again the division
property of test functions. After Fourier transformation one
has to prove that for ge.(R*) with ¢ (0) = 0, there exists
& (R*) functions such that ¢ = k,f*. Choosea (R') func-
tion p(u) with p(0) = 1. Define fO(k ) = k 5~ '6 (k, 0, O,

0) p(ky) plk>) plks). Because ¢ (ko, k4, 0, 0) — kof °(ko, &y, O,
0) =0for k, =0, one can define £ '(k) = k [ '{4 (ko, k,, O,
0) — kof °(ko, k1, 0, 0} p(ks) plks). Now @ (ko &y, ko,

0) — kof °(ko, ky, kg O) — Ko (koy Ky, Kpy O) = Ofor k, = 0, 50
one defines f2(k ) = k ;7 '{ (ko, ky, kpy 0) — kof ko, k1, K,
0) — k\f'(ko, k\, k2, 0)} plks). Finally because

¢ (k) — kof Otk ) — k f (k) — kof 2k ) = O, for k, = O one de-
fines f3(k ) = k (6 — kof® — kyf* — kof ). QE.D.

Note that this implies also that .~ just at #2 and
& is a closed subspace.

We define /inear maps between the spaces Y, d,:
SV D by y P> — 39,y %, dyy: PP by ¢
=23, ¥, and d,;: S-S Dby f 4> — 3, f “. These maps
are continuous and, moreover, homomorphisms in the sense
of topological vector spaces, because the .V are Fréchet
spaces, the #¥ closed subspaces. We have in fact /¥

= Imd,, = Kerd,,, /) = Imd,, = Kerd,,, and S

P = (ges™
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= Imd,;. Observe that d;, was denoted as d in I and that the
definition of the d, is such that the transposed maps d j;:
F'_ #"®) correspond to exterior differentiation of distri-
butions written heuristically asd ;,: F, —d,.F,, +3d,F,,
+9d,F,,.dy,:A,~d,4, —3d,4,, and dis: ¢H8 0.

We shall make frequent use of the following lemmas
containing more or less standard results from the theory of
topological vector spaces.

Lemma 3.1: Let 77, ..., 77, be closed subspaces of the
nuclear spaces 7, ..., # . The space 77, ® --® 7", can
then be identified algebralcally and topolocially with a
closed subspace of 77, ® - ® 7% ,.

This is a property of the e-tensor product topology; see
Ref. 16, the corollary of Proposition 43.7.

Lemma 3.2:Let 77, ..., 7, be nuclear Frechet spaces;
then we have a canonical 1dent1ﬁcatlon (7, 88 n)
=7"] &® 7 ., with respect to strong dual topologies. See
Ref. 16, Proposition 50.7.

Lemma 3.3: Let 77 and %" be Fréchet spaces and T:
7"— %" a continuous linear map with closed image. The T'is
a homomorphism, Ker7' = (ImT)!, and ImT"’ = (KerT)".
(with T’ the dual map #™"'—7").

For a proof see Ref. 19, 7.7 and for the last part of the
statement, I, the proof of Theorem 3.

Lemma3.4:Let7",,.., 7", and #°, ..., # , be nucle-
ar Fréchet spaces and T, ..., T,, continuous linear maps; 7:
77,5 ;. If the T, are, moreover, homomorphisms, then
T, ® ®T 7 ® ®W ¥ ®- 87// is a homomor-
phlsm wnth Im(T1 88T )= (ImT,)@ -®(ImT,) and
Ker(T, 8 ® T,) the closed linear subspace spanned by the
subspaces

@07 ,_ 8KerT)®?,,, 887,
ji=12,.

Proof: This can be assembled from Ref. 16, Proposmon
50.1, sub f(for the equality of ® ® =@ ), Propositions
43.6, 43.7, 43.9, and exercise 43 2 (for the properties of ten-
sor product maps) and, of course, with the associativity of
tensor products, just as for the preceding lemmas. Because
the result in Ref. 16, Exercise 43.2, is rather crucial and no
proof'is given, we provide one for the special case considered
here:

Denote 77, 8- @V ®(KerT)® J 8®Y . by
U;; Let Fe(% | + - + 02/ JC(7 @& ¥, ); then ¢F
T\, ..., T,v,) = F{v, ® -~ ®v,) defines an n-linear map ¢ :
ImT, X--XImT,—C. Because of the continuity of F there
exist neighborhoods of zero %, C 7”; such that
Fv,®-®v,)|<lforves;,j=1,..,n The T, are homo-
morphisms, i.e., relatively open, so there exist neighbor-
hoods of zero ¢ ; C #7;, such that (¥ ,nT;(7",)) CT;(%, )
then one has |¢F(w,, e W, )| <1 for w,e® ,nT(77),j=1,.
n, which proves that ¢ is contmuous Wlth gt r there corre-
sponds a continuous linear map from 1 (Im7) @ - ‘® (ImT,)to
which after 1dent1ﬁcat10n of (Im7) ® - ® (ImT,) with a
closed subspace of #, 8@ %", can be extended to an ele-
ment G of (¥, YA n)'» because of the Hahn-Banach
theorem. One verifies that (T, @ ‘® T,.YG = F, so we have
(%, + + %, CIm(T, & & T,). The inclusion in the
other direction is obvious. From (%, + « + % ,)*
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=1Im(T, ® 3% eT )" one then obtains finally
Ker(T\@ 8T, )= (%, + -+ %,).

A set of n-point functions for the 4, (x) field is a state &*
on the Borchers algebra .o/*, a set for the corresponding
F,.(x) field is a state »" on ", with 0" = 6 jw”. We can
reformulate the definition of gauge equivalence as follows:
Two states o] and w7 on .o/ are gauge equivalent whenever
w? — wieKerf ;. With this definition and the observation
that the operation ¢ [/}, (x,x, )}, ¢, L
(x,-x,) can be written rigorously as the map

(&7 '1,m)@dyo(e" 1)
( éjf 1f(3)) 8.5 é ( é n —-j‘y(B))):__}( ® n p Oy
we formulate
Theorem 3.1 (rigorous version): Two states w7 and w;
on ./ * are gauge equivalent if and only if, for every n = 1, 2,
-, the restriction of 0} — @7 to(® ".#'%), can be written asa
finite sum of vectors from the subspaces Im(@” 'l ..}
® d43 ® ( " _jlv/rm ))l,j = 1,2,...,”. (1&(/13» denotes the ldentlty
map on .£%,)
Proof: (a) 0! — wieKerf ;¥ n=1,2, -
tion of w} — w3 to ® " isin
Ker(® "dy) = (Im(8 "dy,))’
= (&"Imdy,) = (8" S )"
Im((® "1 ,u)@dy® (8" /1))
= (Ker((8'~'1,n)@dys@(" /1 u)))
=((®/" 'SP eKerdy, @(e" s
=& 'ISNe S e(e" ISV

So one has to prove, for n =2, 3, .-, that

; the restric-

(é nlyJ(.@))L — z (( éj— l(;ﬂ(})) é ly(o}) é(é o 1f(3)))L’
j =1
as a subspace of ( & ".#'*)’; the summation on the right-hand
side means considering finite sums.
{b) We consider the case n = 2 and show first that

f‘” ® f(l) (f(J) ‘y’(”‘))n(jﬂ(:!) ® (}/J(z))
From

FPe s = (e
one obtains

S e FPC(FY e SISV e ).
For the inclusion in the other direction one considers an
element

el 78 © I (I Ve F;
3 €57 &SV = Im(d;, ® 1o
=3h,,e ey g foi

such that ¥, = (d,, ® 1 ,o)h,5. Because also

PP @ FP = Ker(l o @d,,),
one has

(3, é dashhyy = (1o édata)(dsz é 1m)thsy =0,
so that

hype S0 £ 4 P9 7.

f(S))n(yB) ® f((;))
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QE.D.

From (d5,® 1, )(.#2' & .¥¥) = 0 one has
(dp®1,u)(FRe S 4 F2 g 78
=(dp®l,. )Pk
=7 & F)

and, because this is closed in ¥ @ ¥,

dnel,0) §'e 8 S+ SV S
y(3) /(3)

and therefore
Yrs = (d1p 8 1 yu)(hye S @ FE). QE.D

{c) One has in general for closed subspaces %", ", of a
locally convex topological vector space % that

W, = (N )
=7+ V),
and therefore
(X ) = (I + 73

(for properties of polars, see Ref. 18, Corollary 1 of Theorem
4, Chap. II) This gives us
(#8679 =S58 S IrD s S
= (£ e SV + (£ Ve LHN).
(d) We have to show next that () @ #®):

+ (¥ e ) is a closed subspace in (¥ ® %) (in
weak and strong dual topologles) and therefore we show
first that '@ /% + 9@ 5 is closed in S & 9.
Themapd®1,.: .YV ¥ 9Weg S maps
& #Winto the closed subspace .Y & .#'2, because by
restrictingd,, ® 1, to.#® & .#* and using the identifica-
tion properties of Lemma 3.1 one is aliowed to apply Lemma
3.4. One has Ker(d,; @ 1 ) = ¥ @ %, and therefore

Fe sV 4 s s
= Ker(d43 é l.y-tn) + f(:‘\ é f(oh
= (@3 ®1,0) dz@1,0) (S0 )
=(dne 1) (e P,

and this is a closed subspace of #** 87 . Consider next

the map (d,, ® Lpo){ S0 S =—(F B # ). Be-

cause Ker(ds, | @l ,0) = (Im(dy, @ 140)) = (P e)!

one has (£ & FO): + (P& FP) = [(dy & 1o )]

X(d3®1 ) [ B g LR }']- Tt is therefore sufficient to

show that (d;; @ 1,0 ) [(£¥ ® S75"] is closed in

(FP & ) Themapds, ® 1 0: FP@ £V 5V g 7O

induces a continuous linear map 7' from the quotient space

(F? & )/ @ ) to the quotient space

(P8 FNN(FYe FY). Im T = (Y

® /(P @ #) viewed as a subspace of

(e SN/ @ F§); it is the same as

(FPe. s+ #0058/ e #P) and is therefore

closed. Consequently, 7 is a homomorphism between Fré-

chet spaces. Going over to duals, we know that T": (¥ ®
,5’(3))/(f(3) y(:&) ) _)( F2g y(:&)) (y(zl @ BZ 3)» has

closed range (weakly and strongly). We have forj = 2,3 the

canonical isomorphisms
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(P e S/ F e LB

=(SVe FY)C(FVe LY,
which are topological with respect to the weak duals [see
Ref. 17, Sec. 17.14 (11)] This can be used to identify 7'’ with
the restriction of (d3, ® 1 fm) to (S ® %) and from this
one sees that (d;, ® 1 ,n)' (& ® & £ is closed in
(P2 g Py,

(e) From (c) and (d) we have (FD e L)

= (P e S + (F e #P) . Inacompletely analogous

way one shows that

(7, 8 FPe 7,85 e )
=(7, 85087, 5V 7 )}
+ (7,857,050 V)
for arbitrary nuclear F{échet spaces 7, j = 1,2, 3. Thiscan
be used to transform (® 5" into

z( ®171y(3)®y3]®(®n j‘y(3)))l
i=1
in n — 1 steps:

(8"7) = (£e S e (8" 2
=(#Pe S MVe(e" AL
+(F Ve s e (e 2L
etc., for general 7, and this completes, according to (aj, the
proof of the theorem.

V. REMARKS ON GAUGES AND GAUGE
TRANSFORMATIONS

All the different gauges for a given F,, (x) theory are
physically completely equivalent. Choosing a gauge is a mat-
ter of mathematical convenience only. The variety of gauges
allowed by Theorem 3.1 is very large, but only a small num-
ber characterized by simple general conditions will be used
in practice.

A gauge for a Lorentz covariant F,,, (x) theory is not
necessarily itself Lorentz-covariant. It is therefore obvious
to require this as an additional simplifying property. Ac-
cording to the discussion at the end of Sec. II this means
Lorentz invariance of the state " or equivalently the exis-
tence in the GNS state space of a representation of the Lo-
rentz group by isometric operators, transforming the field
operator 4, {x) in the proper manner.

The positive-definite metric of the F,,, (x) theory does
not imply positivity of its gauges, and again it is natural, in
order to obtain a Hilbert space for the 4, (x) field, to impose
this as an extra condition.

The fundamental difficulty which complicates the field-
theoretic description of photons is an incompatibility be-
tween these two conditions. At the level of generality where
we are at this point and where we have not yet used anything
corresponding to the second Maxwell Equation d *F, o = =J,,
this does not show up. In Sec. VII we shall give a rigorous
proof of this incompatibility for the case of the free field,
d'F,, =0.

In classical theory one uses as a convenient restriction
the Lorentz gauge condition d#4,, = 0. It simplifies the sec-
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ond Maxwell equation for the potentials to the wave equa-
tiond*d, A4, = J,. Theanalog for the quantized photon field
is 3”4, =0, as an operator relation for the field operator
A, {x), or equivalently a condition for the state " that can be
written in terms of n-point functions as d“wy; ., (x,, ..., X,,)
=0,Vn=1,2,..,VYj=1,2, .., n. The resulting situation
is, however, more complicated than in the classical case. The
wave equation does not necessarily hold for the field opera-
tor 4, (x), as we shall show in Sec. VII for the free field. In
fact in that case the condition 3“d, 4, = 0 gives rise to a
different important set of Lorentz-covariant gauges.

We have a precise and satisfactory definition of gauge
and of equivalence between gauges. No such clearcut mean-
ing can be given to the term gauge transformation. There are
several distinct concepts, all having to do with the transfor-
mation of gauges into equivalent ones and playing a role
somewhere in the formalism. We shall briefly discuss some
of the possibilities.

{a) From our algebraic point of view it is natural to de-
fine a gauge transformation as a continuous s-automor-
phism a of &7 onto .74, with the inverse having the same
properties, and such that every state ©” on .7 is mapped by
a’, the dual of @, onto a state a’w” that is gauge equivalent to
o”. A simple characterization for thisis a8, = 6,. (4, is the
basic homomorphism from .« ¥ into .&/“, generated by d,,.)

The scheme developed at the end of Sec. II allows us to
identify the GNS state spaces of equivalent gauges connect-
ed in this manner and reduce the action of a gauge transfor-
mation in this sense to the introduction of a transformed
field operator 4 !?'(x) in the stare space of the given 4 (x)
operator. Take & | = &, = &*, 0, = 0, 0, = @'0",

#, = 5, the GNS space of w* and 7°, = #*'), the GNS
space of a'e”. The “partial isometry” W is a topological
isomorphism from ™ into ™' and can be used to identi-
fy @ with %™, and 124'@ with 224, In 5 we have the
representation 7 of .&/*, connected with o*, but also the
“gauge transformed” representation 7', coming from
J*'“). Due to the intertwining property of W, it can be writ-
ten as 7'*(a) = m(a(a)), V ac./*. This means in particular for
the field operator: 4 " f) = m{a( f)), ¥ fe" ¥ C o7

The transformed field operator 4 *( f) may be written as

A f)=A(f)+ D(f) Thedifferenceterm D ( f) = 4 ‘“{ f)
— A (f)is in fact a gradient. In heuristic language where
D(f) = D, (x)f #(x) dx, this means that D, (x)=d,¢(x) for
some operator field ¢ (x). To prove this, one must show, in a
more rigorous formulation, the existence, ¥ ge.¥*¥, of a con-
tinuous linear operator ¢ (g): ™ —. %™, with a continuous
linear dependence on g, and such that D ( f) = ¢ (d,, f), V
fe#%. Note first that ¥ = Imd,, has finite codimension
(see Sec. III). There exists therefore a continuous projection
Pyin % on # (see Ref. 16, proposition 9.3). Note also
that, V fe.¥5 = Kerd,, = Imd,,, D (f) = 0, because then
D(f) =7 f) ~7(f) = nlle — 1) f) = m{l@ — 1)), for
some &%, and this is zero because (@ — 1)§, = 0, the
characteristic property of a gauge automorphism. These two
results together imply that, V ge ¥, ¢ (g): = D (d 5 'P,g) is
a well-defined continuous operator in ™. Of course, one
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has then ¢ (d,,f) = D (g. Moreover, ¢ depends continuously
on ge.#'“. To see this, consider for each fixed 2% the
continuous map . ®—7#* defined by fi~D ( f)12. Because
D(f)=0o0n %Y, this gives rise to a continuous linear map
SO P74, The map d,; is a topological homomor-
phism; therefore, ¥®/. 7 is topologically isomorphic with
& provided with its relative topology as a subspace of %
This gives a continuous map .*y'—%. By composition
with the projection P, one obtains finally a continuous linear
map Y%, which is just g—.¢ (g)2. In this way we have
shown that gauge automorphisms can be realized as field
operator transformations of the special “classical” form:

A, (x) = A, (x) + d,¢ (x), with ¢ (x) an operator field.

Examples of gauge automorphisms are readily avail-
able. Let Tbe a »-preserving, linear topological isomorphism
of % onto itself with (T — 1)d;, = 0. The s-automorphism
ar, as defined in Sec. II, is then a gauge automorphism. For
an explicit case take T, in terms of Fourier transforms
(TF)V(k)=f*k) + CHk)K.f k), with C*(k ) a polyno-
mially bounded vectorial C  function, satisfying k,, C*(k

=0, C#k) = — C¥ — k). [The inverse is then

(T~ fP(k)=Ff"k)— C¥k)k.f*k).] A second class of
examples consist of special “‘shift” automorphisms a, (see
Sec. I} with AeImd }; C .#*". This means that A is a vector-
ial distribution of the form d, ¢ (x), with ¢ (x) a real scalar
tempered distribution. A gauge automorphism of this type is
in terms of transformation of the field operator A4,, (x) just
addition of a “c-number” gradient term d, ¢ (x).

{b) A wider concept of algebraic gauge transformation is
obtained by dropping the invertibility of @. A gauge transfor-
mation is then a continuous »-preserving algebraic homo-
morphism a of &7 into itself with the property af, = 6,.
As an example one may consider an a, as given in {a), but
without the condition k,, C#(k ) = Ofor C*(k ). Thereis again
a certain linear correspondence between the GNS space 77
of a gauge w* and the GNS space 77 of an equivalent,
transformed state a’w”. However, in general the linear iso-
metry W is not injective, not defined on all of 77, and there-
fore cannot be used to identify the spaces #™ and 7™,
The field operator 4, (x) and the transformed operator
A (x) remain in different spaces, and it does not even make
sense to ask whether 4 [(x) — 4, (x) can be written as a gra-
dient. [One might be tempted to define in #™ as transformed
field A '(f) = m{a f). However, unless W is a topological iso-
morphism of 7 onto 57 “, the corresponding representa-
tion is not the GNS representation associated with the gauge
transformed state a'w”. ]

It may happen, as a special case, that a gauge homomor-
phism « gives an adjoint a’ that is invertible on a subset of
states only. If there are appropriate continuity properties,
this will again lead to the situation of (a), i.e., topological
isomorphisms W between representation spaces and, after
suitable identifications, gauge transformations as transfor-
mations of the field operator in one representation space, but
all this only for a restricted set of gauges. An example of this
will occur in Sec. VII where gauge homomorphisms a .,
with T givenby C#(k ) = Ak #, connect the so-called general-
ized Gupta—-Bleuler gauges.

1888 J. Math. Phys., Vol. 23, No. 10, October 1982

(c) Several other ways of connecting equivalent gauges
can be detected in the literature, some of which are essential-
ly further generalizations of case (b); see in particular Ref. 2.
They all have in common that they cannot be realized by
addition of a gradient term to the field operator 4, (x) and
involve distinct representation spaces that cannot be
identified.

V. THE FREE FIELD

A conspicious feature of the field-theoretic description
of free photons is the lack of uniqueness for the field opera-
tors A, (x). This is in strong contrast to the situation for other
particles. In the case of massive spinless particles, for in-
stance, it can be proved that the standard free field theory is
the only one that meets the requirements of the Wightman
axioms combined with the free Klein—-Gordon equation for
the field operator ¢ (x).

The photon case follows this general pattern as long as
one considers only the “physical” field F,,, (x). There exists a
system of Wightman functions wj; ,, ., , (X,, ..., X,,), made up

in the usual way from a two-point function which is
w;‘;'vlyzvz (xlv x2)

=€ € 0,0, (—ig, . D (x, — x,)) (5.1)
with

DMxy—x)) =4 x, —xp,m = 0)
_ i f dk e
(27) Jxo =i 2k°
and with

3 . a\172
= (3 WR)7 =gk

=1

ik (x, — x))

8w=1 g, =—1 forj=123.

The corresponding operator field theory satisfies all
standard Wightman axioms (including positivity for the in-
ner product of the state space) together with the free Max-
well equations d“F,,, =0andd,F,, +d,F,, +3d,F,, =0
as operator equations. It is the only F,,, (x) theory known that
has these properties and can therfore be regarded as the
proper description of free photons by means of a F,, (x) field.

The discussion of the variety of different descriptions in
terms of 4, (x) fields will be based on this unique free F,,, (x)
theory. This amounts to an investigation of the possible
gauges for this F,,, (x) theory, in the sense discussed in the
preceding sections. In the language of states and algebras it
means studying the solutions of the inhomogeneous linear
equation 8 ;0" = w*, for " given explicitly, essentially by
formula (5.1).

There is an obvious particular solution, that is, the state
w” associated with the standard Gupta-Bleuler formalism,
usually called the Feynman gauge and consisting of n-point
functions determined by the two-point function

w:v(xl’ x2) = = igva(+)(xl - x2)‘ (52)

According to Theorem 3.1 all other gauges for the free
photon field can be obtained from these n-point functions by
adding gradient terms
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n
Z all‘; ¢gl|"i‘)'l‘/— TR (xl""’x" )’
i=1

with ¢ }f;,{?u! P tempered distributions, arbitrary ex-

cept for a reality requirement following from the condition

wl(a*) = wla), ¥V aeo/".

In this way one has, in principle, a complete description
of all possible gauges for the free 4,, (x) field as sets of n-point
functions and consequently by the reconstruction theorem
as operator field theories. As argued before, only a limited
number of cases from this vast collection have practical val-
ue. These are selected by the application of additional re-
quirements not necessary in themselves but leading to math-
ematically convenient formulations. Some of the obvious
requirements are mutually incompatible, so choices have to
be made.

A first simplification can be obtained from the require-
ment that the n-point functions have just as those of the free
F, (x) theory the free field form, i.e., are based on a two-
point function according to

WO X1y oo X,)

— A A
= Z Wy, (Xi X, )...wuj" .u,,,(xjn %) (5.3)

for n even and with summation over all permutationsj,, ...,J,
Of 1, oy n Wlthjl <j3 < v <j,,7 1 ,jl <j21 "-)jn_ 1 <jn; and

04 Xy enx,)=0 (5.4)

for n odd. Field theories for which the n-point functions have
this general form will be called Gaussian. By this restriction
the discussion of free field gauges is reduced to a discussion
of two-point functions, which according to Theorem 3.1
have the form

@7, (%1, %)
= - ig;tvD(+)(xl - x2) + a;lt¢ (v”(xl’ x2)
+ 306 Dxy, x,). (5.5)
A second simplification can be obtained from the obvi-
ous requirement of translation invariance. Theorem 3.1 does
not imply that in that case w, (x, — x,) can be written in the
form (5.5) with translation invariant distributions ¢ {}', ¢ 7;
the situation is slightly more complicated.

Theorem 5.1: The translation-invariant two-point func-
tions for the free 4,, (x) photon field have the form
wﬁv(xl — X)) = — iguvD(+)(xl —X,) + (aﬂ¢v)(xl — X5)

+ (0,8, )x; — x,) + C., (¥ —x5)  (5.6)
with the ¢, arbitrary tempered distributions, the C,,, arbi-
trary real constants, totally antisymmetric in g, v, p. For a
given a),‘w(x1 — x,), the C,_,, are uniquely determined, the ¢,
up to transformation ¢, —¢, + ia, + b, ,x" + d, ¢, with
a,,b,, realconstants,b,, = — b,,,and ¢ a tempered distri-
bution with ¢(—x) = — ¢ (x).

Proof: We give this theorem and its proof in “‘general-
ized function” language. In this case rewriting everything
with test functions would be elementary and not at all
enlightening.

Suppose wi, (x) = wf, (x, — x,) to be a translation in-
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variant two-point function for the free 4, (x) field. The ex-
pression f,,, (x) = @7, (x) + ig,,, D *(x) then satisfies
ap(ap.fva - aafvp) - av(apfya - aafup) = O
Because of our earlier result Kerd }, = (Imd,,)" = (Kerd,;)*
= Imd }; this implies, for each pair p, o, the existence of a
tempered distribution ¢,,,, such thaté,, = —¢,, andd,f,,
—934f,, =9,8,,- One has

= ap(av op T apfav) + av(apfo;u - a;/.fo'p)

+ ap(a,u.fav - avfay) = 0’

so that there are constants ,,,,,, totally antisymmetric in u,
v,p,suchthatd, ¢, +d.4,, +3,6, =a,, or
a}l (¢‘Vp - %a‘rvpxr) + a\’ (¢p‘ll

- %arp#xf) + ap(¢;tv - %a‘r,uvx‘r) = 0’
which with Kerd ;, = (Imd,,)* = (Kerd,,)' = Imd }, im-
plies the existence of tempered distributions ¢ |}’ such that

¢yv - %arpvxr = a}l.¢ (v” - av¢§tll‘

From this follows

aMfVP - aﬁfm = aV¢up = 3V3u¢£,” - avap‘pit“ +ia,
or

ay(pr - ¢i7” + %avp'rxf)

—3,(fo — 0.0} + 1l x) =0,
which again with Kerd ;, = Imd }, implies, for each v, the
existence of a tempered distribution ¢  such that £,
-3, + 4a,,.x" =3,¢'", which means that f,, can be

writtenas f,, =3,¢ '+ 3,6 ? + i@, x°. The reality con-

dition for the two-point function implies f,,(x) = f,.( — x)
or f(x) = 4 [ £ul) + £ (—x)]. This gives £, (x)
=(0.¢.x) + 0,80 —x) + C,,,x" with ¢, (x)
=[x — ¢@(—x)]and C,,, = Rea,,,. This
proves that w7, (x) has the desired form.

To prove the uniqueness statements, suppose (d, ¢, )(x)
+ (0,4,)(—x) + C,,,x* =0. This implies 3, ¢, — 3, ¥,
+2C,,,x* =0for¢,(x) = ¢,(x) + ¢,(— x),and this gives
d,0,¥, —3d,d,¢, +2C,,, = 0. Adding to this the two re-
lations obtained by cyclic permutation of p, i, v, one obtains
C..., = 0 and this shows that the constants C,,,, in (5.6) are
uniquely determined by w}, (x). From (9,8, )(x)
+ (d.4,)( — x) = Ooneobtains then by using the antisym-
metric part, d, ¥, — d, ¥, = 0, which implies the existence
of a tempered distribution ¢ (x) such that ¢, (x) = ¢, (x)

+ #,(—x) =23, (x) and with ¢ (x) = — ¢ (x). The sym-
metric part gives d, [¢V(x) — ¢, (—x) ]

+4d, [¢# (x)— ¢.(—x) ] = 0 and therefore ¢, (x)

— ¢.(—x) =2a, + 2b,,x", witha,, b,, realand b,

= — b, . Together this makes ¢, (x) = ia, + b,,x°

+ d, ¢ (x), which proves the statement in the theorem.

Note that a term C,,,(x{ — x5) with antisymmetric

C,.,, in the two-point function can still be written in the
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general form 3,4 ' + 32¢ ¥ [take, e.g., ¢ \}'(x,,
x)) = C,,, x7x5, ¢ P(x,, x,) = C,,, x, x} ], but according to
this theorem not with translation-invariant ¢ (/(x, — x,).
The collection of two-point functions given by Theorem
5.1 must be analyzed further and the associated Gaussian
operator field theories investigated. For this it is useful to
have general information on Guassian states and their repre-
sentations. This will be provided in the next section.

VI. GAUSSIAN STATES AND THEIR
REPRESENTATIONS

We consider again the general situation of Sec. II, a
(complex) nuclear Fréch/gt space 7~ with continuous conju-
gation x, & = 3" =°@(® "7") the Borchers algebra over ",

For every continuous bilinear form b (-, -) on 7~ with

b(f,g) =blg* f*),Vf,ge”  thereisastatew on .o/ defined
by extension of w(e) = 1,(f, ® - & f,) = 0,forn odd, f,€7",
ando(fy @& f,)=2b(f,,f )-b(f, .f;,)fornevenand
with the same summation over permutations j,--+j, as in for-
mula (5.3).

Such a state will be called Gaussian. In the special case
wherebhastheadditional propertiesb ( £,g) = b (g,f)and b ( f,
f)20, ¥ £, ge?", w is indeed the system of moments of a
Gaussian (generalized) stochastic process (up to a trivial
complexification). The definition contains the essential alge-
braic elements of what is called a generalized free boson field
in standard field theory. It is of course also related to the
concept of quasifree state on a CCR algebra in C *-algebra
theory, in fact, the term Gaussian state has recently been
used in a C *-algebra formalism of classical systems. See Ref.
21.

Strictly speaking, the states w just defined should be
called boson Gaussian states with zero mean. There is an
obvious modification for the fermion case which we do not
need here. In this paper we also shali not use Gaussian states
with nonzero expectation for the fields. These can be ob-
tained from the mean-zero states by means of the “shift”
automorphisms a; defined in Sec. II. They will play a role in
the further development of our formalism.

Particular properties of the form b are reflected in prop-
erties of the Gaussian state defined by b, for instance, if b is
invariant under a linear (topological) isomorphism 7 of 7~
that commutes with the conjugation, then the Gaussian state
is invariant under the automorphism a; of /. A Gaussian
state is positive if and only if the Hermitian form 4 associated
with b by A (f, g) = b (f*, g) is positive definite. This will be
obvious later (Corollary of Theorem 6.1).

A Gaussian state is characterized by the property that
its GNS representation is a Fock space representation with
creation and annihilation operators. To show this, we have
to set up a Fock space formalism in which the role of Hilbert
space is taken over by topological inner product spaces:

Let there be given, as a “‘one-particle space,” a (com-
plex) nuclear Fréchet space 7" with a (continuous) inner
product (-, -)'"". The Fock space over #*" is then defined as
the topological direct sum % = 3=_, & &, in which
HO = C, and F = (@ "F), (forn =1, 2, 3, -), the
symmetrization of the n-fold tensor product completed in
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the projective tensor product topology (which because of nu-
clearity coincides with the e-topology). Every 5" is again a
nuclear Fréchet space and # is therefore a nuclear LF
space. The inner product (-, -)'" in #*" defines an inner prod-
uct in each “n-particle space” " by extension of

(1, @ -~ @ 0,),, [0y @+ ® 0, ),)" = (1)~ Zlat 1), 1)t o
v, )" (sum over all permutations o of 1, ..., n), and subse-
quently in # by (¢, ) = Z°_ o (¢ ', ™). It is positive defi-
nite if and only if the given inner product (-, -}’ in " is
positive definite. The unit vector £2, = 1eC = # is called
the vacuum vector. For each ue#"" there is an operator C (u)
in #7, called creation operator, defined by linear extension of
Clulo=u, Clufu,®~8u,), =Vin+1)
uou,®ou,), (n=1,2, ), and an operator 4 (u) in 57,
an annihilation operator, defined by extension of

A2, =04 (u)u,®ou,), =n""?Z"_ (u,u)"”

(U ®-o®u_,®u , & -0u,). TheC(u)and4 (u)arecon-
tinuous linear operators, and the dependence of C (u), respec-
tively A (), on ue#*" is linear, respectively antilinear; this
dependence is continuous in the sense that u—C (u)¢ and
u—A (u)y define continuous maps from #"" into &, for
each fixed ¢ in . Finally on has the relations [C (u),

Cv)] = [ (u), A ()] = 0, [4 (), C(v)] = (4, )1, , and
(Cluly, ¥a) = (b1, A (Wihs), ¥, 02,V , e

We shall refrain from writing out detailed proofs of all
these statements. The following may, however, be observed:

Part of this many-particle structure is quite general and
can, for instance, be built on an arbitrary locally convex
Hausdorff topological vector space " with (separately)
continuous inner product (-, -)'"’. In that case it is not hard to
show, using standard properties of multilinear maps and ten-
sor products, suitably modified for antilinearity at places,
that the expression given above for (-, -} defines a (separately
continuous) inner producton 22_, @ (® " #*"),, the locally
convex direct sum of the spaces (® . #""),, which carry the
projective tensor product topologies and are not completed.
One also verifies that the operators C (u) and A4 (u) are well
defined in this space and have all the properties mentioned.
If one adds as an extra assumption joint continuity of (-, -)'*,
then it is not hard to prove by the same methods that C ()
and A4 (u) have unique extensions to the completed space
¥ =3*_, &(®" %", with the same properties, and,
moreover, that the inner product extends to a separately
continuous Hermitian form on 7. All this is left to the
reader.

One cannot, however, in this general setting prove that
this Hermitian form on 57 is indeed an inner product, i.e.,
remains nondegenerate after the completion. For this, addi-
tional assumptions on #*" are needed.

In our application of this generalized Fock space for-
malism 5" will be a quotient space of a nuclear Fréchet
space, that is, of .#® or #®, and therefore itself a nuclear
Fréchet space. This takes care of the joint continuity of (-, -}’
and is, moreover, sufficient to prove nondegeneracy. This
proof runs as follows:

Consider the antilinear map 7 from 5" into its dual
HV defined by (r(u),-) = (u, -)'". Itis continuous from the
weak topology a{#*", #') to the weak topology o{#*",
"), Because of the Hermitian symmetry of (-, -}, 7 can be
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for a given Lorentz transformation A (not a pure rotation) a
new dense domain 54" as the image of 77 under U (A )™’
identified with its adjoint 7’ {the adjoint of an antilinear map

Tis defined by (T'F, u) = (F, Tu) . Therefore, 7 is also
continuous with respect to the strong topologies. (See Ref.
19, Chap. 1V, 7.4.) The proof of the theorem there rests on
the fact that a continuous linear map carries weakly bounded
sets into weakly bounded sets. This remains true for continu-
ous antilinear maps.) One has because the nondegeneracy of
(- ', {0} = [vedV)u, v}V =0, ¥ ue#V} = (ImT'), s
the image of 7 is weakly dense in #*". A complete nuclear
space is semi-reflective (see Ref. 19), Chap. IV, 5.5 and III,
7.2, Corollary 2), a Fréchet space is barreled (Ref. 19), Chap.
I1, 7.1, Corollary), so the nuclear Fréchet space " is re-
flexive and its strong topology is therefore the given topology
(Ref. 19), Chap. IV, 5.5 and 5.6). The strong topology on the
dual is the Mackey topology; this is compatible with the du-
ality (#1V, V") and hence the image of  is also strongly
dense in #*". We have the contmuous antilinear map ® "r
from the nuclear Fréchet space @ """ to the nuclear space
® "(%""); because of the canonical topological isomor-
phism between ® "(#*") and (& "%V with respect to
strong dual topologies (see Lemma 3.2), ® "7 is, in fact, a
map from & "#*" to (® """} and its image is strongly
dense and fortiori weakly dense in (@ "#*")". the map @ "r
defines a continuous Hermitian form (-, -} on & "V by
W ¥.)" = ((® "7)i1, ¥,) and by restriction a Hermitian
form on # = (& "), which, of course, corresponds to
the extension of (-, -). The symmetrization projection P,:
U ® 8 u,—n) " 'Z,u,, ® 8 u,, is a topological ho-
momorphism with the property (P, ¥,) = (¢,, P.,), YV ¥,
¥,€ ® "), Therefore, {1,e#"|(¥,, ¥,)" = 0,V ¢h,e#™)
= {7 |(P¥), ¥2)" =0, V ¢, 68"%'7
= (67", Pyp)" =0,V e & "# )}
= [P, 2" =0, Ve F "]
= {h e |(( @ "I, ) =0, Ve @ "H}
={I m( ®"7))' = {0}. This proves the nondegeneracy of
(» /)" on ' and this gives immediately the nondegeneracy
of (-, -jon .
We are now in a position to state the basic theorem on
Gaussian states:
Theorem 6.1: Let 7 be a {complex) nuclear Fréchet
space with continuous conjugation s; b (-, -) a continuous bi-

ae=ce,

a(ﬂ@...@ﬁ):ﬁ@...@ﬂ
+ > bl fif,emef+(— 1) >

perm. of 1...n: perm. of 1...n:

linear formon 77, with b(f, g) = b(g*,f*),V f,8e”"; w the
Gaussian state on .« determined by b. Let #* be the quo-
tientspace ¥ /7", 7 : = { f€7|b(g,f) =0,V ge¥ "}, and
(x f, x8)": = b(f*,g) theinner product on #*”, where y is
the canonical surjection of 7" onto /7", .

Then the GNS representation of &/, associated with @
is algebraically and topologically equivalent to the represen-
tation in the Fock space # over #°" generated by the “field
operators” 7(f): = C(xf) + A (xf*), V&7

Proof: 77, is a closed subspace of the nuclear Fréchet
space 7; therefore, #" = #°/2", is also a nuclear Fréchet
space and with the inner product as defined by ( y/,

18" = b(f*, g)is a suitable one-particle space over which a
Fock space structure can be constructed. The “field opera-
tors” 7r{ f) defined in the Fock space # by C( xf) + 4 (xf*)
depend linearly on fin 77, the function f~»{ )¢ is continu-
ous for every fixed ¥ and one has (7( f)i,, ¥,) = (¢,,

m{ f* )WL), V€77,V ¥, ¥,€77. A continuous representation
7 of & is obtained by extension of 7{ f, & - ® £, ):

= 7{ f1)--7( f, ). To show this, one notes that, ¥ n, k the

n + l-linear map from (X "7") X %"\ given by ( £,,...,
Jos Ui y>a( f)7( £, )Yy is not only separately continuous
but also (jointly) continuous because ?~ and #*! are Fré-
chet spaces, see Ref. 16, Corollary of Theorem 34.1. It there-
fore defines a continuous bilinear map from (® " ) X )
into & and because of the direct sum properties of #° and
&/ a separately continuous bilinear map &/ X %°—% that
can be written as (a, Y)—{a)y.

We next show that the representation # is strictly cy-
clic, with respect to the vacuum vector £2,, i.e., that the con-
tinuous linear map v: &/ —#° defined by a—(a)f2, is surjec-
tive. For this we consider a second continuous map p:

o —7,definedbyf, ® - & f,—>C( xf))C( xf, )2, (togeth-
er with e—f2,). This map is not only continuous but also a
surjective (topological) homomorphism. For every n one has
Clxfi)- C(xf M2 =v'nl((xfi)@ @ (xf,)):50f, 8o f,
—C( x/\}--C( xf, 2, defines a map p™” from ® "7 to F#*,
which is apart from the factor vnla composition of the
tensor product map (®"y ): (8 "2 )—( & "F#") a surjective
homomorphlsm (Lemma 3.4), and the symmetrization pro-
jection P,: @ """, also a surjective homomorphism.
Again by the properties of direct sums, p is therefore a surjec-
tive homomorphism from .« to . To connect v and p we
consider a linear map a: .&/— ./ defined by extension of

by B i fi)fy @8

[jl <j Ji<Jpi<joiv<is
j3<f4<"'<fn [j5<jb<'"<jn
T TV A W) R " for n even,
{i,<j,,---.i,, —1<in
) Jy<jy< <Jp — 1
(= 1y s b(f, f,)b(f, .f. )f, fornodd. (6.1)

lj. < Jredyg — 2 <y _
Ji <k <in—2
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The map a is continuous by the same arguments as before.
One can also define a map 3 by the same expressions but
without the factors ( — 1Y in front of the summations. By
straightforward and tedius manipulations one then verifies
that (@B)(f, @ ®/f,) = Ba)(fi@~8f,)=fi®~&f,ie,
a has a continuous inverse, it is a topological linear isomor-
phism. In the same spirit one obtains p( f, ® - 8 f,,)

= C(xfi)C(xf )2 = malfi®--8f,)

2, = (va)(f,&-&f,). Thismeansp = vaorv =pa~', and
consequently v is a surjective topological homomorphism
from .« onto 7. This proves the strict cyclicity of the repre-
sentation 7 of & in /. One checks, by using

m{ f) = C( xf) + 4 ( 1/ *), the commutation relations for the
creation and annihilation operators and the property
A (u)2, =0, V ue#, that the vacuum expectation values
(2, m( f1)-7( S, )12,) are indeed the n-point functions

ol f; ® - 8 f,) of the given Gaussian state . Therefore, by
Lemma 2.1 the representation  is algebraically equivalent,
and because v is a homomorphism also topologically
equivalent. Q.E.D.

Corollary: A Gaussian state » defined by the continu-
ous linear form b is positive if and only if the Hermitian form
h(f, g =b([f* g)is positive definite.

A Gaussian state is invariant under an automorphism
ar whenever b (., -) is invariant under 7. Because T = «T,
also A (-,-) is then invariant and 7 induces an isometric topo-
logical linear isomorphism U*" in the quotient space
KV =2"/7 .. Extension of (u; ® - ®u,),

—~{(U"4, ®--® UMy, ), leads to an operator U in the Fock
space 7 with the same properties, and this U is, of course,
the operator which according to the discussion of Sec. II
implements the automorphism «;..

For a positive state w the representation space /# may
be completed with respect to the inner product norm. We are
then back in the Hilbert space formulation of standard
Wightman free field theory. Creation and annihilation oper-
ators, together with the field operators, become unbounded
with 77 as a common invariant dense domain. Using Nel-
son’s analytic vector theorem, it can be shown that in this
case the field operators #( f), for f = f*, are essentially self-
adjoint on #° (see Ref. 22, Chap. X.7).

All the cases that will be considered in the next sections,
the unique free F,,, field and the various free 4,, theories, are
GNS representations of Gaussian states on &/ “ or /. They
therefore all have the same simple mathematical structure: a
“many-particle” space with field operators as sums of a cre-
ation and an annihilation operator. The basic element in this
structure is the “one-particle” space #*" = ¥7/7",, con-
sisting of equivalence classes of space-time test functions
from ¥ or .#®. In practice these equivalence classes are
always represented by suitably chosen multicomponent mo-
mentum ‘“wavefunctions.” Such representations are in gen-
eral not unique, as will become clear in the next sections;
moreover, their use result, in complications that tend to ob-
scure the underlying simple general structure.

Vil. THE FREE FIELD: LORENTZ COVARIANT GAUGES

In the terminology developed in the preceding section
the standard free Maxwell F,,, (x) quantum field theory is the
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GNS representation of a Gaussian state @ on the Borchers
algebra .« %, determined by a bilinear form b “on 7" = #?,
written in generalized function language as

b (Y, ) = J OF s o (s X, 57 x) g
{7.1)

for ¢, ¥,€ " and w; , .., the two-point function of formu-
1a (5.1).
Using Fourier transformed test functions g#*(k )
= (2m) 72§y (x)e™*dx, one can write b ¥ in the more rigor-
ous form

b" (Y ¥)

= — 37Tf Gk O (— Kk, (k) d k/2Kk°.
k® = (k|
(7.2)

The associated Hermitian form 4 “(,, ¢,) = b F(¢*,
¥,) is positive definite; therefore the representation space
#7F isindeed a pre-Hilbert space. (The positivity of 4  can be
seen from writing 4 ¥ as

h F(‘r/’b 1/’2)= 87’J. ‘ 2 ¢ ¢ I(k )d k/2k 0,

k"= k| ji=1

with ¢/(k ) = k, ¥”(k ), Pk ) =8, — k’k'/ky*. Fork* =
k°> 0, the matrix P,(k ) is Hermitian and idempotent and
therefore positive definite.)

Lorentz invariance of the two-point function and there-
fore of " is obvious. According to Sec. II there is then a
representation of the inhomogeneous Lorentz group that ex-
tends to a strongly continuous unitary representation in the
Hilbert space completion 7 of 7 and transforming the
field operators in the proper way. J7F is a many-particle
space of usual Hilbert space type. It can be described explic-
itly in terms of momentum amplitudes, involving a choice of
two polarization vectors for each momentum. This is well
known and will not concern us further.

We now resume the discussion of the realizations or
gauges of the free 4, (x) field based on the free F,,, (x) field
given by (5.1) and (7.1), (7.2). In Sec. V we already imposed
the conditions of Gaussian form and translational invari-
ance. This led to a general form for the two-point function
@}, (x; — x,) given by Theorem 5.1, which can be written
more conveniently in momentum variables as

on k) = — 2rlgn8 (k) + Kb,k ) + k. 8,(K)

+iC,,,8k)], (7-3)

using Fourier transforms f*(x) = (27) 25 H(k Je ~ **d *k
and @}, (x, — x,) = (27) " *f&], (ke ~ "™ ~ ' d *k and with
#,.(k ) an arbitrary tempered vectorial distribution, C,,,, real
constants, antisymmetric in 4, v, p.

The most natural additional requirement for a gauge is,
of course, Lorentz covariance. Imposing Lorentz invariance
on (7.3), we obtain:

Theorem 7.1: The Fourier transform of the two-point
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function of a Lorentz covariant free Maxwell field 4, (x) has
the general form

with ¢ (k ) an arbitrary real Lorentz invariant tempered
distribution.

Formula (7.4) is, of course, not very surprising. It fol-
lows easily from the general relation between w}, and the
two-point function /, , ., of the free F,, (x) field together
with the assumption that the general form of a Lorentz in-
variant tensor ¢, (k ) is g, é,(k ) + k,k,#,(k ). For this last
assumption, however, although used almost universally, no
straightforward and rigorous proof that takes into account
the distribution aspects, especially those connected with the
behavior in £ = 0, is known to us (see for a characteristic
remark Ref. 23, Sec. 3). It seems probable that a proper proof
can as a special case be extracted from the very general work
on invariant two-point functions of Oksak and Todorov,**
but we prefer to give a proof of (7.4} independent of all this,
based on our formula (7.3).

We use the following well-known and easy to derive
necessary and sufficient conditions for Lorentz invariance of
distributions:

(kadp — kgd, )b (k) =0, (7.5)
(ka aﬁ - kﬁaa )¢;4 (k )
= gyﬁ¢a (k ) - gp.a¢B(k )) (7'6)

(ka aﬂ - kﬂaa )¢yv (k )
= guﬂ¢av(k ) - g,ua¢Bv(k )
+gvﬁ¢pa(k) _gva¢yﬁ(k) (7.7)
respectively for scalar, vectorial, and tensorial distributions
¢(k)d.k),and¢,, (k)and withd, = d/dk * etc. We have
the following lemmas:

Lemma 7.1: 1f ¢, (k ) is a tempered Lorentz invariant
vectorial distribution, then there exists a tempered Lorentz
invariant scalar distribution ¢ (k) such that ¢, =k, ¢.

Proof: From (7.6) one obtains &, (k,d; — ksd, )8,

=85k, b0 — 8.ak,b5. Adding to this the two expressions
obtained by cylic permutation of v, a, 8 and taking in the
result a and 3 arbitrary, u = v, but u #a, u #f gives k,, Ps

— kg, = 0. Using an earlier result, Kerd }, = Imd ;,, to-
gether with Fourier transformation and proper test function
formulation, one sees that this implies the existence of a tem-
pered scalar distribution ¢ (k ), such that é, = k, 4. Substi-
tutingthisin(7.6)gives (k,d; — k43, )k, # (k) = 0,whichim-
plies (k,ds — kg0, )p (k) = a,z6 (k ), with constantsa,g, Q.
= —dg,, and subsequently d, (k,ds — kd, )p = a,zd,6.
Adding to this the two expressions obtained by cyclic per-
mutation of a, B, u one gets the following for a, S, y all
different: 4,59,6 + ag, 0,6 + a,,950 =0. Because of the
linear independence of the derivatives of the & functions this
implies a5 = 0, V &, B. This proves that ¢ satisfies (7.5) and
is therefore Lorentz invariant. Q.E.D.

Lemma 7.2: If a tempered tensorial distribution é..k)
is Lorentz invariant and has the form ¢ =k, b, —k,8,,
then it vanishes identically.

Proof: (a) k*¢,,, is a Lorentz-invaraint vectorial distri-
bution; therefore, there exists (Lemma 7.1) a Lorentz invar-

1893 J. Math. Phys., Vol. 23, No. 10, October 1982

iant ¢ such that k#¢,,, =k, @, or k ’, =k k"¢, + k,¢.
This gives k °¢,,, = k,k*¢, — k k*¢, =0,s0¢,, vanishes
on {keR*|k *#0}.

(b) We show next that ¢,,, vanishes on {keR*|k #0}.
Consider an arbitrary point g in {keR*|k ? = 0, k #0}, for
example with ¢° > 0. Choose a sufficiently small open neigh-
borhood U of ¢. Introduce new coordinates s, & (f = 1, 2, 3)
on Ubys = k %, 1/ = k“. This can be seen as a diffeomorphism
of UCR* onto U’ CR*, an open neighborhood of the point
s =0,/ = ¢. Thereis a 1-1 correspondence between the
distributions on U and those on U’, given by the symbolic
relation fF (k) f(k)d *k = fF(s,u) f(s,u)2 (s + u?)~"* dsdu,
with f(s,u) = f(k ). Using this with special test functions f (k ),
such that f{s, u) = y (s)g(u), with ye Z(R"), supp ye[ — ¢,

+€e,y(0)=1,ge2(U"),U"CR,[—¢, +€lxXU"CU’,
one deduces from k %¢,,, (k ) = O that &, (x, u) has the form
S (Wb (s), for a £, €Z'(U"). The invariance condition (7.7)
fora=Lu=j(,j=1,2,3),B=v=0,(k3d, — ko9 )b

= ¢, gives, when written in the variables s, u, the relation

filuy= —|u|(@ /u') fo(u). Using the antisymmetry of £,
one has 3 /du' \fy, + (3/31)f, =0, s0 f(u) =g,
+ Zi_ b, fy(w) = — |u|b,, with a;, b, constants, b,

= — b, Combining this result with the invariance condi-
tion(7.7)fora =1L B=u=jv=0,j#l (k,d;, — k;3,)p
= — o, resultsinub, = —a, — 2} b,u"(j#],nosum-
mation overj),ora, = byl #j,s0a;, =0,b, =0,Vj,I=1,
2, 3. This proves that ¢, = 0 on a neighborhood of g.

(c) We are left witha ¢, having {0} as possible support.
Then ¢, (k ), or more conveniently ¢ “*(k ), has the form

47 k)= 3 3 """, -4, 8(k)
p=0p;-p,

with, ¥ p =0, 1, ..., n, a,"""""" constants, antisymmetric in

4, v and symmetric in p,--p,. For each p these constitute a
Lorentz-invariant tensor. The finite-dimensional irreducible
representations of the Lorentz group are characterized by
pairs (/,, ), j, =0, 4, 1}, -, such that j, + j, are integer. A
tensor product ( j, j;) ® ( /7, /5 ) can be reduced according to
the formula (3, j;) ® (J1,J5) = Z@(Jy, /), with
=i =i =i+ Ly i =0 =73,
lj5s —j5| + 1, ... J5 +J5- See, e.g., Ref. 25, Chap. 7. Using
this, one checks that the space of tensors ¢**», antisym-
metric in u, v and symmetric in p,-+p,, which forms the
representation {(1, 0)& (0, 1)) ® (p/2,p/2)®(p/2) — 1,p/
2 — 1) ® -, does not contain, after reduction, the represen-
tation (0,0). This completes the proof that ¢, (k ) vanishes on
all of R*.

Lemma 7.3: If a tensorial tempered distribution ¢,,, (k)
is Lorentz-invariant and has the form ¢, =k, 4, + k.4,
then there exists a tempered Lorentz-invariant scalar distri-
bution ¢ (k) such that 4, (k) =k, k, ¢ (k).

Proof: The condition (7.7) for Lorentz invariance gives

ky [(kaaﬂ - kﬂaa )¢v - (ng¢a - gva¢B)}

+k,{(koeOs — kg, )b, — (8us%0 — 8ua®s)} =0.
This implies the existence of constants a,,, and bogp» With
Qnp, = — gy, and byg,, = — bg,,, = — b,g,,, such that
(kaaﬂ - kﬂaa) ¢I-l - (gﬂﬂ¢a - gua¢ﬁ) = aaﬁya(k)
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+ b,p,,978(k ). Multiplying, as in the proof of Lemma

7.1, with k, and combining the result with the two expres-
sions obtained by permuting v, &, 3 cyclically, one gets
guﬁ(ka ¢ — k[3¢(1) + gﬂa(kﬁ¢v - kv¢ﬁ) + g;tﬁ(kv¢(z

—k )= — Oapuy + Bpvua + bogup)d (k). Taking, as in
Lemma 7.1 @, B arbitrary and u = v, u 5% a, u #p, one ob-
tains g, (K, b — Kk, 0.) = — (bguve + bunup)d (k) o1 (k04
— k@) = C,36 (k) with constants C5, C,; = — Cg,.
This can be written as &, (¢, — 1C,, 378 ) — k4(d,,
—1C,,3%5) = 0, which shows the existence of a ¢ (k ) such

that ¢5 = 1k, ¢ +1C,,375. Then k, é, + k.4, =k, k é.
The invariance condition (7.7) gives K,k (k05 — k;3,)¢
= 0. This implies the existence of constants D(,,,, E ;" (anti-
symmetric in @, B ) such that (k,d; — kzd,)6 = D z6

+ E,5°9,6. Differentiating this with respect to k,, and add-
ing the two expressions obtained by cyclic permutation of &,
B, 4, one gets

D,3,8 + D, 8,6 + D, 3,5
+ E,;°3,8,8 + E,73,8,5
+E,.*3,3,8 =0.

Using linear independence of the derivatives of §, one ob-
tains D ; =0, E E " E ;" =0,V a, B, uall different
(and no summatlon) Deﬁne az = E_5“ (no summation over
a); then (k,d; — kpd, )b = (azd, — a,d;)8, and with
agd,6 = —kyd,(a,0°8) — g,5a,d75 one obtains (k,d,
—kgd, )b = (k.5 — k0, )a,88) or (k,d5 — ksd,)

(¢ —a,376)=0,50¢"=¢ —a,3d” isa Lorentz invariant
tempered distribution with k k¢ ' =k k.¢ =k, ¢,

+ k.9, Q.ED.

The proof of Theorem 7.1 can now easily be given. The
general translation invariant two-point function is given by
@4, (k )in (7.3). It consists of three terms that transform sepa-
rately under Lorentz transformations. The first term,

— 2ng,,8 ,(k?), is already Lorentz-invariant. The last

part — 27miC,,,,d%6 (k ), must be zero because the constants

C..., form a Lorentz invariant antisymmetric tensor of rank
3 which vanishes because of the same properties of represen-
tations as mentioned in the proof of Lemma 7.2. The remain-
ing term, — 27k, ¢, + kv¢_ﬂ ), has independently trans-
forming real and imaginary parts on which Lemmas 7.2 and
7.3 can be applied separately. This gives the result (7.4) and
finishes the proof of Theorem 7.1.

No particular gauge has been generally adopted as the
standard one for the description of the quantized photon
field. The reason for this is the incompatibility between some
of the properties that one usually considers to be natural and
desirable for quantum field theory. The main incompatibil-
ity is that between manifest Lorentz covariance of the 4, (x)
field and positivity of the metric of the state space. This has
been known since the early development of the Gupta-
Bleuler formalism and has since then been discussed in var-
ious degrees of generality and mathematical rigor by many
authors. We have the following general and precise result:

Theorem 7.2: A Lorentz covariant 4,, (x) theory for the
free photon field has indefinite metric.

Proof: (a) Consider for a given Lorentz covariant gauge
the Hermitian form 4 “(-,-) on ¥, given as £ ( 3, f5)
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=b'(fH A=) A(f)2"). According to Theo-
rem 7.1, this form can be written as

fifi) = —2wf

K= k|

g/u* f’]“(k )fA:V(k ) d k/dk 0

ke forik )y d *k

(The first term is a rigorous expression; the second term is
symbolical but has an obvious rigorous meaning.) It is suffi-
cient to prove that 4 *{- -} is indefinite.

(b) For fe.#5), Ayge #?: f = d,,¢, and then (4 (f)2 7,

A=A nt// 24,4 (du 001 ) = (Fi2 " F ()02 "),
This is >0 (and even > 0 for suitably chosen fe.#'}), because
of the positivity property of the free F, }“ (x) field.

{c) The slightly more difficult part is to show that, for an
arbitrary Lorentzinvariant ¢ (k )in thesecond termin# *(.,.),
there exists an f&."" such that 4 *( £, f) <0. For this we
shall consider test functions f* of the special form ( f*, 0, 0,
0). For these one has

RS = —wa Ok ? dk/2k°
k= |k

—2m| $ikk, frik

—rlgik 102 |f0

(d)Iffor given ¢ (k ) thereexists a test function f°(k ) such
that (¢ (k )(k °?f°k )1°d *k > O, then h *( f, f) is for this test
function <0 and we have finished. Suppose therefore that
5 (k )k “)21f°k )?d *k<0, for all £°(k ). By considering first
functions f* with supports not containing k& ® = 0 and then
using Lorentz invariance of ¢ (k ) one shows that then
5o (k)|glk)|? d *k<0, ¥ gwithsuppg CR* — {0}. Takeanar-
bitrary 4 (k ) with supph CR* — {0} and A (k ) >0. Given this,
one can find an open set U with supphf CUCR* — {0} and a
test function g(k )>0, with UCsuppg CR* — {0}. Then the
test function 4, (k ) = h (k) + Ag(k )? is the square of a test
function, Y4 > 0, and converges to & (k ) for A 10. Therefore,
§6 (k) (k) d *k = lim,,0 5 (k ), (k ) d *k<0. From
§¢é (k)h (k) d*k<Oforallh>0oneobtainsthewell-knownfact
that ¢ (k ) is a Radon measure. This implies that the one-di-
mensional distribution & (s) determined by the restriction of
theLorentz-invariantdistributiong (k JtoR* — {k€R*|k *>0,
k °<0] (see Ref. 26), and for k ° > 0 given by the symbollc
expression §¢ (k) f(k ) d *k = 5 (s) f(s,w)2 7 "(s + u?)~ /2, witl
Fls,u)=f(k),s=k? & =k'(j=1,2,3)isalso a Radon
measure.

{e} To show that a Radon measure ¢ (k } leads to an in-
definite 2 ( £, f), it is sufficient to shown that there exist a
Sk ) such that

(1)J FOk)|?dk/2k°>0
= K
and

2 d k.

(2) [fOk )|? d k/2k°.

"= |k

[swneorirempates |

Consider functions f°(k ) having the special form f°(k

= f9s, u) = y(s)g(u), with the supports of y and g such that
supp f°C {keR*|k ®>0}. Then

|56 )k PR d % = 56 5)1xs) s lgtm)i(s + u3)'/2 du]
ds|. Because  (s) is a measure, there exists an 4 > 0 such
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that this expression <Asupp|y (s)|>f1|g(u)|?

X (s + u?)'/2du, for all y with supp yC {seR'| |s| < 1}.
Choose a point (5o, up): 5o = 0, up =27'4 ~V2 4l =ud =0.
The value of the continuous function (s + u*)u® in (s,, ) is
(44 )~2. There exists then an open neighborhood around (s,
ug)such that2(84 ) =2 < (u? + s)u® < 6(84 ) ~2, having theform
Is| <8, <1, |u —uy| <8, <2(84 )2 Onthisneighborhood U
one has 4 (u” + s5)'/2 < 1/2|u]. Take y (s) with

suppy C {seR'| |s| <8,}, and y (0) = sup|y (s)| = 1 and take
g(u) with suppg C {ueR?| |u — u,| <,}. One then obtains
56 (K )k O 1f (k)| d *k |

<A sup gJ.lg(qu(s +u?)"? du
se(—6,, + 8,)

()| — 07, |2
< 2|u] du_£°=|k| k) Zko '

This proves (2) and (1) holds, of course, whenever g is not
identically O. Q.E.D.

The collection of Lorentz covariant gauges as charac-
terized by Theorem 7.1 can be restricted further by two dif-
ferent additional gauge conditions leading, as we shall see, to
two disjoint classes of covariant gauges.

From the point of view of classical electromagnetism a
natural gauge condition is the Lorentz gauge condition, as
discussed in Sec. IV.

Theorem 7.3: The Lorentz covariant free field gauges
that satisfy the Lorentz gauge condition have two-point
functions, given by

@ (k)= —2m{g, 5, (k) +k,k,[8) (k) + A8, (k?)
+A_6_(k?) +add,8(k)]} (7.8)

with A, A _, a arbitrary real constants.

{ The Lorentz invariant distribution § ! (k 2) is most
conveniently defined as lim,,.,, [6 "
(k? — m?) + ym(logm?)8 (k )], where 8 (k2 — m?), for
m?> 0, the “derivative” of 8, (k 2 — m?), is given by the con-
vergent integral

ol ~ 25030

suggested by the symbolic expression

fouwe -
dsdu

- J.(S ”’(s _ mzlf(s, u) —(_—W

- J Ols = c?s (Z(Sf-i:v ’uu;” 2 ) duds.

It is a solution of the equation (k> — m?)§ )
(k? —m?% = —§&,(k*— m?. In the limit the integral di-
verges but can be regularized by a term Jm{logm?)§ (k ). The
regularized limit satisfies k26 ) (k%) = — &, (k ?). See Ref.
26, whered , (k> — m?and&') (k> — m?arecalled H,: and
m-}

Proof: The Lorentz gauge condition on a) Jk)is
k ”a'i”v(k ) = 0, so for a Lorentz covariant gauge &,
[6.,(k?) + k24 (k)] = 0.Thisisequivalent totheexistenceofa
constantasuchthatk ’¢ (k) = — &, (k ?) + ad(k ). Thedistri-

m?) fik)d*k
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bution § ) (k 2) is a particular solution of

k2p,(k)= — 8. (k?);aparticular solution of k *@,(k ) = ab(k )

is #,(k ) = Yad “d, 6 (k ) and the general solution of the inho-

mogeneous equation k %@,k ) = O is

Pilk)=A8 (k) +A_6_(k?) + A (k);A,A_, A, real con-

stants. All this together gives as general solution of

k’¢ = — & (k? + ab (k) the distribution ¢ (k) =8} (k?)
+ A8, (k%) +A_8_(k?) +Ab (k) + Lad “3,6 (k ), which

gives the required form (7.9).

In (7.8) the term with §_(k ?) represents an irrelevant
negative part in the spectrum of time translations. The term
with 33,6 (k ) gives a set of extra unphysical Lorentz invar-
iant state vectors [note that k, k,8°d,6(k ) = 2g,,5(k }]. Both
terms may be dropped. The Gaussian states, built on the
remaining two-point function,

G lk) = —27(g,, 8 (k%) + k,k, [8) (k?) + A8 (k7)]}

(7.9)
for arbitrary real A, can be called generalized Landau gauges.
The case A = 0 is the standard Landau gauge. Because
5" (k ?) satisfies k 28"") (k%) = — & (k?) it is often given by
the rather ambiguous expression

i k)= —2mlg,, —k,k,/k)5 (k?). (7.10)
The term k,, k,8") (k %) can also be written in a more
convement and at the same time unambiguous way as ik, 3,

&, (k %), which because of the Lorentz invariance of 8 , (k 2) is
also equal to }(k, 3, + k,d,)8, (k ?). { To see this, note that

J-k 8 (k2) flk)d*k

= lim j 8 (k* — m¥k, f(k ) d *k
m?10

ad (ﬂ) dk
kO \k°/ 2k°’
with k ° = (k> + m?)'/2. Using, for m* > 0, the support prop-
erties of 8, (k 2 — m?) and its Lorentz invariance, which im-

plies k3,8, (k* — m?) = kyd,8 , (k> — m?), one writes this
integral as

of dk
ok* 2k°

— 1k
= ilim f6#5+(k2—m2)f(k)d“k
m?10

~ 13,0,k 1) %,

which proves k,6 '} (k%) = 19,6, (k ?).}

The representation of a Landau gauge as operator the-
ory is in principle quite simple and straightforward. As a
Gaussian state it has the Fock space sturcture generated in a
unique way from a one-particle space 5™ "' that is the quo-
tient of the basic test function space .¥*® over the degener-
ation subspace of the Hermitian form 4 “(.,-), symbolically
written as

R g) = fa?;:v(k ) Flk ) g4k ) d k.

The realization of the spaces ™!V, #™, with creation, anni-
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hilation, and field operators becomes, however, quite com-
plicated in terms of the momentum functions on the forward
light cone that can be chosen to represent the equivalence
classes appearing as elements of ™ *. Because derivatives
are involved in 6:,, (k ), these momentum functions have at
least eight components. See for a description of such realiza-
tions Refs.2, 3, 27, and 28. One should in particular note in
Ref. 3 the formidable complications due to the insistence on
an additional, and from our point of view superfluous, Hil-
bert space structure in the locally convex state space %™,

The two properties that characterize the generalized
Landau gauges are Lorentz covariance and the Lorentz con-
dition d, 4 * = O for the field operator. In these gauges the
free wave equation d#d, 4, = 0 does not hold. This would
be equivalent to k @, (k ) = 0. From (7.8) one obtains
immediately

k2ot (k) =k 2k, k, 8" (k?)
= —k,k,b,(k?)#0.

In fact, the operator equation 3#d, 4, = 0 determines a sec-

ond class of important Lorentz covariant free field gauges.
Theorem 7.4: The Lorentz-covariant free field gauges

for which the field operator 4,, (x) satisfies the free wave

equation, as an operator relation, have two-point functions

given by

oy k)

= —2m|g, b (k) + Kk, [A8 (k*) +A_6_(k?)

+ add,blk)]}

with A, A _, a arbitrary real constants.

Proof: The operator relation d“d, 4, = 0 implies (and
is, for a translational invariant Gausian state, equivalent to)
k27, (k) = 0. Combined with (7.4) this gives k&,

k ¢ (k ) = 0. Thisis equivalent to the existence of constantsa,

b, suchthatk °¢ (k) = ab(k ) + b, 5(k ). Becauseof Lorentz

invaraince of k ¢ (k ) the b, must vanish. One has k %83, )
= 85(k ); therefore, the general Lorentz invariant solution of
kp(k)=ab(k)is

$k)=Ab (k%) +A_8_(k*) + Ablk) + 4ad*d,o(k ),

which proves (7.11).

Thetermswithé_(k *)and %9, (k ) can bedropped for
the same reasons as in the Landau gauges. The Gaussian
states constructed from the remaining two-point function

ot (k)= —2m(g,, + Ak, k)6, (k ?) (7.12)

for arbitrary AcR', may be called generalized Gupta-Bleuler
gauges. The case A = 0 is known as Feynman gauge. The
corresponding operator field theory is the rigorous form of
the standard Gupta-Bleuler formalism, of course without an
auxiliary noninvariant Hilbert space structure. In this case,
contrary to that of the Landau gauges, it would be easy to
provide such a structure; however, it would again serve no
useful purpose.

It is not hard to verify that the different generalized
Gupta-Bleuler gauges, to be denoted as w” (4 ), are connect-
ed by gauge homomorphisms @, defined as in Sec. IV by a
linear operator T : *"®'—. %%, given by (T, fV(k ) = f*(k)

+ Nk #k £k ). One has, in fact, af, w4(1o) = @* (A, + 4),

(7.11)
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V A, A,€R’. The linear maps W, between the representation
spaces of the (4 ) are therefore 1-1 isometries, with W ;'
= W _,.One proves easily that the W, are continuous and
therefore also topological isomorphisms. All the representa-
tion spaces can be identified with a single space, e.g., that of
the Feynman gauge. In this space there is then a single vacu-
um vector £2“, and for each generalized Gupta-Bleuler
gauge o (4 ) different field operators 4 |/ (x), which can be
obtained from the Feynman gauge field operator 4 {(x) by
APx) =A4x) — 149,974 Vix).
The Feynman gauge is the simplest gauge in terms of

realization by momentum functions. Because # “( f, g)

= — 270« fHk)E,(k)dk/2k®, vectors in the “one-
particle” space 'Y, which are equivalence classes of test
functions f from .#*, have natural representations as func-
tions ¢ #(k ) on R>, obtained by restriction of the Fourier
transforms f “(,\k ) to the forward light cone, according to
$#(k) = v/ 277*(|K], k).

The Landau and Gupta-Bleuler gauges do not, of
course, exhaust the possibilities for Lorentz-covariant free
field gauges. Starting from formulas (7.8) and (7.10), for in-
stance, one may obtain others {such as the Yennie-Fried
gauge: o (k) = —27[g,,8(k*) — 28') (k)] = — 2mlg,,

+ 2k, k,/k )8, (k *)".} Still other, more general, gauges can
be chosen by specifying various Lorentz invariant distribu-
tions ¢ (k) in (7.4).

It should finally be observed that in a Lorentz-covariant
gauges the free Maxwell equation %9, 4, — 3,34, =0
never holds as an operator relation. This remarkable fact was
noticed by Strocchi at an early stage.”® According to our
analysis of the relation between the 4, (x) and F,,, (x) opera-
tor fields, this is not in contradiction with the operator equa-
tion d“F,, = 0. Moreover, it follows immediately from our
general expression for the invariant two-point function,
(7.4), because (k 26#, — k, k*)[8..8+ (k%) + k k,
¢kl = —k,k,6 (k0.

VIII. THE FREE FIELD: THE COULOMB GAUGE

According to Theorem 7.2 insistence on a Hilbert space
theory means giving up Lorentz covariance of the field oper-
ator 4, {x). Covariance under rotations (and, of course,
space-time translations) can be retained. In fact the combi-
nation of this with the requirement that the component 4,(x)
of the field operator should vanish identically leads to the
Coulomb gauge: The operator condition 4,(x) = 0 is for a
Gaussian theory equivalent to &g, (k ) = @g;(k ) = &4;(k ) =0
(j =1, 2, 3). Applying this to the formula (7.3), the expres-
sionf or the general translation invariant two-point function,
and dropping the constants C,,,,,, one obtains for ¢, (k) the
equations k[dylk ) + ok} ] = — 6., (k) and keg(k)

+ k; @olk ) = 0. These have the obvious rotation invariant
solutions

$olk )= — 8., (k?)/2k",

¢, (k)= — (k;/k\Bolk ) = [k, /2(k )16, (k?)  (8.1)
(j=12,3)
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Both these distributions are well defined as convergent inte-
grals over k. Substituting these ¢, (k ) in the general formula
(7.3), one obtains the well-known standard form for the
Fourier transform of the Coulomb gauge two-point
function:

Do k) = &gk ) = &3 (k) =0,

(8.2)

Bylke) = 2[8, — kk, /(K OP 18, (k).

The positivity of the Coulomb gauge follows immedi-
ately from the positivity of the Hermitian form 4 *{-,-) associ-
ated with this two-point function, and which is very similar
to that of the free field, connected with formula (7.2).

From this two-point function it follows also quite easily
that in this case both the free wave equation d “d,4,, = Oand
the Lorentz condition 3“4 = 0 hold as operator relations.

The most important consequence of positivity for the
Coulomb gauge is the fact that the relation between potential
and tensor field is essentially the classical one, that is, FH‘,

=d,4, —d,A,, with F, and 4, operators in the same
state space, after identification of the representation spaces
#°F and 7™ or rather their Hilbert space completions.

To establish the precise properties of this identification,
we need the following lemma:

Lemma 8.1: For the Coulomb gauge the physical sub-
space ¥y, is strictly smaller than 7 however, the Hilbert
space completions of ¥, and 5#™ are the same.

Proof: Let 7, be the left null-ideal of the Coulomb
gauge as state  on &/*, ., the closed subalgebra of .7
generated by ' C .. Let v be the linear map f, @ - ® f,,
A (f)A(f, )27, (see the proof of Theorem 6.1), the ca-
nonical surjection from .&/“ onto #™ = &/4/.# ,, with 7™

= v(.&/%, ). To show that 57, # %™ one must prove that
I, + o, # 4" Take instead of ¥} the larger and more
convenient closed subspace called (in this proof only) .5
and defined as .~} = { feLV“’[f“(O) = 0}. Let ./{ be the
closed subalgebra of .«7* generated by #?. It is then suffi-
cient to prove that .# , + &1 = . ". Use the toplogical lin-
ear isomorphism a from the proof of Theorem 6.1. It leaves
<1 invariant and maps .#, onto the kernel of the map p
(also introduced in the proof of Theorem 6.1). The mappis a
direct sum 37_, @ p'", p: 71 = (@ "B H 1, 50
Kerp = 27>_, @ Kerp'”. The subalgebra ./ can also be
written as a direct sum 27_, @ &1, o/ 1" = @ Iy,
Therefore, Kerp + &/{ = 37, @ (Kerp™ + &/ ™). It is
then sufficient to show that Kerp'" + .= % Now

Kerp! =77, = {fe#Ph'(g, f) =0,V ges¥}
N 3
= eIk k) =k k'f'(k)

I=1

for k2=0,k°0,j= 1,2,3} ,

so fe Kerp'” implies 7'(0) = 0, this also holds for fe sV
and therefore Kerp'V + {5 ™, which proves that %%,
is strictly smaller than 5. [Using the property that #{*' has
finite codimension and that .#"* therefore can be written as a
topological direct sum . = ¥ ¢ Y for some finite di-
mensional subspace . (see Ref. 16, Proposition 9.3), one
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can in fact show that é’/;‘h is not even dense in #™, in the
natural locally convex topology of #.]

We prove next that the Hilbert space completions of
™ and ¥}, coincide. Because of the Fock space structure
of #™ it is enough to show this for the one particle space, i.e.,
one should prove that #7" = a(.'§") and #* " = a7
have the same Hilbert space completions. Let %" be the Hil-
bert space of functions ¢/(k ),j = 1, 2, 3, with components in
L,(R? dk/2]k]|) and inner product (¢,

#))=SZ_, ¢ (k)¢% (k) dk/2|k|. Let P, be the orthogonal
projection operator in .%” defined by (P, Y(k) = ¢/(k)

— (k’/|k|})=]_ k '¢ ' (k) (a.e.). The corresponding subspace
K", consists of g% such that £!_, k’/¢’(k) = 0 (a.e.). By
associating with each f& ¥ the functions ¢/(k) = {v/27)( f*
(k) — [k /(kV1Z]_ k' (K ))io - . onedefinesalinear map
from "% into J¥",. Its kernel is just #~, , so it induces an
injective map from #™" = #Y/7", into %", which is
obviously isometric. This means that we have realized the
one-particle space #™'", a space of equivalence classes, as a
subspace of the function space .»", C.%". We have to prove
that the (Hilbert space) closure of the image of %" and of
its subspace #7,{! are the same. For this it is enough to show
that the image under the map .***—.%" of a subspace small-
erthan #}"isdensein %" ,. % is then the common comple-
tion of " and #7¢,\", represented as functions ¢/(k). De-
fine (again for this proof only) 2 = { fe.Vsupp f*(k )
compact and not containing k = 0}. Theimage of 23 in %,
consist of all vector functions ¢7(k) with each component
C =, with compact support not containing k = 0, and satis-
fying £;_ | k’¢/(k) = 0, because for each such ¢/(k) one has
an fe ', e.g., by defining f°(k ) = 0, fiik )

= (2m) "’ylk *)p/(k), yeZ (R'} with y (0) = 1. The subspace
of these ¢/ is dense in %~ ,, because without the condition
2’_, k’¢/(k) they would be dense in %". (An arbitrary ge. %"
can be approximated by a sequence ¢, from the collection; if
¢ happens to be in |, then it is approximated by the se-
quence P,é,, by continuity of P,.) Q.E.D.

After identification of # with #7%, C % 2" with
1, and Hilbert space completion, the Coulomb gauge leads
to the following situation: There is a single state space, the
Hilbert space 5, in which there is a dense domain #° on
which field operators F,,, (x) are defined [or F (¢), V ye.&?,
in rigorous language]. A unitary representation U (u, A ), of
the inhomogeneous Lorentz group acts in %, leaves 5#°F
and the vacuum vector 2% invariant and transforms the
field F,,, (x) in tensorial way. There is a second dense domain
J#*, containing %, on which the potential field operators
A, (x) [or 4 (f),Vfe.£ ] are defined. Between these and the
F,,(x) one has the classical relation F,,, =d, 4, —d,4,, [or
F() = A (dy¥), ¥ ¥€.2). The noncovariance of the 4,, (x)
field in the Coulomb gauge is now in the first place the fact
that the domain ™ is not invariant under the unitary oper-
ators U (A ) (unless A is a pure rotation) and that consequently
theexpressions U (A ) 4 (f)U ~'(A )and A4 (T, f)aredefined
on different domains and are therefore not equal. We may
use the Lorentz transformations to obtain new gauges. De-
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fine, for a given Lorentz transformation A (not a pure rota-
tion) a new dense doman ™" as the image of #™ under
U(A )~ " and, on this, new potential field operators 4 ( f) by
AN f)=U(A) " 4(T, f)U(A). Antisymmetric differenti-
ation of 4 ;} gives the same field F,,, , because F* ()

= A" dy¥) = UA) T 'A(T,df)UA)=U(A)"'4

X(d T 9)UA)=U(A)'F(T,$)U(A) = F(Y),Vye L™

One can show by working through the formalism developed
in Secs. II and IV and making the necessary identifications,
that the field 47 ( f) is indeed the GNS representation asso-
ciated with the gauge transformed state o, @, obtained
from the Coulomb gauge state @* by the transpose of the
Lorentz automorphism a , , which in this special case has the
effect of something that may be called a gauge transforma-
tion, again one more example, besides the ones given in Sec.
IV, of the use of this term. Note that we have here a situation
where the field operators of two equivalent gauges act in the
same state space and are nevertheless not connected by a
gradient term. This is because there is only a single state
space after Hilbert space completion, the domains on which
the field operators are defined are different, and the expres-
sion 4 /}(x) — A, (x) is therefore not defined.

This ends our discussion of the Coulomb gauge, the
most important and typical positive-metric, noncovariant
gauge. Other such gauges are known (see Ref. 2), but this
should be sufficient to demonstrate how the operator field
properties of such gauges are determined by the general
formalism.

IX. CONCLUDING REMARKS

Quantum electrodynamics, up till now the most suc-
cessful theory in elementary particle physics, does not fit in
the axiomatic scheme of standard Wightman theory as it was
developed in the fifties and early sixties. In this respect it
cannot be seen as an unfortunate but isolated exceptional
case. On the contrary, its typical features appear in more
complicated form in general nonabelian gauge theories, the
new field theories that have become dominant in particle
physics in recent years. It seems therefore that standard
Wightman axiomatic field theory is, as a framework in
which the basic concepts of quantum field theory can be
discussed, in need of extension.

In this paper and in a preceding one we have given a
rigorous axiomatic formalism for the photon quantum field
in which we derived from a few basic principles, and in a
systematic way, the often heuristic and unrelated results on
the subject that can be found scattered in the literature.

The coherence and essential simplicity of the formalism
was obtained by giving up the Hilbert space of standard
Wightman theory as general background and relying instead
on the under lying mathematical structures of locally convex
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spaces, associated with the distribution properties of the n-
point functions.

Although a wide gap separates the Maxwell field from
nonabelian gauge fields, or even from full quantum electro-
dynamics, this may suggest a possible direction in which a
further development of Wightman theory may take place.
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The second Legendre transform for the weakly coupled P(¢), model®
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We prove the existence and analyticity of the second Legendre transform of the generating
functional for Euclidean Green’s functions in the weakly coupled P (¢ ), model. The proofinvolves
a bound on the partition function with a nonlocal quadratic source term. This bound also implies
bounds on the Schwinger functions S,,( f},..., /) that are optimal with respect to both topology

and n-dependence.

PACS numbers: 03.70. + k, 11.10.Mn, 02.30. + g

I. INTRODUCTION

This paper complements our series'™ on the higher Le-
gendre transforms I" "{ A} (r>> 1) of the generating functional
G {J} of connected Green’s functions in Euclidean quantum
field theory. The main focus of the program in Refs. 1-4 is on
the role of I"” in generating a variety of field-theoretic ob-
jects with r-cluster-irreducibility properties, such as (gener-
alized) vertex functions, Bethe—Salpeter kernels, and 7-irre-
ducible expectations, and on its role in unifying and
simplifying the proofs of the irreducibility properties of these
objects. Given these goals we found it convenient {and in
general necessary!) to view I""{ A} as a formal power series
in A with coefficients its generalized vertex functions. It was
in this framework of formal power series that we provided' a
rigorous justification of our analysis of I"".

For the case » = 1 and for the weakly coupled P(¢ ),
model [hereafter denoted €P (¢ ),], Glimm and Jaffe® have
proved the existence of "'V {4 } as a genuine (analytic) func-
tional of 4, for small 4 in a suitable Banach space. Our con-
tribution in this paper is to extend the Glimm-Jaffe results to
the second Legendre transform I"® and thus to provide a
more complete justification for the formalism of Ref. 1 for
r = 2. Basically we do so by squeezing the cluster expansion®
a little harder. However, we must confess that a law of di-
minishing returns seems to be operative here. Our (rather
technical) proofs are unlikely to extend beyond r = 2 or to
models involving fermions; on the other hand, the (easier)
method of formal power series certainly does®* and, insofar
as the generalized vertex functions are concerned, provides
all the required information.

We now describe our results in more detail. All results
stated in this paper apply to the (Euclidean) eP (¢ ), model
whose expectation we denote by ( - ). Let Z {J } be the
Schwinger generating functional

Z{J}= (), (1.1)
where
F = J&(x)J(X) dx = f(«ﬁ (x) — (¢ (x))) J (x) dx.
(1.2)

For the case r = 2, we let

* Research partially supported by the Natural Sciences and Engineering
Research Council of Canada.
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Z{ILY=("+7), (1.3)

where
y=”;¢(x)¢(y);ux,y)dxdy

EH @) 3 (5) — (3 x) B NI 6y dx dy (1.4)

and L (x, y) = L ( y,x). It is important that we use physical
Wick powers :¢ ": (see Ref. 2) in the source terms in order
that J and L end up in the “right” Banach spaces. These
spaces are

Z_AR) = WIl-i=N=4+ 1) Tz <o}
and (1.5)

R ={L||IL]-,
=l(—4+1)7"e(=4+ 1)L, <w;

Lix,y)=L(yx)}.

We shall often omit the superscript s and shall also write
H_ = _,(R) e _,(R*. Now the key ingredient in
the Glimm-Jaffe analysis® of "' is a bound on Z {J } for
Je¥ _ | s = {Je¥ _,| V|-, <6} forsomeé >0.InSec.II
we extend their bound by removing the restriction that J be
small.

Theorem II1.1: There exists a constant X such that

2
|Z{J]|<6K”J”—l
for all Je57__,.

As a spinoff from this theorem, we obtain “optimal”
bounds on the €P (¢ ), Schwinger functions of the form (see
Corollary I1.7)

(1 3u)

i=1

(1.6)

<etrt = T 1) (1)

We regard (1.7) as optimal since one can do no better in the
free theory. Note that the bound (1.7} is global in the sense
that we make no assumption about the support of J,€%°_,.
Previous bounds with the optimal 5 _ | norm involved an n!
dependence,’ whereas bounds with the optimal (n!)!/2 depen-
dence involved norms on J, which were globally L !.-°

Actually Theorem II.1 is a warmup for the correspond-
ing result including quadratic source terms.

Theorem IIL.1: There are constants K, K and 8 > 0 such
that

12 U, L }|<CXP(K“J”2—1 + I?”L ”2—1)’ (1.8)
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forall Je# _, and LeF””_ ;.

The proof of Theorem II1.1 differs from that of
Theorem I1.1 in one important respect: the nonlocal qua-
dratic term .# in (1.3) prevents an immediate application of
the cluster expansion. We are obliged to expand that part of
e~ which couples across the “decoupling” Dirichlet contour
in the cluster expansion. The resulting terms can be con-
trolled by an analyticity argument and can be summed up for
small L since, by our optimal bounds, (l/n!)ﬁ " contributes a
factor (1/n!) c"(2n)!*/? ||L ||, (roughly speaking). Such an
argument clearly fails for source terms of degree i > 2 since
the number singularity (1/x!) ¢"(in)!'/? is not summable.

Given the bound (1.8) it is then a simple matter to con-
struct I" " as a genuine functional. I"** is defined as follows.

G{J,JL}=InZ{J L},

A{J,L}x)= :Sji(x)—G{J,L I, (1.9a)
B{J,L}x,y) ——_——5J(x) 570) G{J,L}
———-5—6{0,0} , (1.9b)
8J (x) 8J (y)

Ir'?{4,B}=G{J L}
—JA(x)J(x) dx

- U(B (%, 5) + 4 (x) 4 (7)) L (x, y) dx dy

(1.10)

wherein (1.10)/=J {4, B} and L = L {4, B } are obtained
by inverting (1.9). (4, B) lives in the space dual to #°_,,
namely %, = 7 (R*) ® 77 (R*). Our main result is

Theorem IV.3: There is a § > 0 such that the map
(/, L }—(4, B) of (1.9) has an inverse defined and analytic on
X\ s = sRY) @I s(RY). I'®{4, B} is defined and
analytic on 77, ;.

Remark: Burnap has informed us that he has obtained
similar results by somewhat different techniques.'®

The various properties of analytic functions on Banach
spaces that we use are collected in Appendix A, and various
estimates involving covariances with Dirichlet boundary
conditions are collected in Appendix B.

1l. GLOBAL BOUNDS ON SCHWINGER FUNCTIONS

The main result of this section is
Theorem I1.1: In the €P (¢ ), model there exists a con-
stant K such that

. 2
|<e/>|<ekll-’||il (2.1)
for all Jes¥ _ .

Remark: This estimate may be re-expressed as global
bounds on Schwinger functions. See Corollary I1.7.

Proof: It suffices to prove (2.1) for the case JeC §, since
then the analyticity of the finite volume approximations
(e}/ )4 and Vitali’s theorem imply the analyticity and hence
[by Theorem A.2(b)] continuity of {¢/") in the #°_, topol-
ogy. It also suffices to consider real J since
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. . esq2 2
(&) <R 7y < IR Im g M I

Our strategy, following Glimm and Jaffe,’ is to take an
arbitrary but fixed JeC ¢, decompose it into localized pieces
J =3, J, and incorporate one J, at a time into (¢ ).
HereJ, = ¢, J and { {,€C &(R?)| aeZ?} is a partition of
unity invariant under lattice translations. Because we use the
cluster expansion to estimate the effect of incorporating each
J, we are obliged to consider expectations with preassigned
Dirichlet data on a general finite closed contour / of lattice
bonds. We let { - ), be a finite volume approximation (in
region A ) to { - ), which has zero Dirichlet data on /, and we
let

S =¢U),
F =)~ (W),

and

(2.2)

I ==+ )" T,
where — A4, is the Laplacian with zero Dirichlet data on /.
Wealsolet C, ={—A4, +m3)~ "

!
Suppose we have already estimated (e/w "),, where
/() is defined as in (2.2) with

J(BJ:ZJB’
PeB

where B is a finite subset of Z2, and we wish to incorporate a
newJ, (i.e., a¢B)togetJ ., where B+ = Bu{a}. Wesim-
ply define J (¢) = J 5, + ¢/, and use

A !
@1y, = (&7 + f di{ f e,
0

1 1
= ("), 4 J dr(fh ey e 23
(0]

We will shortly estimate the second term by a cluster expan-
sion. To exploit the subtraction in £}, [see (2.2)] in that
expansion we introduce two independent identical ( - ), the-
ories—one red and one white. From now on {7/, ¢/},
will stand for its representation

A
<<(/a,red - /a,white) e ’ red)l.red )l,white
in terms of these duplicate theories. The cluster expansion
(CE) of Ref. 6 says

</{1 9/“}1>1
s() . ) /7
= 3 | dotna s A YR %
X.Tely

Zy x1 S S
X——e
Z,,

where X is any finite union of closed lattice squares that is
connected and contains the support of J, (of course X //need
not be connected), Z = {lattice bonds in (Z*)* that do not
intersect the support of &, }, I, = {I"'C #|I finite,
I'ClInt X, X \( % \TI')is connected},

, (2.4)

0 bex\I" or bel
st} = (S(F)” = {1 bel'\! )
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so JUB\ I"is the set of Dirichlet bonds and I" \/ is the set of
coupling bonds, o{I") is a vector having one component
o{T"), for each nonzero s(I'" ), [o{I"}, is a measure of the
strength of coupling across the bond bel” ],

"= ] ¢/3a(I'), ,
belm
T=W00dx,

u -V
( . )X\o{l‘) =J'e Xd:uCi(a(F))

is the un-normalized expectation whose Gaussian measure
A cpoiry has covariance C;{o{I" }} with boundary conditions

given by o(I'), including zero Dirichlet data on T and whose
interaction ¥y is in the volume X and has Wick ordering
matched to Gy(a(I)),

Jy =Jyx (note that # ¢ is independent of ¢},

-V
ZA,,=fe Ad,ucl.

The bulk of the work in estimating each of the terms in (2.4) is
placed in the following lemmas. We will use ¢; and ¢, to
denote universal constants.

Lemma I1.2:

PAU W
lal‘(JL € X)x,a(r)|

cem-smirf s ga gl I )

BeB *
2 -
call Jexll =17
Xe” ,

wheree(a, B) = e, e ' ~#land K (m,) can be made arbitrar-
ily large by choosing m large.

Remarks: The significant features of this lemma are

(1) The bound involves || J4 ||, ; and notjust || Jg|| _ -
This is a consequence of { ., ) x ,r) = O, which is true for
all o{I" } thanks to the implementation of the subtraction of
(2.2) by means of duplicate theories.

(2) Note that there is no subtraction in £ (t)y, i.e., no

— (ST, Fe)
factor suchase ¥lin(F! ¢ " *)% or)-Suchafactor
is unnecessary because

[ () d7I<Ilxe €@ D all ozl T )ell - 17
<6 XI”ZII J()xll Z 1z
<6 X |+ el (el 0z - (2.5)

(3) Suppose, following Ref. 5, we define the seminorm:
Definition I1.3:

|| J”%‘B,l = ; e(a,ﬁ)” JBHZA 1,0

where 2 ; means that @ and £ are summed over B. Then the
sum in Lemma II.2 can be absorbed in this seminorm since

3521;:+ ela, B Il i<t a0 — 1 1300 - {2.6)
Lemma I1.4:
[ o = Fu

<l X4es Y > > eaBllxy Il i,

YeZ (l) ac ¥nX BB *
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where % (/) is the set of connected components of R*\ /.
Remark: This estimate is basically a consequence of

|(/B>7 — (/B)1|<C694d(ﬂ’6x)” JB“—],I

<cge BN Igll 2o

The significant feature of this estimate is that if we define a
second seminorm by
Definition 11.5:

I 126, = 2 z z ela, Bl xy el 1.

Yet'il} acY BB
then the sum in Lemma I1.4 can be absorbed in this semi-
norm since

2 Z z ela, Bllyy Jit )l 1.

Y ac¥nX BeB *+

= JEMzpe s — Z z B;+ ela, Bllxy J(t)sll™ 12

Y evrx®

<N Bas = 11K o 2.7

2,87
[By an abuse of notation J {t }; means not J (¢ }§; but rather
J if BeB and tJ,, if B = a. Furthermore || J ()|, 5+, is de-
fined with the abused J (¢ );.] The last inequality is a conse-
quence of
Il

2
2.8]1

- S 3 S Sdabllaax gl
Ye€'(l) Ze€ (1) acZ BB ’
ZCyY

< 2 Z z ze(aaB)HXZXXc JBHZ_ 17

YeFU) ZEZ(M) |, g e BeB
Zcynx©

= 5 3 SeaBlixrx Tl .

YeB() , yry e BB

where we have used the decoupling property

zgg‘.ﬁ Ixz 1 =1V 1% (2.8)
)
of (—4; + 1)~

We now continue with the proof of Theorem II.1 using
Lemmas I1.2 and I1.4, which we prove shortly. The proof
will be by induction on the size of B with the Induction hy-
pothesis: “There exists a constant K (independent of B ) such
that (for all finite closed contours / of lattice bonds)

(ef‘[B]),<eK”J“‘2”, (2.9)
where

I15= 11155, + 1155 " (2.10)

Theorem I1.1 will then follow thanks to the inequality

15 <es NIy, - (2.11)

This inequality is one of a number of useful properties of the
seminorms ||-|; 5, ||-||2.5,, and [|-|| 5, that are proven in
Lemma B.5.

The inductive hypothesis is trivially true when B = ¢.
Assume it is true for some B. To prove that it is true for
B " = Bu{a} with a¢B apply (2.3) followed by the cluster
expansion (2.4). To bound the right-hand side of (2.4) we
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apply LemmaI1.2and (2.6)to [3" ( /7, ¢ ”X)X o) l the
standard CE estimate (Ref. 6, Proposition 5.2) to

F
Z, x1/Z,,and Lemma IL4 and (2.7)toe  X° '

Furthermore since X ‘B * C B (see Fig. 1) the factor
i
F e
(e *); can be bounded by the induction hypothesis. This
gives
il
[( L ey, | <3 eotri-x A
X.r
Xexplel| @ )xliz + KNI .7
eI Baa — 1 I ]
Lemma I1.6 below is now used to bound the exponent by
KT s + K [N p-s = NI m ] + KNI 5

(assuming K>c;) and standard CE estimates (Ref. 6, Propo-
sition 5.1} are used to bound

(f(t)>1

eI T

ecﬁx’_K(’"u”rlgcg.
x.r
So far we have
,(/Q ”) l<_‘eXP{K”J“13/
+ K[| Re s —
+ K| T35} -

1t is of course crucial here that the universal constants ¢;,¢;
are independent of K so that we may choose a K for the
inductive hypothesis that is larger than
max{cs,Cq,20,65,2¢, €
by the inductive hypothesis (2.9),

kigy, (. d 2
FB | L exp K|
K (19 a = 1 sa] + K1 -]

[RAIFwYa
(2.12)

a4
<6’/(B )>1<

2 2
K|J K| Jlp+ K|l +K| 2,8+
<! ”B"+e 5 4 KIITB 2.8+
2
K|J +
<e [y £
This concludes the proof of Theorem II.1. ]
Lemma 11.6:

el Tl 7+ KNI I

18,1

<K|[Jips + K [”‘IIII.B cr =155 ]

if K>max{2c,e,,2c,¢; '} and 0<t< 1.
Progf: Since J [t )y = tJ, +Jyx,

Wl 7+ KW

1L.B]

<20, A T2 17 + 260 Jyx 7
+K|x, I,

<2, 87| J, ”2—11 + K |[xx .5
+K|x, I

1,81

(using K >2¢,e, and Lemma B.5c)
L2t | TP vz + KN T |2
[by (2.8)]
<tK [ 1550 = 071051 +KN T ipa s

since t’<tand e,|| J,||>. , isonetermin[ ]. [ ]
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'], Substituting (2.12) into (2.3] gives,

We now restate and prove Lemmas I1.2 and I1.4.
Lemma 11.2: For m, sufficiently large

|a’ (F 6/“)"/);',0(1‘) I

<eeilX | = Kimll| ¢
< Bg!;

BTl 517

where X {m,) tends to infinity as m, does.
Sty

>

Proof: We expand the exponential e

I Y = S —8f (L Fie)

n=1

)xg(r) ’

observing that the n = 0 term is absent since

<</a,red - /a,white >:ed ):‘vhite =0

For notational convenience we shall only consider the

# area term. The £ ... term is estimated similarly (but
more easily) and at worst just doubles the number of terms.
By the usual CE formula [see (8.3) of Ref. 6]

" a 5 xoir)
"2 e)s. e

—v
Xdﬂq(a(rn ’
(2.13)

where Z(I') is the set of partitions of I".

Let the §,’s act on the /s and the ¥y in (2.13). We
classify the terms produced according to which 4,,’s attack
an interaction ¥ and according to which _#”’s are attacked.
Altogether there are

22[77'[_2n + 1<e2(|1‘f + n) (2 14)
such classes of terms and, since the factor (2.14) may be
harmiessly absorbed into the overall bound, we may restrict
our attention to one such subclass from now on.

We next localize the §,’s and all the n,<n + 1 attacked
#’s as follows. If a 6, hits a Vy it is localized by

= Z)(A )——2)( ) (2.15a)
and if it hits a # it is localized by
£
r ==/ -0
i 8 !
! i
| ]
| }
L_ o //y
X ///
f
support o ; X
FIG. 1. The cluster expansion geometry.
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6 — 12 172 8
5¢(x)=;fdy(cf XAjCT/)(xy)’)6¢(y)
6
= dy y;l%, ) ——. 2.15b
}J:f yxf(xy)6¢(y) (2.15b)
The #7s are localized by
(2.15¢)

J=;fdyxf(x,y)1(y)sgfj-

For each attacked ¢ we insert the sum (2.15¢)into (2.13) and
for each 3"C we insert the sum

FClxy) =3 F Clx, )

Iy
Ejz (X};,l aYCXj’;z_Z) x, ),
Y

(2.16)

where j, = (j,.,,/,,) runs over Z* and where ¥; =T or J
according to whether the corresponding J,, is localized by
(2.15a) or (2.15b).

Now consider an arbitrary but fixed set of localizations
{J, s {J:}. We have arranged in (2.15) that a localized &,
can hit only a ¥ or # with the same localization. Hence if

v = degree of interaction,
M,(4,) = number of 8,’s localized by i,
M,(4,) = number of 8,’s localized by y;,
= number of s localized by y7,

andM (A )=M,A)+ M,(A ), thenthemaximum number of
terms (in our subclass) that have the given localizations is

I1 @M (4 WM, (a8 \<]] v

vMAA)

M@y

<Jles™“' M@y (2.17)
a

where we have used the inequality (ab )!<a®®b 1°. This bound
is of standard CE form and will be controlled accordingly
{see Ref. 6, Lemma 10.2).

Each of these terms is the integral with respect to
d,uaM ry of a number of factors.

(i) First, there are the constant factors in which the same
d"C; connects two J’s. These factors are estimated by
Lemma B.2 (recall that 3"C has Dirichlet data on /):

|, "CJ, | = (s C12J)C7 2 CCT V) xa, C17 )
<l xa, CH2 TN, mie= 1774 Kfy) e~ modlikovs
X xa, €121, -
Here
d(jkir)=sup (d (4, b) +d(A,.b)) .

(ii) Second, there are the J ’s that have been connected by
d"C’s to V’s. We have the structure

[ELCE) PR

= ;fdx FHXAI (xi) C71/2XAki

X(C7 2T CCT ) (v, CI?T), (2.13)
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where Fis a function of ¢ (which we have held fixed) as well
as the arguments x; of some d"C’s. We view

I, C; 23" CCi '* as a tensor product of
C;723"*CC; *s and apply Lemma B.2 to bound the
right-hand side of (2.18) by

Y dx dx' F(x,,x5,)
'R

X [H (XA,- CTVZXAki CTI/ZXA,- )(xi’ x,’)] Fix{,x3,)

| R O PO I

(iii) Third, there is everything else—namely the uncon-
tracted # s and the interaction. We use Holder’s inequality
to separate the interaction (and bound it by e“''* ), the F
factor (which is essentially of standard cluster expansion
form and is estimated as such), and the (n — 7, + 1) uncon-
tracted #s. These are estimated by

[ J-/ﬁn —n +1) d/‘qmrn]

<et.z(n—n. + li(n —n 4 1)!1/2 ” Jx”"—_l.%l +1

174

simply by evaluation of the Gaussian integral. (One of the
Jy’s could of course be J, .}

We have now bounded each term in the series for
3" F o /%) xour that results from (2.13) when the §,’s
are applied and { j, } { j;} localizations are introduced. We
have also shown how to control all the sums except
3, R iy and 2. The sum 2, j;) over localizations of the

n, attacked J’s is controlled by

> s C2IN, <X P2kl a7 -
&

Thesums 2, X, | are controlled as in the standard cluster

expansion (see Ref. 6, Proposition 8.1 and Lemma 10.2).
Gathering together all these estimates and recalling in

particular that when a term has n, attacked #’’s each such

,# contributes a factor of |X |'/?|| Jy|| _ ;7 while the

(n — n, + 1) uncontracted #’s contribute a factor of

e =M U — g+ D2 Ty "5 (or

(2.19)

e =t U — ny + )2 Ty ["53% || Ju || - 1), we have
Se)
10" e ) or|
< z ie‘:l)'xl +c|4"_2K‘mo)|r}|| Ja || 17 “ J(t )X“"— 17
n=1 n!
X max |X|"?(n—n, + 1N/2
O<n,<n+1
<nz;:1 eCIS‘X‘ + €raft — 2K(m0),r1” Ja ” 17
X{ ” Jall 1t “ Jw),x“ - 1.7}
()l
(n _ 1)!1/2 )

In the last inequality we used

|X |n,/2 (n —n, + 1)!1/2
<(e\X\”l!)I/Z(” —n, + 1)!1/2
<e[l/2)|X| (n + 1)!1/2.
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Now using

= 4 & (V) 1
A (kY2 2, (kY2 (vay«

k

(3220 (3,2) e

k=0

(2.20)

withk=n — landa =e"|| J(t)x|| _ 7, we do the sum
over n. This yields

(LY
a »
<eC|6|X|—2K(m0”r| {” Ja”2—l,7 + ” Jw;xuz— 1,7}

e Jixhs 13

<ec,,|X|—2K(mu)|I‘|[ 2 ” Jﬂl’xn—ﬁ] c;IIJ(r)xﬂz_ W1

by Lemma B.5c. (We have absorbed a number of constant
factors into e*™*'*|) Finally observe that, since there are
nine squares in the support of £_,

|| >4(X | — by Ref. 6, Eq. (5.1)
>epla —B|—coVa,BelX],
so that for m, sufficiently large

Ft)
|3r (/‘11 4 X);’,o(l"} |

<ecl|x| ~ K{mo)|I"|

c2 T 5
x| 3 da gl o

Lemma I1.4: For m, sufficiently large

0 — Fl]
<GlX[+es > Y 2 ela, Bl xy J@)pll™ 1 -

Ye€(!) aeYnX BeB *
Proof:

I )y = AL EMNICE @) — el + (Fltxh -

The second term is bounded in (2.5) by

X | +esl| )kl 1z

GlX |+ & ; 2 lxyJ(t)sll>-17 (Lemma B.5c).
YeZ (1) BB

To estimate the first term we use the interpolation

(A= Fumi< S [ do|-Z rienn. ]

where ( - ) denotes the expectation whose covariance is
oC; + (1 — g) C,. Then the change of covariance formula
[Ref. 6, Eq. {1.7)] gives

1A — 0]
<3 P xad IC ey I (t)s)]

Y B4
ACY
+ > Kxr Fltlg (Vxa)dCwaV'Dol,
Y, 5.4,4°
AA'CY
where dC = C; — C, = C 54 — C, and (D; ¥ ) is the con-

nected expectation (P¥) — (@) (¥). Now 9CX,

= (Cyaxv) — C)) ¥y can supply decay between its argu-
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ments and from each argument to dXnY and (®P; ¥ ) can
supply decay between the supports of @ and ¥ so

KA ) — (el

<Cy z e—dm'me—d(ﬂ'axny)"XYJ(t)ﬁ”—l,l
Y. 84

+C20 ; e—min[d(A,ﬁ),d(A'.ﬁ)l e—dlA-A')
Y. 54,4’

Xe 4Ny Tt gl 1 -

[It is no problem to simultaneously get decay and a

| xy J()gll_ 1, norm from 3C( y J (¢ )g}—see Corollary
B.3.] Finally, we perform the 2, and 2, ,. sums and ob-
serve that

—d(B, dxnY) —d(B, XnY) —jla-Bt+1
e <

€
aeXnY

to arrive at

(AN — Ll
<es 2;, ;nxﬂ;« ela, Bl xy J (gl - 1)

<CsZ 3 @Bl Ay T )
=3 3 3 eaBllxy Sl -

Y ae¥nX BeB *

<es| X |+ =

Theorem II.1 amounts to global bounds on the
Schwinger functions as we show in
Corollary I1.7:In €P (¢ ),

(@ (B (fi)-d (L)< TL 1Ay

(b) (B (fi)d(f,) )
<esmy (14 KMy’

nl/2

X T 1Al - eK||f||2..1,

=1
where X is any constant for which {2.1) holds.

Remarks: (1) The numerical coefficient ¢}, (n!)!/2 may be
replaced by (°Kn)™.

(2) The factor (1 + K /2| f||_,/n"/%" in part (b) can be
thought of as a contribution from the contractions of the
& (f,)'s to the exponential e*'/). For example, in a free theory
of mass 1

@ (fi)9(fa) e

= s ([Teun) e

(1/2)Ilfll_1 z ( ) =AUy H Al -

j cven

W2 A2 S (nY (—n _
<A e 3 ()i
(vszn_ Sf]-
—_ 1 Hl “f” n/z( “ 1|/2 l) X
p

Proof: Analyticity of its finite volume approximations
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imply the analyticity of (¢*"') via Vitali’s theorem. Hence
the corollary is a direct consequence of Theorems A.1 and

II.1. |
lli. BOUNDS ON Z{J,L}

The principal result of this section is [see {1.3) for defini-
tions]

Theorem II1.1; There are constants K, K and 8 > 0 such
that

KA +KNL2

|Z{J,L}|<e
for all Je#° _ | and Le??”_ | ;.

Proof: The proof is an extension of that of Theorem I1.1.
Again it suffices to consider J, L real and C§°. In addition to
the seminorms || J ||, 5, || / |l2.54, and || J || 5, of Theorem
I1.1 we use

| LI}e: = Z[e(a,y)—}—eﬂ,'y)] I Lo sl v

where 2,=2, 5 pand L, 5 ={, LG,

"LHZBI z z Z ela, B)

YeZ(l) acY B, yeB

XL xr Lo, 0+l L,gxvl™ ne
and

“ L ”%7,1 = " L Iﬁ.B,I + ” L ”%,B.I .
(Asin Theorem II.1the || - || 5, norm is used only to control
boundary condition adjustments to the " and sub-
tractions.)

Pick any fixed C§ Jand L with || L || 5,< € (for all B
and/). LetL g, = 2, pp L, - Again we proveby induction
on the size of B that

o b 2 2 2
+ 7 K|J +K(1+||J L
<?/(B) (B’))l< I171B,L ( I "B,l)“ [y: ¥ (31)

for all /. (K is chosen larger than certain universal constants
that appear in the proof. X is chosen larger than some con-
stant which depends on K. € is chosen such that €K and €K
are both smaller than some universal constant.) The induc-
tive hypothesis is trivial for B = ¢ so we assume it true for all
B’s of at most some given size and prove it for B *=Bufa}
withaaB. IfJ(t)=tJ, +Ji5), L{t) =1L + L3,,6L =Ly,
— Lg), then

(S BBy,

- N 1 . N
_ (e Ty +f di ([ Fo +85] S0y,
(Y

(3.2)

Again the subtractions inherent in [ ] -+ 8% ] areimple-

mented through the use of duplicate fields. We introduce five

independent copies of the P (¢ ), theory labelled ¢,, ¢, 4, , #5,
@,, respectively. Then
([ Fu+6L110),

=(Jg. —¢,) /) + Kl($, — ¢,) 6L ($, — ¢,)
— {8y —4,)0L (g, — B (s =S )i (3.3)
where J¢ = § J(x) & (x) dx, etc. The net effect of these sub-
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tractions in the cluster expansion is to require in the first
term that / be connected to fand in the second term that
both legs of 8.7 be connected to f. (We will continue using
the notation ([ / L +67 ]./)). By the cluster expansion
[using the same notation as (2.4)]
S (uly) 1
b

)A, aArury)

([ Fatbl)elr 70y, =
r,CA\X
I, finite

ot

Xaf.ul‘z([ ]a _+_5i ] e/'(z

X do(l"ulhy) . (3.4)

In the #'and .#' terms of the exponential, we do not
make the ~ subtractions o{I" )-dependent (I" = I'\ul",), but
we do introduce a o{I" ) dependence in the bare Wick order-
ingin .7, i.e.,

F=F =) =J@— ()=,

L= L¢:C(a(0r)) s

L= -2¢) Lo+ {(d), L{d) —trLS,,
where

S, =($¢) —C,.
The fact that the ~ subtractions are appropriate to the ex-

pectation { ), rather than { ); causes no problem for those
parts of #" and .¢"' supported in X: we easily absorb the
errors which are proportional to |X |. However, as we shall
see, we must have the correct (i.e., { );) subtractionsinX ©in
order to apply the inductive hypothesis there. Accordingly,
we rewrite #'and .%" as follows. First we decompose L as a
sum of three pieces with arguments in X X X,

X XX UX°XX, and X °X X ¢, respectively,

Ly(x, y) = xx(x) L (x,») xx(¥),
Ly, p) =xxx) L, 9V x (D) + X, o) L1, p) xx( D)
L o)) =x, LI,

and similarly for 8L, and 8L,,. We then replace each ¢ ' in
X°<by
$'=¢"—((8) — (P )=¢'—5(s).
The resulting straightforward calculation yields
/I + f’ /1 + f’ + ¢ L ¢
+/X+$X+c(J,L),
where

T pel) = olr) = [ d [2L, 6,96 (8 ()
+ LY x, y)( (3],
T
— [ ay[2Labr )G 13 + L) 560D
L) = ) —( f)+5)L_, 54)

—(@) L 6(d)—(d) Ly (s),
+tr[Ly S5 +L(S;—S)],

jx(x) =
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and

LYx ) =2xx) Lixy)x ().
The constant terms are bounded in

Lemma II1.2:

(WL )| <emlX |+ ez (1T e — 1 eI, ) -
For future reference we also observe that ¢ ic Lt ); o»and

#L % ¢ "have precisely the right subtractions in X ¢ and obey
Lemma I11.3:

T o2
17
I P +euK > > ey, B
X= "B YT ) X BEB *
X
X el X L+ s
I Txll - 17
< Ixll - 17 + 2l X V2 HICT? xx L(2) €172,
+ ”L(t)X”—IJ} .

We are now confronted with the one substantial differ-
ence between Theorems II.1 and II1.1. We cannot, at this
stage, apply the cluster expansion (2.4) since the integral
(+ )4, otr,ury does not factor even though the covariance

!
Cj(o{I",uT,)) decouples X and X <. The culprit is e¢L?'i’ ‘,

7
which does couple X and X . We will expand e¢Lx’ ¢ , for

then each resulting term does factor. However, the factor in
X ¢ will not be just a partition function as in Ref. 6, but will
contain a product of fields as well—the fields of (6L %, ¢ )"
that live in X °. This factor will be estimated by applying the
analyticity argument of Theorem A.1 to the bound (3.1) of
the inductive hypothesis much as was done in Corollary I1.7.

! -
. .o 8L
Let us start by expanding the exponentials e %o , X ,
ande” "' Each resulting term factors and the § &z » contri-

bution to (3.4) becomes

. Iy
+ &
(5 P, W +rn )1
QL) )

= 3y detr)

X.IeIy npk n'p' k! 0

- k+1 u
xaf(/; 22 1 ¢""">X " 8L % (x,, )

k+1 k+1 ot Ic
X I Lbxoyd\ ] ¢ (e T )
AN X

i=2 i=1

Z. -

L (3.5)
Z,,

The contributions from ,#, and 6.% , are similar (but easier

to handle) and will not be considered explicitly. Thanks to

the (color coded) subtractions in [/a +8.7 ] the
n = p = k = Oterm is zero. We have suppressed the integral

X
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signs § I dx; dy; under the convention that repeated argu-
ments are integrated over.

The expansion (3.5) is controlled in several stages. In
stage 1 the 3" is evaluated and localizations are introduced.
We then consider a single resulting term. In stage 2 analytic-
ity and the inductive hypothesis are used to bound that por-
tion of the term that lives in A \ X. In stage 3 those J’s and
L ’s whose ¢ ’s have been destroyed by 8 /8¢ ’s are separated
off and estimated. In stage 4 we finish bounding that portion
of the term that lives in X. Finally, in stage 5 the remaining
sums are controlled.

Stage 1. As in Lemma I1.2 we apply &'

=32, o) Zyer § 7 C8;, we classify the resulting terms ac-
cording to which §,’s attack interaction vertices and accord-
ing to which #’s and .% legs are attacked (the two ¢ s in
each .Z are referred to as . legs), and we localize these 5, s,
s, and . legs. Let

n, = number of /s attacked,
p; = number of .Z 4 ’s that have had j legs attacked,

k, = number of L },’s that had their one X leg attacked,

and

M (4 ) = number of interaction legs, # s, and .%" legs
localized in 4.

Then the number of classes is at most e3!// 1+ 7 +2+ k)

and the number of terms in a class that have any given fixed
set of localizations is IT, e™ @M (4 )°. These bounds are
controlled as in Lemma I1.2. The sum over localizations will
be controlled later and until then we generally suppress the
notation specifying the localization.

Stage 2. We now estimate any one of these terms. We
first focus our attention on the L %,’s. We have the following
structure:

f dsid cgorry = 18 C - x) L 3 (x, 1)

k—ky+1

1 ol
X T #6) Ltxp) (H 80 X X”> _
AN X

i=1
V4 7
J,L AN X1
Xec( )__’
Al

so that each L ¥, must occur in one of the following configu-
rations:

f dx ¢ (x) L 3%, »),

de dx: XAa (CT_ 1/2 67’ CCT— VZ)(X, xl)XAB
X (CY2 L %) YCH? L 3)x, ¥)
fdx(av CC7 ), %) X, (CY*LEN.Y),

where in the last case the other end of the "C is not hooked
toan L §,.

Apply analyticity in # ¢ and the inductive hypothesis
in the form of the following lemma (which will be proven
later).
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Lemma II1.4: For the constants K and K in the induc-
tive hypothesis (3.1)

1 7
‘(H'ﬁ o fis)€ X fﬂ)A B

i=1

e"(J’L) ZA \Xx1
Z,,

N A L A
<ty k(14 =) Ty fal

i=1

Xexp{c27|X[ +K(”J “ 7 + N 13.5+1)
+ K1+ VI, ||2 ;HILIEs-0}

1,B,!
where K ' depends on K but not on K.
This estimate is applied with the £;’s being the
L% (x,yys or C{"* L% (x, y)’s with x [and the ¢ in the
Al cpoir) integral ] held fixed. The || X e fusll |7 horms

that result for our three configurations are

I L3, )n_“—ufdxwm ol

fdx dx'|(CY* LA, I _ o1

X (s, CT 28 CCT V2 4 )3, X
X”(CVZL*)X )“—11’

fdx (erccq! XA s %) NC 2 L g )oxs WM — a7 -

The notation || f(x, -)|| _ ,7 indicates that the || || _,; norm
has been applied to f(x, y) viewed as a function of the variable
y with x held fixed.

Stage 3. Now that we have estimated the L ,’s we ana-
lyze the other factors in the term we started to consider in
stage 2. It is an integral with respect to di.c; r) of the inter-

action e ~ V%) multiplied by a function of ¢, the J’s, L,’s,
L %’s, and the 0"C’s. For notational convenience think of
this function as a graph having one vertex for each position
space integration variable x; or u; (the u’s being the position
of the interaction vertices downstairs) and one edge for each
8Ly, Ly (denoted ) or 87C (denoted ). In addi-
tion, some of the vertices may be multiplied by a J, (x) or
¢ "(x): . We are now primarily interested in the dependence
onJ and L. Each connected component of the graph contain-
ing a J or L must be of the following types (just classify all
strings of L,’s according to what their ends look like):

‘V__“'W ce e
; (there must be at least

2 Ly's by Wick ordering).
TypeIl: f; =~ ...—— f, (there must be at

least one 3" C), where f,(x) is one of J, (x), T, (x),
7 AICT? L %)%, 1) _ 7, and
7 2ICT* L 3 )%, )| _ 17 -

Type I

Type 111 (a):

Here there are one or more L, ’s with the ¢ belonging to
the last one. f'(x) is as in Type II.

Sx) s Lo B

Type HI(b): 7, | L3(d, M 13, 08 || L %6, Nl _ 17 -
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TypelV: ¢ o~mrm——, .,

Here there may be one or more Ly’s.

where I contains interaction vertices and d"C’s only and f'is
asin Type Il (i.e., aJ or L,, vertex).

They are dealt with as follows. We emphasize that this
is all done inside the du(¢ ) integral so that ¢ is fixed. We
lump all the usual cluster expansion decay factors into a
factor that we denote D. Also recall that we have suppresed
localization notations.

Type I % 3

[

—_——

=tr(Ly ICP =tr(CI? Ly C}2C1
<D||Ly|>,7 (by Lemma B.2).
Longer loops are handled similarly using
| €3 LC?||Lors <|| CY?LCY |lus <[ LI 13 -
Type II: ( f,, "CLy 3"C 3" CHIKD || C12fill: || Lyl - 17
«|| C1*follL: - Whenf(x) = C7 '2|| C{* L ¥ {x,- )|| _ ,7 we
have || C17 |- <I| L3~ 17<2|| L]l - 17 ; when
=T NV fllea<I Tell =17 -
Type III (a): | f3” CLy 3" CLy4 |
<D ” c 1/zf“L2 ” Lx” — 1,7"‘” Ly(g, )” -7
Type III (b): These are, for the time being, left in peace.

172 ay CC 1/2)2

Type IV: Except for ¢ L @, which is left in peace, type IV
components are estimated in the same manner as type III(b)
components.

Type V: Each connected component of type V is dealt with
by using Cauchy-Schwarz to separate off the interaction
vertices as follows:

B 172 172 172
C1" Xa, Ci
1
<@ s
pp 172 172
! Ci"Xa, Ci
[ 172 — 172 172
.. C XA C7 —_— e
X 172 — 172
[T, C7 Xda C:7 —
L. n

Those connected components in the second set of brackets
that donot haveany ¢ dependence have the structure of type
Ior Il components and are estimated as such. All other com-
ponents in the second set of brackets are of the form

[¢Lx aC.. Lx ¢ ]V2
<D ” Ly(g, )” -1 H ” Lx” -1,
where the IT contains precisely one factor for each L, in the
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interior of the original type V string.

Stage 4. Let us now stop to reorient ourselves, We first
used the inductive hypothesis and analyticity to bound that
part of our term localized in A \ X. This yielded an exponen-
tial factor

e exp [K(” ch “T,BJ + 1550
X 2 2 2 .
PRI NI L, + 1L Ba-a)]

a combinatoric factor (k + 1)!'/, and a factor of

K1+ J M 7k 2) for each factor L ¥ and 5L %,. The
du(@ )cpoir) 1ntegrand then consisted of the interaction,
some 1nteract10n vertices, some ¥ ,, vertices, some
| L %o, )| _ 7 [and || 8L %@, -)|| _ ,7] vertices, some .Z »’s
as Well as 6" C’s,J’s, and L ’s whose ¢ ’s had been attacked by
6 /6¢’s. Some of the latter have now been estimated out of
existence. Each 8"C that has been estimated has been re-
placed by its usual cluster expansion decay factors. Each J
and L that has been estimated has been replaced by || J || _ 3
or || L ]| _ 3. The rest of the term has been bounded by

f dulg) |Fi(8)| |Fe)l,

where F,(¢ ) contains the interaction e 'x , interaction ver-
tices, and C{"* y, , C1’* and 8"C propagators but no L ’s,
J’s,or$ ’sbelongingto L ’sorJ ’s(itis whatis left of the type V
components) and F,(¢ ) contains

Il Lx(d, )] _ 17’8 {from type III(a), IV, and V
components),

Jyd’s (type I1I{b) components),

&)L %@ ) -17’s  (type HI(b) components),

WLy ¢ (type IV components).

We simply use the Schwarz inequality to separate F, and F,.
The F, factor is of classic CE form and is estimated as such.
The F, factor is simply integrated as the Gaussian integral of
a polynomial.
It may be bounded by

(PY)(k Y 2(mY)
(P +20,+ Kk + ”1)!1/2
times a product containing one || J || _ , ; for each J¢ in F,
and one || L || 7 for each || Lx(¢, )|| _ 17
(6) L % (4, -)|| _ 17, and :6Lé: in F,. Note that we obtain L *-
type norms on L because Wick ordering rules out graphs
containing the factor Tr CL.

Stage 5. We have now bounded each term in the series
that results when the 3 of (3.4} is evaluated and localizations
are introduced. We have also shown how to control all sums
with the exceptions of those over X,I',n, p,k,7 and over the
J"C, ¥, and .¢ localizations. The sums over 7 and 8"C
localizations are controlled as in the standard CE (see Ref. 6,
Proposition 8.1 and Lemma 10.2). The sum over ¢ and .&
localizations are controlled by

Z”XA 1/2‘,” <|X|l/2”JX”711»
X

3 lles, €12 LC Ny

Z I Xa;
i jeX

€C’°(p+ k -+ n}

<X Ll g

C17LCT Ya s <X TN Lxll 217 -
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In effect we get a factor of | X |*/2 for each of the
ny+k, +p, + 2p, F and .£ localizations we introduced.
Altogether we have

[ 7. +67)ervl 20y, |
<3 1

XTn+prrzoniplk!
p!k!l/Zn!l/Z
(n, + Kk, + py + 2p, /2

{1l 4 NBLel 4 18 Ll 1z

el _ 5
XKI(I X —1.’)
* (1+ k)2

X (k)72 Jx” 7 NLAE )|l 2 0z

k
el
k 1/2

x[n LMum-,;K'(l +
Xexp{K (I 2 -+ 135-,)

% 2 2 2
RO 2L P+ 1L s}

SRR (PRSP N
x.r

ecso“r!""X' +n4p+k)—Kime)|I|

IX |(1/2)(n. + ki +p+2p)

+ K 8Lyl - a1+ I}
XLVl — sz + WL @)l - 07 + K| Laglt )| 12
X(1+ || cu_m)}

X{ 2 ()72 (4, '—IX”—I,T)"]
< 5, ez ]

3 ! ”J",c”_17 k
N L L e s }
g

Xexp{-
<Y e MR LN TN 1+ § 8Lkl -
Xx.r

T S TG )

LT (el 1+ 1| €% L(E) 7l
NL@l KN LDl st + 17,0 T}
xexp{ AT T ()l 1z

VD P e
+K<||J AP+ (Be )

AN R (D2

+I LG},

where we have used
Lemma IIL3(b) and |X |'/?<e'?'*! on the first
[ Tl - 110
Lemma I11.3(b) and |L | < € on the other || Jx|| _ 1,
(2.20) to perform the sum over 7,
A, € <] to perform the sum over p,
Lemma IT1.5 and 4,K ' € <} to perform the sum
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over p,

3 auntiniebiabilh (/P G P40 P1 s
X,.r

+ ” 5Lx”2— 1,7‘+ " L (t )x”z— 17
FICY ax LOCR + K20+ 1T I )
X (|| SLacl®- 17 + 1L (2 el 1)}

xexp{K [|l JWes +t NI s-s— 1T 1a0)
+ 1 125+4]

+ KA+ N ) TNL s + (| LI s
— 1L 1R.8.)
+ I Ll3s-01},
where we have used
Lemma IL.6 since we require
K>max{243% e, 24% e},
Lemma I11.6 since we require K>2¢(44 2 K '),

<2 ecnlxl — (172K (mo)| | [ Z “ Jﬂ||2— "
Xx.r

BeBnX

+ | Lg,. 11" 1.
BieBanl 1 2

PRI ) S el ]
— M B orByin
B*nX

x exp{---]
<3 ei-vmemar |5 da, B Jpl
x.r BeB *
+ K1+ |50 Y (elBra)
BB "
+ ela, B,) ”LB..B, 1~ l,l]
X expf-}

asin Lemma I1.2,

d
<‘_1; exp {K [" Jlﬁ.a,l + ]| J”T,B A B I Jlﬁ,a,l)

+ 17158+

+ K+ 1150 (VL a0 + U L 1s-s

N LIs) + N L3512} (3-6)

as in (2.6) if K>3y, e™X! ~ (/9K maIl gng

K>K"? 3, . e X|— (/K miT|
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Substituting (3.6) into (3.2) and applying the inductive hy-
pothesis (3.1) gives

K JBNT BN |
<exp[K || I3 + K (1 + [ 7115 | L 1[5,]
1
d
w [ e (KNI + 0017

=13+ 1 T138+1]

+R+ TN NLIEs + (L35
—NZlied+ I LIEs-,T}
<exp[K ([T, + KA+ | T|Z-DNLE~i]

=exp[(K+ K| LIG-)NTNz-s+KNLIG-]-

The theorem follows.
Lemma II1.2:

|e(,L )|<022|X| + 623[” J”%,B*,l —|I chllz ] .

Proof: We already know
[€A), ), = L]

<X | +es[I11es — 17 e} 0]
by (2.7) and Lemma I1.4. The terms 8(¢ ) L(t) . 5(¢),
(@), L% 5(¢) and (@), L(t)x(¢), are all the form
Sdxdy L(t)ix, y) filx) o ) with

[ fill 4 1<e3® 1 X |12

so that
de dy L (05 9) 0 ()| <esell L ()] -1 | <enlX |

The remaining terms are
trL(t)y &
=L@ xx St X Loy <L — o2 xSt xxll 17
< L(t)|| -7 ¢/ X |"* (by Corollary B.4b)
<e5lX |,
tr L(t)(S;—S) = (L(t), S — S)rxmy
<NLEN 1 157 =Sill 410
<c3|X| (by Corollary B.4c).

Lemma I11.3:
¥ 2
(a) ”ch ”BJ
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<”JXCHZ_7+C24K Z z z 9(7/’51)

Ye€|l) yeYn X BB *
X|| ch ”129“1” Xy Lp, s lI> 11 + a5 X |/K,
(b) ell - 1z <l Txle )] _ 17 + er)X |72
XN xx LE)C s + | L)l 17}
Proof:(a)J .(x)=1J .(x)—1x)

where
1) = [ dy 268 () L o (3)+ (G150, L b3

— [ @261 Lirax,. + GUMLE ()

SO
[
U ell2, + 20Tl Pl + 1718
by Lemma B.5(a).
But applying
| [arssimsn

<C40 z E e»d(Bz,aXmY) ”XYfBz“—lJ
Ye#(l) BB

(see Lemma I1.4) with £( y) = L ( y,x) C{”* gives

I [ @860 Ll

Bl

<ol [y 8@ Lizaxell
<ol [[ays@ 0D LizaCh?l

<cay X e MM yy Ly gl -

Y BeB*

<C422 2 Z e B, Bl xv Lp,5-

Y BeYrX B,eB ™t

- LI

Similarly

|| [@rx,c Lo

<C422 z Z e(ﬂl’ﬁz)“ LB*,B; XY”*IJ

Y BETNX BB+

and

[|[ @ GO L ||
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<ey

L dy (6 (91 L ()

‘_1,7

[ vz canLyival|

S

Y BEYX BB "

<C432 Z Z e(ﬁl’ﬁz)”XYthiﬂz,B< ||71j

Y Be¥YrX B.€B*

ey

Z e(ﬁl’BZ)” XYL xIBZ’B+ ” 17

N

This gives
200 N, ] Vs

K44 2 e( By Bz)” ch ”13,7 “ Xy LBZ,B ' ” -1

Y, B;

<C44K z e( Bl, BZ) H XY Lﬁz,B - sz 1, “ JXc ”;j
Y, B.. B:

+ cqs| X |/K.

Similarly, by Corollary B.4 and (2.5) | 7 || g7 <ca6/X |"/2/K '?

since we choose || L ||< e < 1/K /2.
(b) Ty =Jx — 1 (x),

where

I(x) = f dy {L %%, ) 5(6 (9)) +2(6 (31 L (£ )x(x, 1)}

=fdy{L:t, (e )+ 2L (1), )} 846 ()

+ 2(d (P71 L (t)x(x.p)
SO
I Txll -1
<”Jx” 1+ ” l” — 17
<[l vz + Czlell/Z
{IC¥? xx L) CI7les + 1L (e)xll a2}

by Corollary B.4 and (2.5).
Lemma I11.4:

n _ ,)?l c‘*':{jc
‘<H¢I(chfw)e X X> B
i=1 AKX
. Ieel 7Y
<K 1+ ——nm il;Il ”Xch;',B“_lj
X exp {027‘Xl +K (“ ch”z S+ “J“%.B*,I)

1,B,!

+E (VI 2y (NL el o+ L N5 ) } s

1,B,!

ec‘J’L) ZA X1

Zs

where K’ depends on X but not on K.
Proof: By the inductive hypothesis (3.1)

2 ol
( /XC+JXC> 1
e ANX]T

<exp[K T ol + RO+ 1T 2 1Ll ]

B,

<exp{(K +K Il Lxc ”27) [1 +eu K(| L ”%.13*,7
CUL I )] I el + BRI E 2, + 2essiX 1}

x¢"Y2,B]7
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by Lemma IT1.3 and (2.6) since we choose € such that
eK<1(<K )s

<exp((K+ K| L I +KILIEs-2 VI,

FRIL I, + 200X 1)

since we choose K such that (K + 1) Kc,, <K.Henceby Vita-
7 + 3’7

1i’s theorem (e X°y is analytic in X,c )i and the

lemma follows from Theorem A.1 [with X' = eK+2)eé

depending on K but not on K], Z, . x7/Z, ,<e*"* ! and the

estimate on c(J/,L ) given in Lemma IL.2. ]

Lemma II1.5:

< b \ V2 e
1 if a<l.
kgo ( + k 1/2) < 1— 24 € %

Proof:

od b k © k k b P
4= 5,502
kgoa ( k1?2 kéopzoa P/ \k 12

(binomial expansion)

) k bp
< a2
k=0p=0 k?

[since (1+ 1% (j;) 1 1k—p]

o k k bp

<k§=:o ;o (P')”2
oA 2ab
=3 3 (2 ( Y

b
w0 7<% ')1/2

where k=n+p,

_ 1 3 (Zab)" gz L
1 —2a p o(p|)1/2 2p/2

1 ( z (8a2b2)”)‘/2( i _1_)1/2

p=0 27
V2 2p 2
e4ab

1—2a ' ]

Lemma II1.6: K || Lx°”1 AN L )all® oz

<K[NLIRs+ UL 50 — I L1 50]
if K>24, é}.
Proof: Ay||L(t)yl>- 17+ K| L I

1,8,

<24, (2| Lo )% 17 + || L(B)Mllz—ll) +K|

<24,¢€ (t S

at least one §;=a

x““nﬂ

I Lo g 07+ | LMuw,)

+K|L |7

1,B]

(as in Lemma B.5c¢)
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<K (t S @BuN+er B Lg% z)
at least one Bi =a
+ K| L|f}s7 _
(if K>24,¢€})

<K{ILIEaz+tNLIRs-a =Lz}

IV. EXISTENCE OF THE SECOND LEGENDRE
TRANSFORM /'@

Our principal concern in this section is the inversion of
the map

(1)-(3)

defined in (1.9). We have

AL }x) ]

U LY= B{J,L}(y2)

G ]
(:8(¥d@:)se ~ (D (Y (S N ’
(4.1)

where (- ), = (- e *%)/(e/ +¥). The linear approxi-

mation to & near J = L = 0 is (note that .« {0,0} = [0,0])
@LF+2)
Jzi{JL} (:46: (/+-7)) (4.2)

It follows from the definition (1.4;) of : : that the kernel of
the integral operator mapping (J, L } to &/ [J,L } is

"&(‘x’ y’ z; x" y" z')
(¢ (x); 6 (x))

_ (Px) (V)o@ ]
(6(y); &(2); 6 (x)

AL X ASAT 1A N
4.3

{(Here the semicolons refer to connected expectations.) We
will prove in Lemma IV.1 that (4.3) defines a bounded linear
operator from #°_ =% _ (R*) & #*_,(R* onto

H .= 7 ,(R? @ 77 (R*) with bounded inverse and in
Lemma IV.2 that &/ maps #° _, 5 into #°, , and that o/ is
analyticinJJand L. In Theorem IV.3 we use the Contraction
Mapping Theorem to prove the invertibility of .« and the
existence of I"?,

Lemma IV.1: In €P (¢ ),, o of (4.3) defines a bounded
linear operator from #°_, to #°, , with a bounded inverse.

Proof: Since

(IJJ,,)-J?EJ,L J ="+ ZWF + 2

Cooper, Feldman, and Rosen 1911



it is a trivial consequence of Theorems II1.1 and A.1 that o/
is bounded as an operator from #°_, to . ,. When the
coupling constant 4 = 0,
o [C -1 0
- 2C'eC™!

is a bounded operator from #°, | to #°_,. Hence, to prove
the boundedness of & ~! it suffices to prove that the matrix
elements of (d /dA ).« , viewed as bilinear forms on 5 _ ,, are
bounded uniformly in A for A sufficiently small. If { £, } is
the partition of unity of Sec. II the cluster expansion implies

d s
4 ry ‘
l dA ¢ )

< z ("48”La.az”—l

a; By

X {e —d{a, B) —d{ay B) + e~ dia,, B;) ~d(ay Bl)} ” LB

sl L' -1 1 Lfl-1

since e~ 9@ B —di@nB) | o —diaiB) —diaw B) defines a
bounded operator on / %(Z*). The other matrix elements are
handled similarly. [ ]

Lemma IV.2:In€P (¢ ),, & {J,.L } of (4.1) is defined on
H 5= _,5(R*) 0 F_ sR" (for 6> O sufficiently
small) with range in ¥°__,. & is analytic in J and L.

Proof: This is a simple consequence of Theorem III.1.
The bounds

I(]lei+5f’>‘<(]1;(l>m (e]+1‘r"+}+.’é’>x/z

KIJI2  +RILI%

81l

<csoll Jill—1 €
and B o
'(«?1e/+f)|<< ipl ipl)l/z <e)'+if’+jf+.?)1/z

IS SV
<esol| Ly||_y e ! !

imply that (@ (x) e/ + ) is defined on

_1(R*) @ #~_, ;(R?) with image in 5, ,(R?) and that
< 6 (7) 6 (zye” * ) is defined on F_\(R?) o7 5(RY
with image in 57, | (R*). Since (e/ * %) is continuous in J
and L it is bounded away from zero on # _ | 5. Hence
& (J,L)is defined on #° _ | 5 with image a bounded subset of
# . 1. Hence analyticity in a suitably cutoff theory implies
the analyticity of & by Vitali’s theorem. n

Theorem IV.3: In€P (¢ ),, & has an inverse defined and
analyticon” , , 5 forsomed ' >0.I"? {A,B }isdefined and
analyticon ¥ , 5.

Proof: This a direct application of Theorem A.4 with

vV, =%_,,

V,=%,,,

F={JLY},

F=o/{JL}. n

Properties of G, o7, and I ? established in Ref. 1 in the
the sense of formal power series can now be simply estab-
lished in the sense of genuine functionals. For example, it is
no problem to introduce Dirichlet boundary conditions and
prove preservation of decoupling for quadratic sources [see
Eq. (4.3) of the first reference in Ref. 1 and Lemma II.11 of
the second ].
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Theorem IV.4: In an €P (¢ ), theory with zero Dirichlet
data on dX (where X is a union of Iattice squares in R?) .«
maps Vs, into Wy and o ~! maps W into V for some
5,6’ >0 where

Vs=(ULkH x®)
® H’_ | ;x(R*)| supt LCX XXUX X X*},
Ws=|4BH, 1,ax(R2) - _
® H*_ | ;¢ (RY)| supt BCX X XUX X X°} .
(Here supt means support in the sense of distributions.)
Proof: This a direct application of Theorem A.5 with
Viu={U,L)eH_ 1,ax(R2)
® H*_ | ;x(RY| J=0,supt LCX XxXUX°XX},
Wy = {(4.B)EH , | ox(R) o
@ H,  ;x (RY A=0,supt BCX XXUX°XX}. &

APPENDIX A: ANALYTICITY BOUNDS

We gather together here those properties of analytic
functions on Banach spaces that we use. The basic tool is the
Cauchy integral formula, which is valid in a Banach space
setting. (See Ref. 11).

Theorem A.1: Let .# be a complex valued function on a
vector space ¥ and let || - || be a seminorm on V. If

(a) # is analytic in the sense that  ( f + & g) is analytic
in § for any f, geV and

(b) l F(f)|< e5/V for all fe¥, then

b L7 (r+ 3 at) lumo

l‘l i=1

<e3"(1('”2n”2 +K |\ Sl e Ij A0

Proof: Integrating a; over the circle |a;| = p, (p; tobe
determined later) we have

T2 (r+ 3 as)la-e
B $e)

2y
ol s exp(K 1£+ 3 ati)
Ilfll) " explK (|1 + 2n)) £1| + n3p)]
hoosi = _P
(C Oosmg p’ ”f;”)

<(ﬁ llﬁll) ((Kn)"/2 4+ K || fI|17 X710+ 30
(choosing p = [(Kn)‘“ +K “f“]-l,.

N

[Jam Pt

Ilz:

|
{

Theorem A.2: Suppose ¥, are Banach spaces with
norms || ||; and ¥,5 = {ve¥;| | v|; <& }. Suppose (a) F:
V, s—V,is analytic in the sense that F (v + zw)is analyticin
z for all v + zweV, 5.

(b) F is uniformly bounded on ¥, ; with

| Zll= sup [|FW)fl.< . Let
V1.6
F o) =F ) — SLd Flzv) ,_o for n=12,-.
i =0 N dz’
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Then there exists a constant ¢, such that
(@) || F.wl.<esl F vl
(b) | F) — F wll<esll Fl N v —wll
(©) || F.v)

Proof: For any r with 0 <7 <8/ v||,

- F(§v)
T=- 2mL,-, 1%
.___‘_? 0__!_ 7(50)‘1
{zv)], - 2t D= £ s
G_ _”—l 1
Fa= 5[ Ty - 0§j+,]d§
-1 T e
27Ti-[|§|=r§"(§-1) d
Choosing r = 3 6/|| v||;, we have (since || v,||<5/3)
71 _ 1 (&l

F0llla< = 207 -
Il 2 e = T

<) 171l

establishing (a). Similarly, part (b) follows from the represen-
tation

?(v)—?(w)=Jqda—é-.?(w—i-a(v—w))

Flw+§ v —w)
Zm,[ fgl_rdg (E—a)

with r = 16/||v — w||;, and part (c) follows from part (b) and
the representation

F o) — F,(w) = 1 F(g) = F(éw) , dg
" " 2mi = EME—1)
with 7 = 18 /max(|jv]|,, ||w||,). [ |

Remark: 1t follows from Theorem A.2 that if ¥ satis-
fies the hypotheses of that theorem then the linear approxi-
mation defined by

Fo= 2 7)), _, (A1)

dz
1s a bounded linear operator from ¥, to V..
Corollary A.3: Under the hypotheses of Theorem A.2,
Z is also analytic in the sense of composition, i.e., if b (2):
D—V, 5 is analytic (where D is an open subset of C) then
F(b{(z)): DV, is analytic.
Proof: Fix any z,eD.
1
| F(b(zo+ Az2) — F (b (20))}
z
=~ { F(blzo) + Azb'(zp)) — F (b (2)))
1
to- { Flblzo + Az)) — F(b(20) + Azb (z,))} -

The first term converges as Az—0 by hypothesis so it suffices
to prove that the second converges to zero. However, by
Theorem A.2(b) the second term is bounded (for Az small
enough) by
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— Faw)la<e3 |l F ol + el =" o — wll,,

for all veV, 4,4,
for all v,weV, 4,

for all v,weV, s, and n =12,

—
oQ m l| b(zo + Az) — b(zo) — Azb (zo)|} -

However, b (z, + Az) — b (z,) — Azb '(2) = ¥ ,(4z) for

% (2) = bz, + z) so that

1b(zo +A4)+ blzo) — 4zb "(zo)]l,<0O(1)|4z|* by Theorem

A.2(c).

Theorem A.4: Let %, V,,V, satisfy the hypotheses of
Theorem A.2 and define F by (Al). If F has a bounded in-
verse from ¥, to ¥V, then # has an inverse defined on
F(0) + V¥, for some €> 0 and this inverse is analytic and
uniformly bounded.

Proof- We may without loss of generality consider the
case .7 (0) = 0. To reformulate this problem as a standard
Contraction Mapping Theorem problem we write

w=F @)= Fv+ F (v
and then

v=F"'w—F ' F =9, (A2)
We wish to show that, for a suitable choice of § ' and ¢, Eq.
(A2) has, for each weW,, a unique solutionve V', ;. We first

note that &, maps ¥, into itself if e<8'/2|| F ~'|| and
. [6 1
&'<min [— , — ] )
4 250 FNNF
since then
I & ooll<l FH [l + 5l F 0l ] <&

by Theorem A.2. To verify that &, (v) is a strict contraction
we observe that for any v,v'ef’,, 5
| 9wl) = F, 0,
=| P (F ) — F0N
<[[F~'l el ?II(IIle + [l — vl
<o — vy,
provided we choose

&' <min { —5—, 1 ] .
10 4 | Z1 F7I
The Contraction Mapping Theorem now implies that
the sequence of functions

1%w) =F ~'w,

[Pw) =& ,(1"~ w)
converges (uniformly for weV, ) as n tends to o and that
the limit is an inverse for % . Since /® and ¢, are both
analytic (in the sense of Corollary A.3) so are all the /*""s and
hence, by the Weierstrass Limit Theorem, so is the limit.
Since the range of &, is contained in ¥, 5., the inverse is
clearly uniformly bounded. [ ]

The final theorem of this section determines conditions
which ensure that if a mapping between Hilbert spaces maps
one subspace into a second subspace then the inverse maps
the second back into the first. We apply this theorem to the
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question of decoupling quadratic sources in Theorem IV .4.
This decoupling is crucial for the analysis of irreducibility
properties. See Refs. 1 and 3.

Theorem A.5: Let ¥V, V,,, W, and W,, be Hilbert
spaces. If

(@) F: (Vs ® Vyy)s—Ws @ W,, is analytic,

(b) F is uniformly bounded on (V5 & V,,), and F de-
fined by (A1) has a bounded inverse F ~': W5 o W,,
d VS & VM ’

{¢) F: Vss—Ws and F | V; has a bounded inverse
from W; to Vg, then the inverse function % ~! maps
F(0) + W into ¥ for some € > 0.

Proof: Choose 6 sufficiently small that
F~' %, 1 (Vs @ Vy)s is a strict contraction (see Theorem
A.4). Thenby Theorem A.4 & =% | ¥, hasaninverseon
F(0) + Ws, ., withrangein Vs and ¥ | (V5@ V),)s hasan
inverse on #(0) + (W5 @ W,,)... Choose € = min(e,, ¢,).
Then &' NF(0)+ Wy ) =F ' | (F(0) + W .)since
Z is one-to-one on (Vs & Vy,)5 .
[F)=F0)+ Fv+F ' F,v)withF ~.F ,astrictcon-
traction.] Hence ¥ ~' maps Z(0) + W; . into V. |

APPENDIX B: ESTIMATES INVOLVING DIRICHLET B.C.

In this Appendix we collect together various facts and
estimates about Dirichlet B.C. that we have used in the main
part of the paper. As in Secs. II and III we consider the
Laplacian 4, with Dirichlet B.C. on a finite set / of lattice
bonds and welet C, = ( — 4, + m}) ™ ! be the corresponding
covarianceand || f|| .\, = (=4, + 1)*"2 ]| .». By defin-
ition (see Ref. 12), ( £, C ! g) is the form closure of the form

(£C7'e) = [ [(TV9)+m3 Je] o

restricted to C £(R?\/). We state this as

Lemma B.1: If f and g belong to the form domain
Q(C ')thenf,geQ(C~"and (£, C,; 'g) =(f£,C " 'g).

Let 3"C be a multiple difference covariance arising in
the cluster expansion. [See (8.1) of Ref. 6; here y is a finite set
of bonds.] 3"C can be written as a convex combination of
Cr’s. Ifall of these I ’s contain /, we say that 3”C has Dirich-
let B.C. on /. In Lemma 2.3 of Ref. 5 Glimm and Jaffe estab-
lished the operator bound

\c-'2accC —”2HL’ma)—>L’443)

<me— [¥l74 Kyy)e~ (1/2)mq d{a, ﬁ,r)’ (B1)
where 4, and 4, are two unit squares,
d(a, B,y) = supy, {d(4,,b)+d (b, 4,)}, and K(y) is the
usual CE quantity defined in Proposition 8.1 of Ref. 6. We

now extend this bound to the case of Dirichlet B.C.:
Lemma B.2: If 3C has Dirichlet B.C. on /, then

1 172
I ci2acc, lzxagr-rap
<m8.o —|ri7d K6(7/, e —V/4modia. BY)

Proof: Since C [ /2 3YC C [ '/* is a bounded operator,
dC C; *maps L?into Q(C; ') and so by Lemma B.1

([CT2FCC2g)=(C/*£C'FCCg)

—(CI*fCraCC 7).
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Similarly (C ~*/2 3"C)* maps L 2 into Q(C ;') so that

(fCr2aCcc g
— (C—]/2 Cll/2f; (C—IIZ aYCC—l/Z)(C—IIZ C}/Z)g) .

(B2)
The lemma now follows from (B1), (B2), and the bound
M c'2c }/ZHL Y4 gL Ag) <G5y €7 Smola ~B1/4 (B3)

To establish (B3)it suffices to consider o and 3 far apartsince
C ~Y2 C}*is a bounded operator on L 2. Now for x#y

(€2 CYx, y)
=(C'Y = 4+ m}) C1x,y)

= (€12 €)= (51 (1) i),

i i

(B3) now follows from the representation

cri=["(~a+m +§>-‘§—”2d;/

J. (1 +§)—l§ —l/2d§
0
and kernel estimates such as (Ref. 13 Lemma VI.8)

ad
"E(—A1+m3+§)_‘

LAy x4y

2
— (1/2m§ + £V e - a'|
<Csz 0

(valid when 4, and 4, are not adjacent.)
Corollary B.3: If supt f; CA, and f,eD (C}’?)

(f1r C112) <csye™ (/2414042 Al = wr 1l -

Proof: 1t suffices to consider f;,eC 7(4,) with
d{4d,, 4,)>1. Then

(fuCh)
= (fu { Cz - CbaA. - CluaA, + C&J&A,u&d,}fz)
— (C;/zfl; Cl_ 1/2 azC CI— 172 Cll/2f2> ,

where 8°C=C; — Cy51, — Cisa, + Crasaa,- In the path
integral representation of 3°C the integral is over paths that
avoid / but pass through both dA, and d4,. Hence as in
Lemma B.2 C;~ /2 8*C C,;~* is a bounded operator from
L?to L? with norm at most ¢g; e ~ (/24194944 u

Corollary B.4: In the notation of Sec. II (in particular
1= Max)

(@) [[{# x)); — (b (xD1ll + 11 <638|X|1/2§
(0) || xy¥){ (x)s B (2))1) — Colxs Y| 4 1 <3| Y |72

if Y is a finite union of lattice squares with dYCJ;

(©) [1<& x); @ (¥ — Cilx, y) — (¢ (x}; & (¥))7
+ Glx, }’)” + 1,1<C38) X | vz,

Proof: Let C(0) = oC; + (1 — 0)C; and 3C
=(d /do)C (0) = C, — C;. Let { - ), denote the correspond-
ing interpolating expectation [with the Wick ordering of the
interaction matched to C ().
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{a) As in Lemma II.4
(@)} — (S x)

_(, d
- f do-Z (4 (D,

1
d '
= f do — Clojx, yV' (3,
0 do
(repeated arguments are integrated over)
1
- f do 3C(x, Y(V'()),
0

+ C(o)x, YV "(») IC (y2) V'(2))
+ C (o), yXV'(y); V'(2) IC(2,2') V' (Z')), -
Now

|| [octnvim.a||
=(V'), acc;‘aC(V‘ia

< Y IV Dollea,

4,454,

X1 9C € lLuaprragl €7 OC vy ra,
X H<VI(')>0"L21A,)

<c20 z e——d(A.,A;)e—-d(d,,A,)e—dld,,&\’)

AI' AZ’ AJ
<Csa Z e WA Less Z 1=css]X |
A, 8CX ATx

The remaining terms are estimated similarly. In the last term
observe that the cluster expansion implies a decay in min-
d(y. 2, d(y, 2)

(b) The crucial point here is that the singular term in the
perturbation theory expansion of (¢ (x); ¢ ( »)), [namely
C,(x, y), which is not locally in H * '] is cancelled explicitly:
By integration by parts
(@ x) 8 (¥) — Cilx, p)

= Cl(x’ Z)( V”(z»l C](Z, y)

+ Cilx, z(V'(2); V'(2'), Cilz', y)
which obeys the desired bound by standard arguments.

(c) The proof is similar to that of (a) and (b) and is based

on the formula

(6 6 (D)1 — Citx, 3) — (B ) 6 (31 + Cotx, )
= [0 (@i 13, ~ Clol}
0 a

- f dadi {C o)z, 24V “(2)),, Clo)z, »)
0 g

+ Clo)ix, 2) (V'(z); V'(2)), Clo)2, »)} -
]

Asin Sec. II we let { {;| BeZ?} be a C & partition of
unity invariant under lattice translations, J; = {5 J, J;
=355 Jp ela,B)=e, e 1*~P; we define | J ||, 5.,
[| 2.5, and || J ||, by Definitions I1.3, IL.5, and (2.10),
respectively.

Lemma B.5:Let |J | 5, byanyoneof || J ||\, g1 [| S [|2.5: »
or || J||s; . Then

{a) | |z, is a seminorm,
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®) | Jals: <[5 !B',I if BCB',

| I |5 <| Jplps 121,

(©) |/l = 1s <ez| J5|g, for some universal constant
e2> 1’

(d) |J5lss <e3 || 7|l _ 1, for some universal constant
e;.

Proof: (a) is obvious.

(b) The first inequality is obvious since the sum defining
the right-hand side contains the sum defining the left-hand
side. The second inequality is a consequence of

gl — e <l Tl - e
and the decoupling property (2.8}.
(©) 150~ Y
=12l = 3 (JsCp)
BeB B.Feh
(with m, replaced by 1)

<Cs6 2 1 gl - 1. e~ WAIBEN | Tg || Z 1
B.B'eB

(Corollary B.3)

— LI

<Csy Z I Is1% v
beB

[since e~"?4(£.8) is a bounded operation on /*Z?)]
<€ | Jglh -

{d) The inequality | J3 |3, < css 25 || J5]|% 1 follows
directly from the definitions. We now claim that (see Ref. 5)

z | Tl s <eso N I% s -
B

We offer a more complete proof than that given for the case
I = ¢ in Ref. 5.

2 1p01% 1
B

=Y (&sJ, Ci{sJ) (withm,replaced by 1)
B

=2 ( C,VZJ, CI— 1/2;3 lof §,9 CI— 172 C]l/ZJ)
B

Wxa €Il llxsa €785 C1% xa')

<3

A,4°,47
B

X(¥a CIVZ §3 Cr I/ZXA')”op
XN xa- C12J Lz -
It suffices to show
lxa Ci *és CII/ZXA'“op
<C6Oevd(4,4'i(e—d(4,3)+e—d(ﬁ,d'i).
But
Xa € 1/2;5 C}/ZXA' =Xa Czl/z C:_lgs Cfl/zXA'
=xs CVA—A4+1)53C17 x4
(by Lemma B.1)

=Xa C17 8 C1"Xa-
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a d
172 Y ~Zc?,
i=0 ay,. ay I Xa

. d]1 d
+ C\2 [ - ] CV2y .
z Xa €1 |65 ‘—ayi __3}1,- " Xa

The desired bound now follows from standard estimates on
C % and (3/dy;) C }"*(x, y) (for x and y separated). (See

Lemma B.2.) ]
The same results hold for the analogous seminorms on
Lx,p)

Lemma B.6: Let | L |5, by any one of
IlZ 1825 | L l|2,845 OF || L || 5, as defined in the first para-
graph of Theorem III.1. Then

(a) | |5, is a seminorm,

() |Lp|s, <|L5'|B',,.ifBCB’,
ILB IB,I <ILB IB,I' lfIDII,

(€) ILgll—1s <€ |Lglsy»

(d) |Lglps <esll Lgfl _ 1, -
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Nonperturbative confinement in quantum chromodynamics. Il. Mandelstam’s
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It is shown that Mandelstam’s approximate equation for the gluon propagator has a solution with
very singular infrared behavior. At the origin in the squared momentum variable there are a
double pole, a branch-point, and an accumulation of complex first-sheet branch-points. Although
the double pole is suggestive of confinement, the existence of acausal complex singularities
indicates a deficiency in this first step of the approximation scheme.

PACS numbers: 11.10.Np

1. INTRODUCTION

This paper is an extension of a previous study' of non-
perturbative confinement in quarkless quantum chromo-
dynamics, to which we shall refer as I. We continue to ex-
plore the hypotheses that (1) it is an indication of
confinement for the gluon propagator to be more singular
than k —2 at small k 2, where k is the gluon four-momentum,
and (2) its infrared singularity structure can be properly un-
derstood in truncated Dyson-Schwinger (DS) equations. In I
we considered a truncated DS equation for the gluon propa-
gator proposed by Mandelstam.? Mandelstam worked in the
Landau gauge, ignored four-gluon coupling altogether, and
moreover he replaced the three-gluon vertex and one of the
two internal gluon propagators by bare values. He asserted
that the propagator from such a truncated system would
behave as k ~* at small k£ 2. We analyzed a somewhat simpli-
fied version of Mandelstam’s equation and demonstrated (1)
that the gluon propagator did have that infrared behavior,
and (2) that it also acquired branch-points at complex k 2 in
the vicinity of the origin. In fact, such complex branch-
points are inconsistent with causality, and causality was
used to justify Wick rotation of the internal momentum vari-
able in the truncated DS equation..

It was not clear from I whether the occurrence of un-
physical branch-points in the simplified Mandelstam equa-
tion was an artifact of additional, somewhat unmotivated
assumptions, or whether the full Mandelstam equation [Eq.
(2.1) below] would have similar behavior. Here it is shown
that solutions of the full Mandelstam equation (however
without ghost propagators) have both features of the ap-
proximate equation. Namely, the gluon propagator behaves
as k ~* at asymptotically small k 2, except near the negative
real axis, along which complex branch-points seem to
accumulate.

Mandelstam justified replacement of the three-gluon
vertex function, I" ( p,g,7) with p + g + r = 0, and one gluon
propagator, 4 (g), by their bare values through the Slavnov—

* Permanent address: Illinois Institute of Technology, Chicago, Hiinois
60616.
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Taylor identity for the longitudinal part of the triple-gluon
vertex. However, that identity does not require the longitu-
dinal partof I' to vanish as g and  separately approach zero,*
so that the cancellation described by Mandelstam is incom-
plete. Since exact cancellation of propagator and vertex
function does not follow from basic principles, the equation
obtained by Mandelstam might be expected to be somewhat
unphysical.

In contrast to the situation in quantum electrodynam-
ics, the vacuum polarization tensor in quantum chromodyn-
amics is a gauge-dependent entity. Consequently, the behav-
ior of the gluon propagator at small k 2 does not provide
direct evidence of confinement. Indeed, a second-order pole
in the gluon propagator can be removed by a singular gauge
transformation. Our expectation is that the gauge transfor-
mation, while removing the pole, will preserve the general
feature that propagation of low-frequency modes of the
gluon field is suppressed, as is indicative of confinement.

An alternative treatment of DS esquations in QCD has
been proposed and examined by Baker et al.,* and further
simplified by Schoenmaker.® In this work, an axial gauge is
used, so that ghost fields are uncoupled, and may thus be
neglected. The basic idea is an ansatz for the longitudinal
part of the three-gluon vertex, in terms of the full propaga-
tor, such that the vertex Slavnov-Taylor identity is satisfied.
Within this framework, it is possible to project out the four-
gluon terms, so that a closed equation for the propagator
results. This has a more complicated nonlinear structure
than that of Mandelstam’s equation; but there is some reason
to hope that the approximation of Baker er al. is better than
that of Mandelstam.

Baker et al. demonstrate that a double pole is a consis-
tent infrared ansatz; and they obtain an approximate nu-
merical solution at all energies. However, this work by no
means demonstrates that a solution actually exists, much
less that it has the required infrared behavior. The point is
not merely academic, for Delbourgo has shown that his ele-
gant spectral ansatz yields a nonconfining infrared behav-
ior,® a result that has been confirmed by Khelashvili.” Del-
bourgo also used an axial gauge, and the spectral ansazz for
the three-gluon vertex is motivated by means of the Slavnov-
Taylor (ST) identity. Since it is not expected that a transverse
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part of the gluon vertex dominates the infrared, the conflict-
ing claims regarding the behavior of the two approxima-
tions, which have the same longitudinal part (in the sense
that they are both consistent with the vertex ST identity), is
suspect. A careful mathematical treatment of both equations
is required, and we hope to provide this in the future.

In Sec. 2 we describe a consistent regularization proce-
dure for Mandelstam’s equation [Eq. {2.1) below]. It is re-
duced to a nonlinear integral equation suitable for analysis
[Eq. (2.16)]. The existence of a solution of (2.16), which is
analytic in k ?in a heart-shaped region not including the neg-
ative real axis, is established in Sec. 3. A numerical solution
for the gluon propagator and procedures for stable analytic
continuation are described in Sec. 4. In particular, the exis-
tence of unphysical complex branch-points is established,
and they are located with precision. The numerical work
includes an expansion of the gluon propagator at small spa-
celike momenta, which is described in Sec. 4 and shown in
the Appendix to be an asymptotic expansion.

2. MANDELSTAM’S GLUON EQUATION

In I, we sketched Mandelstam’s derivation of an inte-
gral equation for the unknown function, F,(x). Now Eq. (2.9)
of I, with the pole term removed, can be rewritten

X

— = 1-C+Dx+¢
A + xFi(x) d

XJ;" dy{25(1 _5)_ % (% _ i’_z)] ﬁ}(}_y)_

(2.1)

where g is proportional to the SU(3) coupling constant, and
where

“d
c=125¢ j Yr (), (2.2)
oy
and
7 “d
D=—g2f Y E (). 2.3)
2 oy

In I, the further approximation was made of dropping the ]
terms above, and it was possible then to prove the existence
of a solution, F,{x), that behaves like x as x—0 (except along
the negative real direction). In this paper we improve the
treatment by retaining all the above terms.

The first constraint is that, for consistency, C must be
equal to unity; but the integral in (2.2) is ultraviolet diver-
gent, and we may regard C = 1 as part of the renormaliza-
tion prescription, as we did in I. The ansatz F(x) ~x as x—0
is no longer consistent, because of the ] terms, and must be
replaced by F,(x) ~x%, a > 1. However, the left-hand side of
{2.1) still goes linearly to zero, and this imposes the con-
straint D = 1/A. In fact, having removed 1 — C, we can also
scale 4 and g away by the transformations

x—Agx, y—Agy, Fixl>g™ Filx), (2.4)
so that
X 2 3
6= —5 [[arps(1-2) -1 (2 -5)| A,
X" Jo x 2 y x y
(2.5)
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where

F(x)
x + x*F(x)’
is a new unknown function, as in Sec. 3 of I. To this equation

must be added the global constraint, corresponding to
D=1/4, viz,,

%L j—};Fl(y) =1 2.7)

It is remarkable that this integral will turn out to be ultravio-
let and infrared convergent. This is a constraint that was
missing in the more approximate equation of I; but we shall
find that it can be met.

For infrared convergence in (2.5), we would like

F\x)~yx?~1, (2.8)
as x—0, with 8> 2. Then G (x), on the left-hand side of (2.5),
behaves like x® ~2, while the right-hand side behaves in gen-

eral like x* ~* 4+ O (x® ~?). This is inconsistent unless the co-
efficient of x#~* vanishes; fortunately this happens if

B=(31/6)"/?=2.273 ..., (2.9)

a result found by Mandelstam. The value of the coefficient
in (2.8) can only be obtained numerically, with the help of the
global condition (2.7), as we shall see in Sec. 4.

Theintegral equation (2.5) can be reduced to the nonlin-
ear differential equation

Gx)= (2.6)

6xF |’ 4 18xF; —25F = — Zl_ X*x*Gy’1",  (2.10)
X
with
xG (x)
Fix)=—"—+—. 2.11
W= e 11

The independent solutions of the homogeneous equation
(the left-hand side equal to zero), are x ~ ' %, 50 (2.10) can be
resolved in terms of them by the method of variation of para-
meters. The result is

Fix)=yx?"'— 72,16x
<[ 2] - (&) Jvemrr,

(2.12)

where the correct boundary condition (2.8) is assured by the
first term. The differentiations under the integral in (2.12)
can be removed by four partial integrations, and we find

X'G" 490G + (36 + )G =3, 213)
where
2032
T =362 - 2 G 3 g

1-x*Gix) 12

B 7;;; f: b [(‘;C‘)B - (%)8] »G(y). (2.14)

Here F; has been eliminated in favor of G, by means of (2.11);
this gives rise to the nonlinear term in (2.14). The left-hand
side of (2.13) comes from the boundary terms in the partial
integrations, except that part of the term proportional to x*G
has been transferred to the right-hand side [namely the term
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— $#%*G (x) in (2.14)]. The reason for this transposition is as
in I, namely that (2.13) can now be resolved in terms of ele-
mentary functions, and the linear term in (2.14) will cause no
trouble for small x, thanks to the factor x*.

The homogeneous equation (2.13) {i.e., with the right-
hand side equal to zero) is solved by the functions

x~ " 2exp[ + 6i/x}; (2.15)

50 (2.13) can be resolved by variation of parameters, the re-
sult being

Gix)= —jx~7? J: dyy3/2sin(% - %)2 (y). (2.16)

No homogeneous terms may be added. In the next section,
we will show that a locally unique solution of (2.16) exists,
that is analytic in a certain domain of the x plane, much asin
L

3. EXISTENCE PROOF

To show that Eq. (2.16) has a solution, it is convenient to
make these transformations of variables:

=% ce=om e=2-2%. (3.1)
x y X
Equation (2.16) takes the form
G(€)=P(GE=)
—em [T o S“f)l,/z € +£), (32)
where
ety (g Smb 33
re)=¢76 % | T 3.3
and
--= ___3662_@2__
2() ) ST

BTG

We shall establish that (3.2) has a solution G (¢ ) which is ana-
lytic in £ in the domain &, where

l§]>p7", Reé>0

—1
D(pb)=1Im¢| —p >tand, Ref<O["
IReg |

The positive parameters p and 6 are to be fixed later. The
domain & is the same as that considered in I in connection
with proof of existence of a solution of an equation very simi-
lar to (3.2). The analysis here is quite parallel to that present-
edin L

Let % be the Banach space of functions analytic in &,
with the supremum norm

(3.5)

A= gggglf(ﬂl- (3.6)
Define the ball .7 in the Banach space % by
= {G|GeZ and |G ||<b }. (3.7)

The domain & has the feature that if £ lies in &, then so
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does & + ¢, for 0. Furthermore, if the constraint
360 <1 (3.8)

issatisfied, the function 2 (£ + £ )isanalyticin{ throughout
Z when {30, and the integral in (3.2) converges uniformly
to a function analytic in 2. The inhomogeneous term in
{3.2), f£ ), can be shown by an analysis similar to that of
Appendix B of I to be analytic in the £ plane cut along the
negative real axis. Consequently, P (G,£ )isanalyticfor £in &
if (3.8) is met.

We shall show that P maps the ball into itself and is a
contraction mapping, if suitable constraints are placed upon
p, 6, and b. The Banach contraction mapping theorem may
then be applied to give a solution of the equation

which is unique in the ball % of % .
By using condition (3.8), one obtains the following

bound upon £2 (¢ ) for {2
5 175 3662
|2 §)I<(—+36(16 Bz))b+1_36p2b_1(p,b).
(3.10)

One may obtain the following bound directly from (3.3):

| £ N~ 4
Gor et

where |argé | <7 — €. Using (3.10) and (3.11) in (3.2), we
obtain

|P(G,£)|<C. + pJ (bp)D,, (3.12)
where
= dw
D, = fo o (3.13)

Consequently, the ball .% is mapped into itself by P if

C, <b, (3.14)
and
p< i (3.15)
J(bp)D,
The contractivity condition is
IP(G)) — P(G,)||<K||G, — G|, (3.16)

with X less than 1, for any functions G, and G, in the ball .%.
To obtain an estimate on the difference of the nonlinear
terms in P, it is convenient to introduce

2
2(GE)= -———-—366 (fl :
—(36/8°G(£)
The derivative of this algebraic function with respect to Gis
well-defined, and for G in .% and ¢ in & it is subject to the
bound

’ 1085

— 36bp?%

One may then use this constraint, along with the mean value
theorem, to obtain

2(Gug)—2

(3.17)

——— =L (byp). (3.18)

(G2 )<L (bp)|Gi{E) — Go§)]. (3.19)
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FIG. 1. The cardioid region to which the Banach theorem applies. The
points outside this region are the locations of branch-points determined as
described in Sec. 4.

Using (3.19) and making more direct estimates of the other
terms in P, one obtains an estimate of the form (3.16), with

5 175
K= [L b _—+ ———-——] D,. 3.20
pILbp) + TR E (3.20)
Consequently, the mapping is contractive if
K<l (3.21)

The conditions for a contraction mapping, (3.8), (3.15),
and (3.21), may simultaneously be met for any number €
between 0 and 7/2. Because the integrals C, and D, depend
upon €,the maximal values of the parameters p, &, and b also
depend upon it. The function G (£ ), obtained as the locally
unique fixed point of Eq. (3.2) in each of the domains Z (p,€),
is analytic in £ in the union of these domains. We have ex-
tended this fixed-point proof to a set of domains in the right-
half x plane, which are sectors of varying radius and opening
angle that are symmetric about the real axis. The full domain
of analyticity in the variable x, which is obtained numerical-
ly as the union of the regions in which conditions (3.8), (3.15),
and (3.21) are met, is shown in Fig. 1. The parameter y is
chosen so that condition (2.7) is met [see Eq. (4.10) below].

4. NUMERICAL ANALYSIS

We have shown that the integral equation (2.16) has a
solution G {x) which is bounded and analytic in the heart-
shaped domain 2, with the asymptote yx” 2 as x ap-
proaches zero within &. We wish to obtain this solution
numerically, and thereby determine the behavior of G (x) out-
side the domain & . Equation (2.16} is a well-behaved func-
tional equation for G—at least so long as x is in Z—but it
seems impractical to attempt a direct global solution of
{2.16). Instead, we have chosen to determine G {x} in some
domain of small x from (2.16), and then to get G elsewhere by
solving a differential equation such as (2.10), which is equiva-
lent to (2.16).

We obtain G (x) at small x within & by developing an
asymptotic series for x in that region. Although we justify
the asymptotic series by analysis of Eq. (2.16), the series itself
is most easily developed from the integro-differential system
(2.13) and (2.14). One may make a consistent expansion in
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powers of both x2 and x? as follows:

o0

Gx)= E i ajnx.iﬂ+2n—4_

j=1ln=1

4.1)

The coefficient of the leading term is a,, = ¥, and the higher-
order terms may be determined recursively from these
formulas:

@ = —ya_,, fory>] {4.2)
a,= —¢,_, forn>1l; 4.3)
Gin = —V8i_1n —Cin-1
j—1n—1
+ 3 > aue_j,_ o forjn>1 (4.9)
F=1n=1
We have used the array c;, :
a'n . 1
G = 20+ B+ 42 ‘ (45)

6 36 2n+jBY—B?
We show in the Appendix that (4.1) is indeed an asymptotic
series for G (x) by truncating it to include only powers of x not
greater than M. Our estimate for the difference between G (x)
and the truncated series depends upon M, as well as the loca-
tion of the point x (its amplitude and phase) in the domain
2. In practice, for a given x, we truncate the series (4.1) so
that the computed values of G (x,) and its first four deriva-
tives give least discrepancy in the fourth-order differential
equation (2.10). We can achieve single-precision accuracy
for G (x) (order 10~ '%) on the CDC Cyber 160/170 computer
in Groningen at small x in & with M of order 20; for
y = 0.0608 we can use the series on the real x axis out to
about 0.13, and less far in complex directions. The values of
G and its first three derivatives are used as a starting point for
solution of (2.10).

Let us consider the solution of the fourth-order nonlin-
ear differential equation (2.10) from starting values of G and
its first three derivatives at a point x,50. If the values are
such that x2 G (x,)# 1, the fourth derivative can be deter-
mined from (2.10). Furthermore, from the general theory of
differential equations involving analytic functions of both
the dependent and independent variables,®? one expects
there to be a locally unique solution G (x) corresponding to
these initial data, which is analytic in x in some neighbor-
hood of x,. Of course, the solutions that develop from differ-
ent initial data bear no simple relation to one another, be-
cause of the nonlinearity in G. The singularities of a solution
of (2.10) may be of two types: (1) “fixed singularities” at
x =0and x = «, and (2) “movable singularities” at points
for which

x*G(x)=1. (4.6)

The point x = 0 is an irregular singular point of the differen-
tial equation, and one expects G {x) to have an essential singu-
larity at that point, with possibly nontrivial Riemann sheet
structure as well. The locations of the movable singularities
depend upon the initial data. There is no simple prescription
to determine the locations of these movable singularities
from the initial data; in general one must resort to numerical
analysis.
It is consistent with the integro-differential system

(2.13) and (2.14), and therefore with (2.10), for G (x) to have
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the following asymptotic form near a branch point at x = d,
at which (4. 6} is satisﬁed-
—d)
T e IS

Gx )~
where d, is a constant. With this asymptotxc form, for which
G '(x) diverges logarithmically as x approaches d, the most
singular terms in the system cancel near x = 4. This diver-
gence of G’ and the higher derivatives in the vicinity of the
branch points makes it difficult to locate them numerically
by direct solution of (4.6).

The solution of (2.16) described in Sec. 3 is one of an
infinite number of solutions of the differential equation
{2.10). Furthermore, we expect from the general theory of
analytic differential equations that it is the only solution of
(2.10) with the asymptote yx?~* at small positive x, so that
all other solutions are so singular as to be inconsistent with
the original integral equation (2.5) in that region. In the
fixed-point proof for existence of a solution G (x), analytic in
&, it was important to ensure that condition (4.6) was not
met anywhere in &, so that the movable singularities are
avoided in that domain.

We shall construct the function G (x) and effect its ana-
lytic continuation outside & by numerical means. One
would hope for physical reasons that G (x), being related to
the full gluon propagator in Mandelstam’s truncation of Dy-
son-Schwinger equations in quantum chromodynamics,
would turn out to be analytic on the physical sheet of the cut
x plane, with a branch-cut lying only along the negative real
x axis, and bounded at infinity in that plane. However, we
have no analytical control over the behavior of G outside &,
and must resort to numerical procedures to determine its
analytic structure. The real constant ¥ must be chosen so
that the integral condition (2.7) is met by F,(x,¥,G ). Strictly
speaking, since G is not guaranteed by our analysis to have a
continuation to the full positive real axis, the integral (2.7)
need not even exist. Our procedure for choosing ¥ requires
numerical work for its justification.

With initial data obtained from the asymptotic series
(4.1), the differential equation (2.10) is integrated from a
starting point x, by an explicit fourth-order Runge-Kutta
routine, in which it is considered as four coupled first-order
differential equationsfor G,G’,G ",and G '"’. For adiscussion
of this standard procedure, see Refs. 10 and 11. The step
length Ax is changed with changing x to maintain accuracy.
In particular, it is necessary to take rather small steps when x
is small, or when x?G (x) is close to + 1. When one is near
x = 0, or near a movable singularity, or both, instabilities are
apt to creep in. There may be no immediate suggestion of
inaccuracy, since cumulative errors are equivalent to
changes in the values of G and its first three derivatives at the
starting point. We have tested the integration routine to be
certain that the values of G (x) are indeed path-independent
and stable away from the fixed and movable singularities.

The integral (2.7) is computed over small x, 0<x<0.1,
by using the asymptotic series (4.1). For x»0.1 we determine
the integral

(x—d)[ln

=L [2_6W0 (4.8)
20 y 1-3*G(y)’ '
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by solving the equivalent differential equation

A _ 1 G «9)
dx 2 1—x%G(x)
The differential equation (4.9) for I (x) is incorporated in the
Runge-Kutta integration procedure to determine G (x). The
constraint (2.7), I (e0) = 1, is satisfied by choosing the param-
eter y to be

¥ = 0.060 870 966 1 4 0.000 000 000 1. (4.10)

As an independent check of the accuracy of this result, we
have verified that the ratio of the change in () to the
change in y,

Al (0)/4y=20.17, (4.11)

is numerically stable down to Ay of 10~ ', It is important for
the asymptotic series to give an accurate representations of
I (x) at small x, since more than 40% of the integral comes
from x below O.1.

With the choice (4.10) for ¥, the function x°G (x) is ana-
Iytic in the right half x plane, approaches + 1 at infinity in
the right half-plane, and is monotonically increasing in x for
real positive x. The behavior of the corresponding function
F|(x) is shown in Fig. 2. This function has the following as-
ymptote at large real x:

1

) = T/
as required for consistency with (2.5).

For exploring the behavior of G (x) in the left half x
plane, expecially at small x, it is quite useful to be able to
integrate the differential equation {2.10) along implicitly de-
fined contours that are determined as we go along. For ex-
ample, to keep the magnitude of G (x) constant to first order
in step size 4x, one must require

4 [G*x)G (x)] = 0(4x)?

(4.12)

(4.13)
or
Re[G *(x)G ‘(x)4x] = (4.14)

At each step of the Runge—Kutta routine we choose the
phase of Ax so that (4.14) is met, using values of Gand G’ at
the current position. Actually, it is advantageous to keep

1 | | ~~o | ] 1
1 1. 10. 100. 103 10% 105 108 X

FIG. 2. Graph of F,(x) versus x. The other term in (4.21), 1/x, is shown for
reference.
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|G (x)| constant only to first order in step size, since the slight,
gradual changes in G provide a good monitor on the level of
accuracy with which the function G (x) is being determined.
It is even more useful to integrate along a contour on which
|x*G (x)| is held roughly constant, to keep a safe distance
away from the movable singularities of (2.10). The corre-
sponding condition on the phase of Ax is

Re{G *(x)[G W+ =G (x)]Ax} —o0. (4.15)
x

With thorough analysis and testing, we have made a
stable extrapolation of G (x) into the left half x plane. We find
that, when ¥ is given by (4.10), there are branch-points at
locations given in Table 1.

It is consistent to suppose that there is an infinite num-
ber of branch-points on the physical sheet, accumulating at
x = 0 near the negative real axis, but such a hypothesis can-
not be tested numerically. Of course, it is reasonable to ex-
pect that x’G (x) takes on the value + 1at an infinite number
of points near the essential singularity at x = 0, but we have
found no general argument to indicate that such points must
lie on the physical Riemann sheet. We have no information
on the asymptotic behavior of G (x) as x approaches zero,
except when x is in &

Since it is essentially a numerical problem to prove the
existence of branch-points of G (x) and to locate them, it is
appropriate to give the following information concerning the
accuracy with which G is determined:

1). At x, = (— 0.5,0.75), the function G {x) is reliably
determined to be (0.324 361 862 88, 0.142 874 479 38), with
the error in the last digit.

2). When Egq. (2.10) is started from x, and integrated
counterclockwise around a square contour with sides

— 0.25, and 0.25 i, respectively, the total change in the real
and imaginary parts of G is less than 10~ ',

3). By contrast, when Eq. (2.10) is started from x, and
integrated counterclockwise around a square contour of
sides — 0.25and — 0.25, respectively, the new value of Gis
(+ 6.145 867 784 1, — 0.386 126 067 6), with the error in
the last digit.

4). The results in 2). and 3). are valid for 1000, 2000, and
4000 steps per side in the Runge-Kutta integration.

This information is our basis for concluding that a branch-
point lies inside the second square, but not in the first; see
Table 1.

TABLE I. Location of first nine branch-points of G (x).

n Rex Imx

1 - 0.601 22 + 0.53525
2 —0.403 17 +0.191 20
3 —0.289 55 + 0.098 45
4 —0.224 28 + 0.060 43
5 —0.182 57 +0.041 08
6 —0.15376 + 0.029 86
7 —0.13271 +0.022 74
8 —0.116 71 + 0.017 94
9 —0.104 11 +0.014 54
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Itis a nontrivial numerical problem to maintain accura-
cy while getting close enough to branch-points to be able to
find and isolate them, especially at small x, where the
branch-points themselves are close together and other singu-
larities are nearby. We have found it rather efficient to inte-
grate (2.10) along a curve for which |x2G (x)| is fixed at a value
somewhat less than 1. The phase of x*G (x) changes continu-
ously along such a curve, and one is fairly close to a branch-
point whenever x2G (x) becomes real and positive. The
branch-points are located more precisely by integrating
along closed paths enclosing successively smaller regions.
The branch-points can be determined quite accurately by
using steps determined by solving (4.6) through Newton iter-
ation. Even though G '(x) diverges logarithmically at the
branch-point, according to (4.7), the method works rather
well.

A direct numerical solution of (2.10) is subject to criti-
cism on the grounds that is has solutions which are very
singular at small x, but reasonably well-behaved elsewhere,
and cumulative errors will, in effect, switch us over to one of
the unacceptable solutions as we change x. We avoid this
problem to a great extent by starting at small x in & using
the asymptotic series (4.1), thereby assuring that at the outset
there is very little contamination of the solution. Corre-
spondingly, we expect a substantial loss in precision when we
attempt to integrate from large to small |x].

An alternate procedure is to solve the integro-differen-
tial equations (2.13) and (2.14). We can write them as a cou-
pled system of equations for G (x), £2,(x), and £2,(x); £2, and
{2, being defined as

o= | “dyy? (2w

(4.16)
1 (™, 5(x¥
20 == f dyy (7) G (). (4.17)
The coupled system is
= 9 G = 2T
6"l = —— G~ 5 Gl
+ ;‘;[%mmx) — 0,x)
. G
+ 36(yx‘9 T )] : (4.18)
2(x)=xG{x)— 2—+—B.Q,(x), (4.19)
X
2100 = xG x) — 2=8 0%, (4.20)

X

The leading asymptotic term for G (x),yx® ~ 2, appears expli-
citly in this system of equations.

We have used a fourth-order Runge—Kutta routine to
solve the system (4.18)—(4.20), which we treat as coupled
first-order equations for G, G', £2,, and £2,. The results are
virtually identical with those obtained by solving (2.10) for x
not near zero, and the coupled system has virtually the same
degree of instability at small x as (2.10). Although there is
one solution of this system of equations which is well-be-
haved in &, there is an infinite class of other solutions that
are not, and cumulative uncertainties will surely lead to nu-

Atkinson, Johnson, and Stam 1922



FIG. 3. Contours of constant magnitude of x*G (x) are shown.
The values of |x*G | on successively larger contours are:
0.0003, 0.0015, 0.0025, 0.0034, 0.0070, 0.0112, 0.0161,
0.0282, 0.0423. The points give the locations of branch-
points, at which x*G (x) = 1.

merical instabilities here, just as they did with (2.10). In fact,
one might expect that any replacement of (2.16) by a system
of differential equations would behave in a similar fashion.

In Fig. 3 we have shown the contours in the upper half x
plane along which x2G (x) is of constant magnitude, with ¢
given by (4.10). These contours are determined numerically
from points that begin on the positive real axis. The contours
become closer together in the vicinity of the branch-points in
the second quadrant, and they all seem to approach the ori-
gin from the negative real direction. The large region
between contours near ( — 0.3,0.4) occurs because the deri-
vative of x*>G (x) has a zero in that region. The contours in
Fig. 3 are numerically stable.

In Fig. 2 the function F,(x), which is given in terms of
G (x) by (2.11), is plotted for real x. The function has the
asymptote (2.8) at small x, and the asymptote (4.12) at large
x. The function

F(@)=q >+ F\(g) (4.21)
is the factor multiplying the free-gluon propagator to give
the full propagator in Mandelstam’s equation. The physical
scale for the momentum ¢” cannot be determined from the
DS equation itself, but must be fixed by additional informa-
tion, such as locations of gluonium states.

The solution of the full Mandelstam equation (2.1) is
seen to have behavior similar to that obtained in I for the
approximate case, and to suffer from the same deficiency,
namely the appearance of branch-points at complex ¢°. They
must be regarded as an intrinsic deficiency of the Mandel-
stam equation, which one would hope to be able to eliminate
by making a less drastic truncation of Dyson-Schwinger
equations.
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APPENDIX

Let us truncate the series (4.1) in such a way that only
those terms are included for which the powers of x are less
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than, say, M; we call this truncated expression G,,(x). We
shall show that

lim_ [+ |G (x) — Gyelx)| =0 (A1)

for xeZ (p,€). This is the natural generalization of the con-
cept of an asymptotic series'? to the case in which noninte-
gral powers occur. Set

Ry (x) =x*G j; + 9x°G }j; + (36 + )Gy — = (x,Gyy), (A2)

where 2 was defined in (2.14). For a given M, G, (x) is
bounded for xeZ (p,6 ), and we can certainly find a subdo-
main, & ,, C Z(p,8), for which say,

|¥2G s (x)| <3 (A3)
Now [1 — x*G,,(x)]R,, can be written as a finite number of
terms, involving powers between x* and x** * 2 and hence,
in view of (A3),

| Ry ()| <Kpg | %™ (A4)

for xe¥ ,,, where K, depends on M. One may integrate
(A2) to obtain an equation for G,, which is similar to (2.16),
with an extra inhomogeneous term from R,, :

GM(X) — _%x—7/2J; dyy3/2

xsin(—ﬁ——%) (Z(3.Gp) + Rosl3)) . (AS)

Let us subtract (AS5) from (2.16), and express the result in
terms of the function

h (x) = G (x) — G x) (A6)

hix)= — %x"/ZJ(; dyy”zsin(% — %)

X[Z(5G)—Z(1G—h)+Ryly)]. (AT

Equation (A7) is treated as a nonlinear integral equation for
h, with the function G taken as the solution of (2.16) de-
scribed in Sec. 3. The term 36yx*?~2 cancels out of (A7), so
that R,, provides the only inhomogeneity. By an analysis
similar to that described in Sec. 3, it is a simple exercise to
establish the existence of a solution, / (x), which is analytic in
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the domain .¥ ,,, and in that region subject to the bound

A (x)| <K 3 |%]™, (A8)
with the constant X ;, dependent upon M. The result, which
may also be written as

|G (x) — Gpglx)[ <K 3¢ |x|™, (A9)
guarantees that (4.1) is indeed an asymptotic series for G. For
the simplified case considered in I, the corresponding series

was not strongly asymptotic, and one would not expect that
property of (4.1).
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Local conformal-invariance of the wave equation for finite-component fields.
I. The conditions for invariance, and fully-reducible fields
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The conditions for local conformal-invariance of the wave equation are obtained for finite-
component fields, of Types Ia and Ib [in the terminology of Mack and Salam, Ann. Phys. 53, 174
{1969).] These conditions generate a set of locally invariant free massless field equations and
restrict the relevant representation of the Lie algebra [(k, D4 }D's1(2,C )] in the index space of the
field to belong to a certain class. Those fully-reducible representations which are in this class are
described in full. The corresponding Type Ia field equations include only the massless scalar field
equation, neutrino equations, Maxwell’s equations, and the Bargmann-Wigner equations for
massless fields of arbitrary helicity, and no others. In particular, it is confirmed {Bracken, Lett.
Nuovo Cimento 2, 574 (1971)] that not all Poincaré-invariant sets of massless Type Ia field
equations are conformal-invariant, contrary to some often-quoted results of McLennan [Nuovo
Cimento 3, 1360 (1956)], which are shown to be invalid. It is also shown that in the case of a
potential, the wave equation is never conformal-invariant in the strong sense {excluding gauge

transformations).

PACS numbers: 11.10.Qr, 11.30.Ly

1. INTRODUCTION

Much has been written on the theory and possible appli-
cations to particle physics of the conformal group of space-
time transformations: for reviews, see Kastrup,' Fulton,
Rohrlich, and Witten,? Barut,> Ferrara, Gatto, and Grillo,*
and Bayen.® These ideas were largely stimulated by observa-
tions that the wave equations satisfied by certain free, mass-
less fields are locally® conformal-invariant.

Bateman’ and Cunningham?® (see also Dirac®) showed
that this is so for the free-field Maxwell equations; and ac-
cording to Cunningham, Bateman knew then of the invari-
ance of the wave equation

Oygix) =0
x=(ct,x)=(x*) u=0,12,3 (1.1)

in the case of a scalar field ¥. We do not know who first
proved the invariance of the two- and four-component neu-
trino equations. (See, however, Schouten and Haantjes, '°
Pauli,'' and Bludman.'?) McLennan'? claimed to prove the
invariance of each of Garding’s'* “irreducible sets” of wave
equations for massless multi-spinor fields (at least, of each
set which admits plane-wave solutions, the remainder being
unsuitable as free-field equations.) These sets of first-order
equations are rather general and include ones described ear-
lier by Dirac'® and Fierz.'® Gross'” showed the invariance of
the Bargmann-Wigner'® equations for massless fields of ar-
bitrary spin. The invariance of particular sets of massless
field equations has also been argued by Lomont, '® Penrose,?°

*Permanent address: Department of Mathematics, University of Queens-
land, St. Lucia, 4067, Queensland, Australia.

*Present address: Department of Mathematics, University of Toronto, To-
ronto, Ontario, M5S 1A7 Canada.
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Kursunoglu,?' Mack and Todorov,?” Bayen,”® Barut and
Haugen,?* Lopuszanski and Oziewicz,? Post,”® Fegan,?’ Ja-
kobsen and Vergne,® and Budini.”® Kotecky and Niederle*
have found the conditions for conformal invariance of a Lo-
rentz-invariant equation of the form

L, Yx)=0,
# =9/dx,, (1.2)

where the L, are matrices (not necessarily square), and isa
multicomponent field. However, they did not specifically re-
quire that ¥ be massless in the sense of Eq. (1.1).

It is clear that a body of opinion has developed to the
effect that wave equations for free, massless fields are confor-
mal-invariant in all possible cases [at least, in all cases where
the fields have (manifestly) Lorentz-invariant helicity®'—
there are known subtleties in the case of equations satisfied
by potentials??*?%], In the introductory remarks to many
papers on the conformal group and its applications, one can
find passing reference to “the well known fact that massless
wave equations are conformal-invariant.”

This opinion has no doubt been reinforced by the obser-
vation?23%33 that every zero-mass, discrete spin, unitary, ir-
reducible representation of the Poincaré group ISL(2,C) can
be extended to a unitary, irreducible representation of
SU(2,2), a group locally isomorphic to the conformal group.
Given a consistent set of field equations for a free, massless,
classical field with Lorentz-invariant helicity, one should be
able to exhibit a Hilbert space of solutions carrying a repre-
sentation of ISL(2,C) of this type. This solution space will
then be invariant under the action of an SU(2,2) group.

One might be forgiven for thinking that there is little
more to be said on this subject, at least in the case of fields
having Lorentz-invariant helicity. On the other hand, it is
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clear that the conformal invariance of the wave equation
(1.1), which is evidently scale- and Poincaré-invariant, willin
general require further, non-trivial, conditions to be satisfied
when ¥(x) is a multicomponent field. After all, the Poincaré
group extended by dilatations is a proper subgroup of the
conformal group, and we recall that in the case of Lagran-
gian field equations,’>*¢* scale- and Poincaré-invariance
does not guarantee conformal-invariance. We assert that,
contrary to the body of opinion mentioned above, the wave
equations satisfied by free massless fields are not in general
locally conformal-invariant, even for fields having Lorentz-
invariant helicity.

Some years ago, one of us showed*! that if the index
space of a field ¥(x) carries an irreducible, finite-dimensional
representation of sl(2,C) labeled (m,n) (in the familiar
scheme, where 2m and 2# are non-negative integers, as de-
scribed in the next section), then if mn #0 the wave equation
(1.1) is not locally conformal-invariant. If this be so, then
some of the results of McLennan'? in particular must be
false. Indeed, it is not immediately clear that this result of
Ref. 41 can be reconciled with the invariance of the Barg-
mann-Wigner equations,'® though it turns out that there is
no contradiction there, as we show in Sec. 4, where we dis-
cuss the results of earlier works in relation to ours. There
also we point out some errors in McLennan’s work, invali-
dating some of his conclusions.

What of the second argument suggested above, con-
cerning the extendability of massless representations of
ISL(2,C ) to representations of SU(2,2)? The reconciliation of
this fact with the noninvariance {(in some cases) of the equa-
tion {1.1}, has been discussed earlier.*' Essentially, the point
is that the group SU(2,2) which arises in this way cannot
always be associated even locally with the conformal group.
Suppose, for example, we construct a realization of the zero-
mass, discrete spin, helicity A, positive energy, unitary repre-
sentation of ISL(2,C) in a Hilbert space of multicomponent
fields ¥(x), which have Lorentz-invariant helicity and whose
index space carries a single representation (m,n) of s1(2,C).
According to a result of Weinberg,*? (see also Lemma 3.2
below), it must be true that m — n = A, though not necessar-
ily that mn = 0. According to the results of Ref. 22, we can
find in addition to the ISL(2,C ) generators P, and M,,,, oper-
ators D’ and K|, acting on this space. Together these opera-
tors generate a unitary irreducible representation of SU(2,2)
in the so-called ““ladder series.” Now what happens is this: If
mn#0, then K/, can not be identified with the generators of
special conformal transformations of the fields #(x). Those
generators have rather specific forms, as described by Mack
and Salam.*’ (See Sec. 2.) In particular, the operators X ;, are
not local in space—time when mn £0. What is more, in those
cases they only satisfy the appropriate commutation rela-
tions within the representation space—this is, only weakly
on the fields, as a consequence of the free-field equations. In
contrast, in the cases when mn = 0, K|, {and D '} are identifi-
able with generators of conformal transformations.>**
They are local operators, and they can be defined on all (suf-
ficiently smooth) fields of the given type, in such a way that
the appropriate commutation relations are satisfied, wheth-
er or not the fields satisfy the free-field equations. These
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properties are crucial if one is to be able to tatk meaningfully
about conformal-invariance being preserved in the presence
of interactions, when the free-field equations cease to hold.

In short, when mn = 0, the conformal group is a space—
time symmetry group of the field equations, while when
mn#0, SU(2,2) is only a dynamical symmetry group of the
one-particular Hilbert space. The difference between these
two concepts is quite fundamental, but in the present context
it has not generally been fully appreciated.

In view of the fact that not all possible Poincaré-invar-
iant massless field theories are conformal-invariant, the in-
variance of the equations governing the electromagnetic and
neutrino fields assumes, perhaps, a greater significance. Un-
fortunately, Ref. 41 seems to have been largely unno-
ticed,**™** and passing remarks persist to “‘the well known
fact that....” Indeed, after this work*' appeared, a proof of
the conformal-invariance of the field equations in the cases
mn #0 was presented by Post.?® This proof is deficient, as we
show in Sec. 4, and Post’s conclusions in this regard are false.

Recently there has been renewed interest in massless,
higher-spin fields,*’~>" and fields of spin 3 and § in particular
have been discussed in connection with “supergravity.” The
question now arises as to whether or not the theories pro-
posed are conformal-invariant, While we do not examine
this question specifically, it seems timely to investigate in
detail the conditions under which the wave equation (1.1 is
locally conformal-invariant when ¢ is a finite-component
field, and that is our main object here. We do not restrict
ourselves to the cases where the index space carries an irre-
ducible representation of sl{2,C ), but rather consider the
most general possible situation, according to Mack er al.,*!
where the field may be of Type Ib in their notation. (See Sec.
2.) Such fields have received comparatively little attention in
the literature,242%:294351-53 A¢ free fields, their main inter-
est lies in the possibility that one might be able to use them to
describe spin multiplets of massless particles.*’ There are
discouraging difficulties in attempting to describe such fields
in any generality, because of the nature of the finite-dimen-
sional index-space representations of the Lie algebra 7/,

¥ =k, B d) ® sl2,0) (1.3)

which are involved. {See Sec. 2.) These representations are
not in general completely reducible, and no classification of
them is available. However, we find that only a certain class
of representations is directly involved in the case of free
massless fields obeying conformal-invariant equations.

Our main results are summarized in Theorems 3.1, 3.2,
3.3,2.1, 3.4, 3.5, 4.1, and 4.2 below. In particular, we find
that when Eq. (1.1) is locally conformal-invariant, then the
field ¢ must satisfy certain other equations. For example, if ¢
is an antisymmetric tensor field £, (x), then conformal-in-
variance of Eq. (1.1) requires that F,,, satisfy all of Maxwell’s
free-field equations. Thus the imposition of conformal-in-
variance of the “mass condition” {1.1} can be a means of
defining complete sets of conformal-invariant free-field
equations. This fact leads us not only to well-known sets of
wave equations, but also to new sets of locally conformal-
invariant equations for massless fields of Type Ib with arbi-
trary helicity.
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In general the extra equations which ¥ must satisfy
place severe restrictions on the representation of %" carried
by the index space of ¢. Furthermore, they imply that in
every case ¥ is a direct sum of fields having Lorentz-invar-
iant helicity. Thus when ¢ is a potential, the wave equation
{1.1) is never conformal-invariant in the strong sense {i.e.,
excluding the possibility of gauge transformations to supple-
ment the conformal transformations). This generalizes a
well-known result??>%8 for the electromagnetic potential
A, (x). We do not address the problem of classifying for po-
tentials those equations which are conformal-invariant in
the weak sense, i.e., up to a change of gauge.

Notation: We adopt the diagonal metric tensor

8w =&, withgey= — g, = —g;;= —g3;=1.Theal
ternating tensor €,,,,,, is defined with €' = — ¢;;,; = 1.

2. Preliminaries. Index space representations of s|(2,C)
and 7~

Consider infinitesmal conformal transformations of
space-time,

X =x* 4+ ext + € + €"x, + (287x, x* — 0¥x"x,)

(symbolically,
x' = Xx + dgx), 2.1)
where €, €',%( = — ¢€**) and 8" are real infinitesimal pa-

rameters characterizing dilatations, translations, homogen-
eous Lorentz transformations, and special conformal trans-
formations, respectively. Suppose we are given classical
fields #(x), with a fixed finite number of complex-valued
components ¥, (x), and a cotransformation law of the general
form

Yalx) =4.(x) + ;55 (68:X)as ¥ (X). (2.2)

Mack et al.*? (see also Flato et al.>® and Kotecky and Nie-
derle®*) have shown that there is no loss of generality if the
following statements are assumed to follow:

(1) The index space of the fields carries a finite-dimen-
sional representation of the 11-dimensional Lie algebra®® %~

of Eq. (1.3), with basis %, (= — %, ,),4 and «,, satisfying
i ZHV’ZPU ] = gupzvo + gvaz#ﬂ - gvx)z/w - guazw’
(2.3a)
i[«,.2,,]= 8ok, — 8K, (2.3b)
[«..x,1=0, (2.3¢)
[4,5,.]1=0, (2.3d)
i[k,,4 | =«,. (2.3¢)

(2} The infinitesimal field transformation (2.2) corre-
sponding to (2.1) can be written in the form
¥'(x) = y(x) + i[eD + P, + &M, + 0“K,, [¢(x),
(2.4)
where
P, =id/ox*, M, =x,P, —x,P, +2

uv?
D=x"P, +4, K,=2x,D—x"x,P, +25, %" +«,.
(2.5)
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These statements (1) and (2) form the starting point of
our analysis.

When we refer to “the field 1(x)” we always have in
mind the general element of the complex vector space & of
smooth fields of a given type, i.e., fields whose components
have partial derivatives of all orders, and which correspond
to a given finite-dimensional representation of %#". This
space & is the tensor product of the index space, with opera-
tors %, .4, etc., and the space of smooth functions f(x), with
operators x“,d, etc. In Eqs. (2.5) the operators 4 and x*, for
example, really denote the extensions in the obvious way to
the tensor product space, of the index-space operator 4 and
the function-space operator x*. We abuse the notation in this
way and rely on context to make precise what we mean in
any given case. We remark also that a complex numerical
multiple of the identity operator on any of these spaces will
be denoted by the appropriate complex number; again we
rely on context to make the meaning precise.

It can be seen that & is a common, invariant domain
for the operators Pﬂ M ”V,D, and X, On this space, the fol-
lowing commutation relations hold**:

i[DP,]=P, {2.6a)
i[K,,D]=K,, (2.6b)
[DM,, ] =0, (2.6¢)
i[P,M,,]=¢,P —8.P, (2.6d)
iK,.M,,]=g,K, — 8. K, (2.6e)
i[MuV’MPG] =guvaa +gv0M#p

—8wMu —8uM,,, (2.6f)
[P.,P,]=0, (2.6g)
[K..K,]=0, (2.6h)
i[P.K,]=2M, —2,D. (2.6i)

It follows that the operators D, P, ,K,,, and M, (of which 15
are linearly independent) span a Lie algebra .«7, which pro-
vides a representation in & of the Lie algebra of the confor-
mal group.

The representation of % in the index space may also be
regarded as a representation of the s1(2,C ) subalgebra of %7,
with basis 2, . As such it will not in general be irreducible,
but like any other finite-dimensional representation of
sl(2,C) it will be fully reducible to a direct sum of irreducible
representations. In any representation of sl{2,C ), with basis

Z,,, we can introduce the two Casimir operators*®

C =15, 3"
C, = ji€,, ,, T2 7. (2.7)

Let (m,n) denote the irreducible representation, of dimen-
sion (2m + 1) (2n + 1), in which these Casimir operators
have the form

Ci=2mm+ 1)+ 2nn+1)

Cy,=m(m+ 1) —n(n+ 1). (2.8)
Here 2m and 2n are non-negative integers. Any given finite-
dimensional representation % of sl(2,C )}, with representation

space 77, will be a direct sum of such irreducible representa-
tions, for various distinct ordered pairs (m,n) in a finite set §
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determined by #, and with various positive integral multi-
plicites r,,,, determined by . Symbolically,

R = i Vrun(M,11)
(m,n)eS

Let P, denote the projector onto that subspace 7,
of 7~ which carries all the r,,, multiples of the irreducible
representation (m,n). Then

(2.9)

S P =1,

mn

(m,nleS
PmnPkl = Pmnsmkanl’ (m’n)’(k’l )GS
[PonrZ,, ] =0. (2.10)

The space 7 is a direct sum of the subspaces 7~,,,. Now
define the operators

M =

{m,njeS

mP,, N= S nP,, (2.11)

mn?
(m,n)eS

and note from Egs. (2.10) that
M2, ]1=0=[NZ,]
[MN]=0. (2.12)

Thus M and N are commuting sl(2,C ) scalars. We note also
from Eqgs. (2.8) and (2.11) that on all of 77,

C,=2M(M+1)+2N(N + 1),
C,=MM+1)—N(N+1). (2.13)

These operators M and N are more convenient than C,
and C, as labeling operators for the subspace 7~,,,, of 7.
While M and N by definition are functions of the projectors
P, ,itisimportant to see that, because the eigenvalues (m,#)
of the pair (M, N ) distinguish the subspaces 7", onto which
the P, project, these projectors can be regarded as func-
tions of M and N. Any operator which commutes with M
and N must commute with all the P, , and vice versa. A basis
in 7" can be adopted, in which (the matrices of) all the opera-
tors 3, have the same block diagonal structure, each block
corresponding to an irreducible representation of sl(2,C). In
such a basis, the operators M, N, and P,,, are diagonal.
Within any one of the blocks mentioned, M and N are multi-
ples of the identity by the approporiate m and » values. We
shall call such a basis an sl(2,C ) basis, although it must be
noted that M and N do not form a complete set of commuting
operators on ¥ if some of the r,,, are greater than unity.

In the case of interest, where 7 is the index space of the
field ¢, and we have therein a representation of %~ which is
being regarded as a representation Z of sl(2,C ), we see from
Egs. (2.3d) and (2.13) that

(.MM + 1)} =0=[4,N(N+ 1]]. (2.14)

It follows that A commutes with the positive, diagonalizable
operators (M + })* and (N + ). But if a matrix 4 commutes
with a diagonal, positive matrix B, then 4 commutes also
with the positive, diagonal, square root of B. Thus A com-
mutes with (M + 1) and (¥ + 1), and we have

[AM]=0=[4,N] {2.15)
and hence
(4,P,,.]=0. (2.16)
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It is not possible to prove that 4 can be taken to be
diagonal in an sl(2,C) basis, as Mack et al.** claim to do in
their Lemma 1, using Schur’s lemma. The possible occur-
rence of repeated irreducible represenations of s(2,C ) causes
the difficulty. A simple example counter to their result is
provided by the representation of %~ on two-component
fields ¥ with®’

50 9 - ) o0 Yo

which shows, indeed, that we cannot a priori assume the
diagonalizability of 4, and also that representations of %~
exist, more complicated than those described in Ref. 43.

A complete description of all finite-dimensional repre-
sentations of % is not available. However, we shall see that
only a subclass of such representations arises in connection
with massless fields obeying locally conformal-invariant
field equations. In particular, only representations’® of Class
2 (though not even all representations of this class) will
arise:

Definition 2.1: A representation of % will be called of
Class 2 if it is finite-dimensional and its basis operators Ky»
4 and 2, satisfy

K, i =0, (2.18a)
2" =4+ ik, (2.18b)
A+ (C,+ )42+ (C)* =0 (2.18c)

where C, and C, are the s1(2,C ) invariants defined in terms of
the X, as in Egs. (2.7).

The representation defined by Eqgs. (2.17) provides a
rather simple example of a Class £ representation, although
it is not one which arises in connection with locally confor-
mal-invariant massless field equations, as we shall see.

It is important to show that this definition is a sensible
one, to the extent that Egs. (2.18) form a % -invariant set.
These equations are evidently invariant under transforma-
tions generated by %, and 4. For transformations generat-
ed by «,,, the invariance of Eq. (2.18a) follows because
[«,..x,] = 0. Consider Eq. (2.18b) and the commutator

[x, 2k — (4 + K, ]
= ig, K K. (2.19)
When Eq. {2.18a) holds, this commutator vanishes, and the

invariance of Eq. (2.18b) follows. Now consider Eq. (2.18¢)
and the commutator

[£..4*+(C,+ 1A% +(C)] (2.20)
It can be deduced, using the commutation relations (2.3),
that
[.,4%)=(—4i4 3-64%+4id + 1)k,
[£,,(Ci + 1)4 %]
= (4 — iP[k,,C, + 1]+ (C, + )[k,.47]
= (4 — 22,6 + 3k,) +(C, + 1) — 2i4 — 1)k,
[k, ACP) =22, 2%3, & + 13,3, (2.22)
+ (20C, — 6i) 2, k" + 3Cik,,. (2.23)

(In deriving the last of these equations, we found it helpful to

(2.21)
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use the identity
(C2=1C\(C, + 1) — 12,272, 3, (2.24)

which follows from Eqs. (2.72) and (2.74) in Lemma 2.5 be-
low.) When Eq. (2.18b) holds, Egs. (2.22) and (2.23) reduce to

[x..(C,+ 14 2]

={(4 — 224 + 1) — (C, + 1)2id + )}k,  (2.22))
[«.(C.)*) = {204 + i)’ + 7(4 + i)
+ (2iC, — 6i)4 + i) + 3C, }K,,, (2.23)

and, when combined with Eq. (2.21), enable us to see that the
commutator (2.20) vanishes, so that Eq. (2.18¢c) is indeed #"-
invariant.

Let us investigate something of the structure of an arbi-
trary representation .7 of class £, with representation space
7". Regarded as arepresentation # of's1(2,C ), it will have the
form (2.9), for a finite set S and positive integers r,,, deter-
mined by 7. We introduce the projectors P,,, and the oper-
ators M and N as in the general discussion above. We first use
the P, to write 7" as a direct sum of subspaces in two differ-
ent ways:

(1) Let S, denote the set of distinct values 6 of |m — n|
obtained as (m,n) runs over S. Every such number @ is a non-
negative integer or semi-integer. For each € in S, define the
projector

Po= S P,. (2.25)
{m,n)eS
|lm—nl=86
It follows that
S Py=1, PyP, =Pybsp, 60'S, (226
6eS

Then 7" is a direct sum of the subspaces 7" ,,,0€S,, where
P e =P?. (2.27)
It can be seen that on 77, the operator (M — N )* has the
value 82,
(2) Let S, denote the set of distinct values v of
(m + n + 1) obtained as (m,n) runs over S. Every such num-
ber v is an integer or semi-integer, greater than or equal to 1.
For each v in S,, define the projector

P,= Y P, (2.28)
(m,njes
m+n+1l=v
It follows that

Y P,=1, PP, =P,6,, wWeS,. (2.29)
veSs,

Then 7" is a direct sum of the subspaces 7,,,v€S,, where

7 =P, 7. (2.30)
On 77,, the operator (M + N + 1) has the value v.

We are not concerned with possible orthogonality or
identity relations among the various P,, and P,,. However,
we note that as functions of the P, ,, they all commute with
each other, and with 4, 3 v+ M, and N. Now consider Eq.
(2.18c) which by definition holds in .7". Since the operators
M and N satisfy Eqs. (2.13), we can write Eq. (2.18c) as

[A2+M—-NPA2+(M+N+1P1=0.  (2.31)
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Define the operators

P,= —[4°+(M—NP1[4MN +2M + 2N + 11!

P,=[4%+ M+ N+ 1P][4MN +2M + 2N + 1]},
(2.32)

noting that (4MN + 2M + 2N + 1)

[=(M + N + 1) — (M — N)*] has a well-defined inverse be-

cause M and N are commuting and non-negative. It follows

from Eq. (2.31) that

P, +P =1, PP, =PP, =0,

PP, =P, PP, =P,. {2.33)
Thus P, and P, are projectors, and with their help we can
write 7" as a direct sum of two subspaces 7, and 7", where

7, =P.7.7,=P7. (2.34)

It follows from Eq. (2.31) thaton 77,, [4 2 + (M + N + 1)]
vanishes, while on 77, [4 ? + (M — N )?] vanishes. We note
that P, and P, as defined commute with all P, ., and hence
with4,2,,, M, N, P4, and P,,.
Finally, we define the projectors

Pa9=PaP18=P19Pa’ €S,

P,, =P,P, =P, P, veS,. (2.35)
Since it follows that
S Py=P, > P,=P, (2.36)
€S, veS,
we have
Y (Pag + Py )= 1. (2.37)
feS,
ves,
Furthermore, it is easily seen that
PaGPaG’ = Paefsea'» 6,6 ’531
PbVva’ = va‘sw’ ’ V’VIESZ
PP, =P, P,=0, 06€eS,veS,. (2.38)

We can therefore write 7~ as a direct sum of subspaces
yaeaybv(eesl,vegz) with

Vs =P 27y, =P, 7. (2.39)

Note that some of the projectors P,4,P,, could vanish identi-
cally. (Indeed, this could even be true of P, or P,.) Then the
corresponding 7", or 77, is the trivial subspace of 7.

It follows from what we have said above that on any
vector in 77,

[A2+M+N+1)1=0 (2.40a)

M—-NP=6? (2.40b)
and hence, in particular,

B2—1) =[A2+2M (M + 1) + 2N (N + 1)}

=(4%+C). (2.41)

Similarly, on any vector in 77,

[A2+M—N)P1=0, (2.42a)

M+N+1)=yv, (2.42b)
and so

M7+ C)=(*—1) (2.43)
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We shall now show that each of the subspaces 7”,,,7",,
is # -invariant. The operator (4 > + C,) commutes with 4
and 3, . Consider the commutator

[42+Cx, ] =24 + ik, — 25, K. (2.44)

In the representation .7, the right-hand side vanishes by
virtue of Eq. (2.18b). It follows that in .7, the operator

{4% + C,)is a ¥ -scalar. Since the subspaces ", corre-
spond to distinct eigenvalues of this operator, they are not
mixed together under the action of 7. Similarly, the sub-
spaces 77, are not mixed together, nor are the subspaces
7 .6 and 77, , with 6 #v. It remains to show that in a case
with 6 = v = p, say, the subspaces 7", and 7", , are not
mixed together. Now on 7”,, we have (M — N )* = p?, so
that any v,€7”,, can only have components belonging to
irreducible representations (m,n) of sl(2,C) with

|m — n| = p, i.e., the representations (,0), {p + 4,4}, and
(0,), (3,0 + 4),-+-- Similarly, any v,€7", , can only have com-
ponents in representations (m,n) with (m + n + 1) =p, i.e.,
the representations (p — 1,0), (o — 3,4),..., (0,0 — 1). But these
two sets of s1(2,C ) representations are disjoint, and moreover
cannot be linked by the operators 4, 3, and «,,: the opera-
tors 4 and X, cannot link inequivalent representations of
sl(2,C) since they commute with M and N; and the four-
vector operator «,, can link™® a representation (m,n) only
with(m + 4, n +4),(m +4,n—4),(m—4n+L)and(m — 1,
n —4). Thus, 4, £, and «,, cannot link the subspaces 77,
and 77, which are therefore separately invariant under the
action of #". Thus we see that the decomposition

yzE?ydaBe;Sybv

geS,

(2.45)

is a decomposition of 7" into # -invariant subspaces. It de-
fines a decompositions of 7~ into a direct sum of subrepre-
sentations of 7.

It follows that if the given representation.” is indecom-
posable, only one of the subspaces 7",,,7",, is nontrivial.

Definition 2.2: A representation of %~ of Class 2 will
be called a (8 )-representation, where @ is a non-negative
integer or semi-integer, if its basis operators 4, «,,, 2, and
the non-negative operators M,N defined by Egs. (2.11), sa-
tisfy Eqs. (2.40). It will be called a {v}-representation, where
vv>1) is an integer or semi-integer, if Eqgs. {2.42) are satis-
fied.

Then we have proved the following:

Lemma 2.1: Any indecomposable representation of %~
of Class 2 is either a (@ )-representation for some 8, or a
{v}-representation for some v.

In the context of this work, we find that { v}-representa-
tions are not of interest. This is fortunate, because we shall
see that in every (6 )-representation 4 is diagonalizable,
while the same cannot be said of every { v} -representation, as
the example of a { 1}-representation defined by Eqgs. (2.17)
shows. The structure of (@ )-representations is comparative-
ly simple. Let us look at this structure a little more closely,
for an arbitrary (@ )-representation .7, with representation
space 7. Noting that Eq. (2.40a) holds by definition, we
define the projectors
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P,=—Ji[A+iM+N+1IM+N+1]7,

P_= +4i[d—iM+N+ )M+ N+11"", (2.46)
which satisfy

P,+P_=1\ PP =P,,PP_=P_,

P.P_=P_P, =0. (2.47)

Then 7" is a direct sum of the corresponding subspaces 7" .
and 77 _,

Yy ,.=P. YV, ¥V_=P_7. (2.48)
On 77, we have

4= 4+iM+N+1), (2.49)
and on 7" _ we have

4= —iM+N+1). (2.50)

Because P, and P_ commute with £, the subspaces 7~
and 7 _ are separately sl(2,C )-invariant. It follows that we
can choose bases in these subspaces such M and &, and hence
4, are diagonal. This justifies our assertion above that 4 is

always diagonalizable in a (& )-representation. Now on 7~

we also have, by definition of a (@ )-representation,
M—-Ny? =62 2.51)

and it then follows from Eq. (2.49) thaton 7", —i4 has
eigenvalues belonging to the series (6 + 1), (6 + 2),
(@ + 3),..., while on 77 _ it has eigenvalues belonging to the
series — {0 + 1), — {6 + 2}, — {6 + 3), Consider the ef-
fectof 4, 2, , and «, on a basis vector in 7”_. Since 4 and
2, commute with — i4, and so cannot change its eigenval-
ue, they must carry such a vector back into 7" _. Now Eq.
(2.3¢) says that k, converts an eigenvector of — i4 with ei-
genvalue§, into one with eigenvalue(§ + 1). Sinceany eigen-
value from the first series above is greater by at least two
units than any eigenvalue from the second series, it follows
that «, carries no basis vector from ?7”_ into 7" ,.. In this
way we see that 77 _ is invariant under the action of the
operators of %", By a similar argument we deduce that 77,
is # -invariant, and we conclude that the decomposition
(2.48) defines a decomposition of 7 into a direct sum of
subrepresentations. If .7 is indecomposable, one or the oth-
erof 77,7 _ must be trivial.

Definition 2.3: A (6 )-representation of % will be called
a {0, + )-representation [respectively, a (8, — )-representa-
tion] if, with the same notation as before,

A= +iM+N+1) {2.52)
[respectively
A= —iM+N+1). (2.53)

0

Then we have proved:

Lemma 2.2: Any indecomposable (8 )-representation is
either a (6, + )-representation or a (6, — )-representa-
tion.

Comment: A similar analysis cannot be performed for
an arbitrary {v]-representation. In place of the operator
(M + N + 1) in Eq. (2.46) above we would have (M — N),
which is not always invertible. [See again the example de-
fined by Egs. (2.17), for which M = N =0.]
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We can carry our investigation of (€ )-representations
still further. Consider a {6, + )-representation .7, with re-
presentation space 7”, which has 8 > 0 but is otherwise arbi-
trary. As for the general case of a Class 2 representation
described above, introduce the projectors P,,,, (m,n)eS. In
the present case, (im — 1)’ = @2 for every (mn)eS. Let us split
the set S of ordered pairs (m,n) into two subsets S, and S
according as (m — n) = + @ or — 6, and define the corre-
sponding projectors

Pa= z Pmn’PB= z Pmn' (254)
(m,n)eSa (m,n)eSﬁ
Then
P, +P;=1, PP, =P, PyP;=Pg
PPy =P,P, =0, (2.55)

and we can write 7~ as a direct sum of the corresponding
subspaces 7", and 77,

V=PV, V=P 7. {2.56)
Then, on 77,

M—_N= +6, (2.57)
while on 77,

M—-_N= —0. (2.58)

It follows that vectors in 7~ belong to certain representa-
tions (m,n) of sl(2,C) from the series {6,0), (& + 1,3),

(6 + 1,1),~, while thosein 7" belong to certain representa-
tions (m,n) from the series (0,6 ), (1,6 + 1), (1,6 + 1)---. Itisat
once clear that 4 and 3, , which commute with M and N,
leave the two subspaces 7", and 7”4 separately invariant.
As we remarked before, x,, can only link the representation
(m,n) with (m + 4, n + }) and (m £ 4, n — 1). Then it follows
at once that, at least for 8> 4, «,, leaves 7", and 7", separa-
tely invariant. In the case 8 = }, it is at first glance conceiv-
able that «,, could link a vector in 7, belonging to (4,0) with
onein 7", belonging to (0,4), and one in 7~ belonging to(1,})
with one in 77, belonging to (},1) etc. However, we recall
that on 7, by definition of a (6, + )-representation,

A=iM+N+1) (2.59)

so that 4 has the same value 3i/2 on the first two vectors
mentioned, and the same value 5i/2 on the second two, etc.
But Eq. (2.3¢) shows that «,, cannot transform one eigenvec-
tor of 4 into another with the same eigenvalue. In this way
we see that for every 6, 8 > 0, the two subspaces 7", ,7 7, are
separately # -invariant, and the decomposition of 7~ de-
fines a decomposition of 7~ into a direct sum of subrepresen-
tation. If 7 is indecomposable, one of 7”,,7"; must be tri-
vial. (The case 8 = O is special: there is just one subspace, on
which M = N.) A completely analogous analysis can be giv-
en in the case of a (6, — )-representation, with 8> 0.

Definition 2.4: A (6, + )-representation of %" (with
6> 0 or @ = 0) will be called a [ + 6, + ]-representation if,
with the same notation as before, Eq. (2.57) holds:

It will be called a [ — 8, + ]-representation if Eq. (2.58)
holds:

M—-N= -6
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Similarly, we define [ + 8, — }-representation as a (6, — )-
representation in which Eq. (2.57) holds; anda[ — 8, — ]-
representation as one in which Eq. (2.58) holds.

Then we have proved

Lemma 2.3: Any indecomposable (6, + )-representa-
tion is either a [ + 6, + ]-representation, or a [ — 6, + ]-re-
presentation.

Rather than refer [ + 6, + ]-, [0, + ]-, and [ — 6, + ]-
representations, where 20 is a positive integer, we can hence-
forth refer simply to [4, + ]-representations, with 24 an in-
teger, positive, negative or zero. Such a representation is
characterized by Eqs. (2.18), and in addition®

M—N=4, (2.60a)
A= +iM+N+1) (2.60b)

Similarly, a [4, — ]-representation is characterized by Eqs.
(2.18) and

M-N=A4, (2.61a)

A= —iM+N+1) (2.61b)
We shall give one further result concerning the structure of
such representations. Recall that 4 is diagonalizable in these
cases.

Definition 2.5: A [A, + ]-representation will be called a
[A, + ;l,u)-representation, where / and u are non-negative
integers with u 3/, if the eigenvalues of ( — i4 ) are

AL 414+ LA+ 4 2| d |+ + 1. (2.62)

Similarly, a {4, — ]-representation will be called a [4, — ;/,u]-
representation if the eigenvalues of ( — id } are

—(AT+I+1), (A +1+2)..,
— (A +u+1) (2.63)
O

Lemma 2.4: An indecomposable [4, + ]-representation
is a [A, + ;1,u]-representation for some / and u; and an inde-
composable [A, — }-representation is a [A, — ;/,u]-represen-
tation for some / and u.

Proof: Consider an indecomposable [A, + ]-representa-
tion, with representation space 7". Then Eqgs. (2.60) hold, so
that

—iA=2M+1—-A)=2N+1+4+24). (2.64)
Because 2M and 2V have non-negative integral eigenvalues,
we see that every eigenvalue & of ( — i4 ) in this representa-
tion is of the form

S=A|+r+1 (2.65)

with 7 a non-negative integer. If there is only one such ¢, we
set / = t = u and the proof is complete. If there are more
than one, we order them thus:

<K=t <t,<<t, =u. (2.66)
Then we have to show that ¢, ¢,---r, comprise all the integers
from / to u. Suppose this is not the case, so that for some
integral value of { between 1 and n — 1,

Loa>t+ L (2.67)
Since ( — i4 ) is diagonalizable, 7" is the direct sum of the
eigenspaces of ( — id ). Let 77, be the direct sum of the eigen-
spaces corresponding to values of ¢ not greater than ¢;, and
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7"} the direct sum of those corresponding to values of ¢ not
less thant, . Then

=907 (2.68)

Since 4 and 3, commute with ( — id ), they leave 7”; and
7! separately invariant. According to Eq. (2.3e),

AK# =K, (4 + i),
so the action of «,, is to increase the eigenvalue of { — id ) by
one unit. Because of the inequality (2.67), it follows then that
K, cannot carry a vector from 7, into 77/, nor from 7/ into
7";: these spaces are also separately invariant under the ac-
tion of k,, . In this way we see that Eq. (2.68) defines a decom-
position of 7" into a direct sum of # -invariant subspaces.
Since the given representation is indecomposable, we have a
contradication, and the inequality (2.67) cannot hold. An
analogous proof applies in the case of an indecomposable
[A, — J-representation.

Combining Lemmas 2.1, 2.2, 2.3, and 2.4 we have

Theorem 2.1: An indecomposable representation of %~
of Class £ must be one of the following types:

(i) [A, + ;Lu] or [A, — ;,,u], for some integer or semi-
integer A (positive, negative or zero) and some non-negative
integers / and u (u>1).

(i) {v], for some integer or semi-integer v(v > 1). O

Comments:

1. We are not concerned at this stage with proving the
existence of any of these representation types. The only Class
2 representation we have exhibited so far is the {1}-repre-
sentation defined by Egs. (2.17).

2. Itis, of course, not true that a given representation of
any one of these types need be indecomposable. Moreover,
we have not proved that any two given representations of the
same type (for example, any two [, + ;/,u]-representations
having the same values of A, /, and u) are necessarily equiva-
lent, even if they are both indecomposable.

3. We shall refer to ¥(x) as an (indecomposable) Class £
field if its index space carries an {indecomposable) represen-
tation of #~ of Class 2. Similarly, we shall refer to (inde-
composable) [, + ;/,u]-fields, {v}-fields, etc.

We complete this section by presenting some results
valid for any representation of the Lie algebra sl(2,C)
{(whether or not finite-dimensional, and whether or not con-
tained in a representation of %7). These results will be re-
quired below.

Lemma25:Let2,, (= — 2, )belinear operators de-
fined everywhere on a vector space, and satisfying there the
commutation relations (2.3a) of s1(2,C). Define the Casimir
operators C, and C, as in Egs. (2.7). Then the following iden-
tities hold on that vector space:

W3, 2"*=3,3"=iCs,*+i3,* (2.69)
where

3, = 16,2 (2.70)

(i) 2,, 2" =C8,* + 3,3 - 23,% (2.71)

(iii) 2,3 *3,, 2" — 45, 23, +(C, - 5)%,, 2"
—2(C,—1)2,"— [C,—(C)*]8,"=0; (2.72)

(iv) 3,372, 37— (C, + 1)3,. 2 +(C,)8,” = 03;
(2.73)
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v)2,,27*E "= —2C,. (2.74)
If, in addition, the vector space is finite-dimensional, so that
the operators M and N can be introduced as in Eqgs. (2.11)
and (2.13) above, then the following identities also hold:
(vij[ —iZ,, —(M—N+1),,]
X[ —iZ”"+(M—N—1)g¥]
X[—iZ,, —(M+N+2g,]
X[—iZ7+M+Njg”] =0 (2.75)
(vii) [Z,, — (M —Ng,.]
X [X* + (M — N)g**]
X[2p0 —(M+N+1)g,,]
X[Z+ M+ N+1g"]=0. (2.76)
Proof. (i) This result is obtained by substitution of var-
ious values for 1 and A, and use of the commutation relations
(2.3a). For example, with z = 0, A = 1 we have
S#VZVA =3‘0222l +3~0323l’
— _23122[ +2‘21231’
— IZ 23’
=i3,, (2.77)
as required.
(ii) We note that

E;Wp,,é‘”aﬁ = (ZZ? - (iz_g) + (jzg)
Q,
- (Jff) N (;ﬁ) - (Upf), 278)

where, for example,

(Mﬁ ) =5,%6,%5,°. (2.79)
upo
Then we have

42 Itvz = e-;tv;ooewmgz poza ’

=8, %P3 5 —~ T3 )
+3%3, —3¥3,
+ 33 5 - 23,,, (2.80)
which yields the result (2.71), with the help of the commuta-
tion relations (2.3a).

(iii) Define
A= —iX,"—6,"
B, =3, {2.81)

and, suppressing tensor indices for the moment, write
AforA,", 1ford,”, Bfor B,

AoA forA#’lAA”, A°cB forAH‘BA”, (2.82)
and so forth. Then Egs. (2.69) and (2.71), respectively, read as
A°B = BoA =C,, (2.83)
BoB = — A°A+ C, + 1. (2.84)

It follows from the second of these, multiplying on the left or
right by 404, that

AoA4oA404 = — A°A°BoB + (C, + 1}404. (2.85)
Using Eq. (2.83) twice in succession we see that Eq. (2.85)
reduces to
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AoAoAcA — (C, + 1)4°4 4+ {C,)* =0,
which is equivalent to Eq. (2.72).

{vi) On substituting for C, and C, in Eq. (2.72), in terms
of M and N from Egs. (2.13), we get

[4—(M—N)°[4 +(M—N)e

[4—~(M+N+1]e[4 + (M +N+1)]=0,
which is equivalent to Eq. (2.75).

(iv) Multiplying Eq. {2.84) on theleft or right by BoB, we
get

(2.86)

(2.87)

BoBoBoB = — BoBoA4°cA4 + (C, + 1)B°B. (2.88)
Again using Eq. (2.83) twice, we get
BoBoBoB — (C, + 1)BoB + (C,)* =0, (2.89)

which is equivalent to Eq. (2.73).
(vii} On substituting for C, and C, in Eq. (2.73} in terms
of M and N from Egs. (2.13), we get
[B—(M~Nl°[B+(M—N]°
[B-M+N+1o[B+M+N+1)]=0,
which is equivalent to Eq. (2.76).

(v) Using the commutation relations (2.3a), it is straight-
forward to show that if

(2.90)

r,=2,>"3, —323,°%, —iCg,., (2.91)
then

r,=-r,. (2.92)
It follows that I, =0, whence

2.2 33, T* —4iC, =0, (2.93)
which is equivalent to Eq. (2.74). O

Comment:

1. Some of the identities given here were presented ear-
lier by Bracken and Green® in the general context of identi-
ties for the generators of representations of SO(n). O

3. CONDITIONS TO BE SATISFIED FOR LOCAL
CONFORMAL-INVARIANCE OF THE WAVE EQUATION

We are concerned with massless fields, and we shall
take that to mean that they satisfy®' the wave equation

Oy = — PP, =0. (3.1)

Definition 3.1: This equation will be said to be locally
conformal-invariant on a vector space % (C &) consisting of
solutions, if % is .« -invariant; that is to say, if €% implies
Xye% , where X is any element of the Lie algebra .« spanned
by D, P, K, and M,,,. U

Comments:

1. We do not require that % must consist of all the
solutions of Eq. (3.1) which lie in &. Nor do we require that
if Y is a solution, then so is X1, where X is any element of
/. As we shall see, such requirements would rule out of
further consideration such interesting cases as the free elec-
tromagnetic field £, (x), where conformal invariance of the
wave equation holds not on the space of all smooth solutions
of that equation, but only on the subspace of fields satisfying
certain extra equations, viz., Maxwell’s equations.

2. If ¢ is to be a potential for a massless field y of a
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different type [e.g., with index space carrying a different fin-
ite-dimensional representation of s1(2,C )], then it may not be
appropriate to require that ¢ satisfy the wave equation; nor,
when it does, to require local conformal-invariance of this
equation in the manner defined. One might only expect these
requirements to be met, roughtly speaking, “up to a change
of gauge” of ¥. Our results are relevant to a potential ¢ only
in the restricted situation where one chooses a gauge such
that ¢ satisfies the wave equation, and asks if this equation is
locally conformal-invariant when 3 transforms as in Egs.
{2.4) and (2.5}, supplementary gauge transformations being
suppressed. It is known that in the case of the four-vector
potential of the free electromagnetic field, the equation
04,, = 0 is not conformal-invariant in this sense.”>*>** We
shall see that this result generalizes to all potentials. The only
fields for which the wave equation is locally conformal-in-
variant are fields ““having invariant helicity.”

In order to prove our first result, we exploit the isomor-
phism of .« and the Lie algebra so (4,2). Following Mack et
al.,** we define J ,( = — Jp,), 4,B =0,1,2,3,5,6 by

S =M,,, Jos =D,

T =3Py —K,), Jou = 4P, +K,).

Then the commutation relations (2.6) can be written as

i[Jagden ] =8acdsp + 8spJac — 8acdap — &andaes
(3.3)

(3.2)

where the extended metric tensor is diagonal, with
8ss= — 1, 8e6= + 1.

Theorem 3.1: (1) The wave equation (3.1) is locally con-
formal invariant on a vector space % C & if and only if % is
</ invariant and every field ¢ in % satisfies

WAB',} = 0! A’B = 0,192y315;6’ (34)
where
Wis =Jacd S +Jscd S0 + a5 cnd P (3.5)

(2) Any one solution in & of Egs. (3.4) generates under
the action of . an .«/-invariant space of such solutions, on
which the wave equation is locally conformal invariant.

Proof: (1) Suppose that the wave equation is locally con-
formal invariant on %, and €% . It follows from Definition
3.1 that

["'[[P#P,"Xl],lea-an ]¢=0 (3.6)

for any finite set of operators X,, X,,....X, in .«&. Now from
Egs. (3.2),

PuPu =(Jsu +J6y)(‘]5#+"6#)
= "JSAJAS _JMJA() _JSAJA(; _JGAJAS
= = Wss — W — Wi (3.7)

Since W, 5 by construction is an so (4.2)-tensor operator, we
have (on &)

i[W s o 1=840Wcs — 84cWhns
+ 80 Wac — 8acWap» (3.8)
and so
i[P;;P“’J5v] = - WS‘V h st
[[PFP”’JSV ]9‘]5p ] = %v +gvp WSS + gvp W65' (3'9)
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It then follows from Eq. (3.6) that

W,b=0, p#v (3.10)
and

(VV()() + VVSS + Wss)'// =0,

(Wn - Wss - 65)‘/': 0,

(sz - VVss - 65)¢ =0,

(VVn_ Wss - Wﬁs)',//:o- (3-11)
Similarly, from the commutator

[[PMP#’JS()]rJ()()] = Weo — Woo + Wes (3.12)
we deduce that

(W66 — Woo + W65)¢I =0. (3-13)

From Eq. (3.9) we also have, provided p#v,

iLL[P.Ps, )5, [ 50 ] = 8o Wiy + 81s W, (3.14)
from which we deduce (taking o = p#v) that
Ws, v =0.
Similarly, from the commutator (p # v here)
([ [[P.P"Ts, 15y 160 ] =gpo Wev + 810 W, (3.16)
we deduce that

(3.15)

W, ¥ =0. (3.17)
Finally, from the commutator

[ [ [ [P,uP#’JS()]’JSI]!']51]"]60] = Wis
we have

Wy =0. (3.18)

Noting from the definition (3.5) that
WAA =Woo— Wi — Wy — Wy — Wss + Wi, =0, (3.19)

we can readily see from Eqs. (3.10-3.13, 3.15, and 3.17-3.19)
that all of Eqgs. (3.4) hold.

Conversely, suppose that every ¥ in a vector space
% (C &) satisfies Eqs. (3.4). Then by Eq. (3.7) every ¢ in%
satisfies the wave equation. If in addition % is .o/-invariant,
then the wave equation is by definition locally conformal-
invariant on % .

(2) Suppose (€2 ) satisfies Eqgs. (3.4). Then it is obvious
from the relations (3.8) that ¢ = X X,---X, ¢ also satisfies
these equations, where X | X,,....X, is any finite set of ele-
ments of /. Let %, be the vector subspace of & consisting
of all finite linear combinations of all such ¢'. Then % , is an
&/ -invariant space of solutions in & of Egs. (3.4), and so by
the first part of this theorem, is a space on which the wave
equation is locally conformal-invariant.

Comments:

1. This theorem enables us to replace the problem of
finding for which field types there exist .2/ -invariant spaces
of solutions of the wave equation with the simpler problem of
finding for which field types there exist any solutions of the
Equations (3.4). This is the advantage of having found an
irreducible &/ -tensor set of equations.

2. There is an obvious generalization to any situation
where one has a representation ./, on a vector space &', of
the so{4,2) Lie algebra, with basis P, ,K ;,,D ', and M },,. The

nr
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equation

P, P"Y =0, YeP’ (3.20)
will hold on an .7 '-invariant subspace %' of &' if and only if
every vector ¢’ in %' satisfies

WAB’l/}, :0, (3,21)

where W,;" and J ;" are defined in terms of P, etc., as in
Eqgs. (3.2)and (3.5). And any one vector in &’ satisfying Egs.
(3.21) will generate under the action of .7’ an .&’-invariant
space of such vectors.

3. Barut and Bohm®* have shown that the self-adjoint
generators j,,( = — jg,) of any irreducible unitary repre-
sentation of SU(2,2), in the ladder series, satisfy (on a suitable
domain)

jchCB + i + %gAB.jCDJCD =0. (3.22)
These representations are associated with the mass-zero re-
presentations of ISL(2,C), as remarked in the Introduction,
and this result can be seen to be a corollary to Theorem 3.1—
or rather, to its generalization described in Comment 2.
However, we emphasize that we do not assume the represen-
tation (unitary or otherwise) of any group on the fields ¢ and
we are not concerned with any Hilbert space structure for
such fields.

We proceed to investigate the content of the (20 linearly
independent) equations (3.4), writing them out in SO(3,1})-
tensor form. We have:

A =p, B=viM, M* +M M?, —\K P,

- %K P, — %P,qu - %PVK,M)¢

v

= — 8 lend PR (3.23a)
A=p, B=5[-M,(P"—K")+(P'—K"M,,

— (P, +K,)D—-D(P, +K,)]¢=0. (3.23b)
A=p, B=6[—M, (P +K")+ (P +K"M,,

—(P,—K,)D—D(P, —K,)]¢=0. (3.23¢)

A =5 B=5[D?+|(P*P, —K"P, — P*K, + K"K,)|¢
= — W epd Pl (3.23d)
A =5B=6P*P, )=K"K, (3.23¢)
A =6,B=6:[D>— I(P*P, + K*P, + P*K, + K"K,)1¢

= —Weod CW. (3.23f)
Also, we note that
Jepd P = M, M" +K'P, + K#pP, —2D 2,
=M, M" +2K*P, + 8iD —2D?  (3.24)

using Egs. (2.6). A set of equations equivalent to Eqs. (3.23)
and more convenient than them is obtained by taking certain
linear combinations and using the commutation relations
(2.6) to reorder factors in some products. We get

PP, Y =0, (3.25a)

K“K,¢=0, (3.25b)

M, Py =(i—D)P,Y, (3.25¢)

M, Ky =i+ DK, (3.25d)
(M, MP, + M, M", —K,P,—K,P,W

= —g,,(M,,M*° —2iD +2D?y, (3.25¢)
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and
K P'yYy=M, M" —4iD + 4D . (3.26)

We note also that when Eq. (3.26) holds, we have from Eq.
(3.24)

Jepd P = (3M,,, M*” + 6D ). (3.27)

Finally we note that Eq. (3.26) is redundant, as it follows
from Eq. (3.25¢) by contraction. We therefore drop it from
the set, leaving again (1 + 1 + 4 + 4 + 10 = )20 equations
to be satisfied by ¢.

We now obtain an equivalent set of 20 equations involv-
ing the generators £, ,4, and «,,, by substituting into Egs.
(3.25) the expressions (2.5) for M,,,,D and K, . At first sight it
appears that the resulting equations will be very complicat-
ed, but great simplifications occur. For example, consider
the third equation. We have from Egs. (2.5)

M, P =x,(PP)—(x,P)P, +2, P (3.28)
and
(i—D)P,=(i—x,P"—A)P,, (3.29)
and so
M, Py =(i—D)P,y=[x,P,P)+ 2, P"]¢
=(i—A4)P, ¢ (3.30)

Since we shall retain P, Py = 0 as one equation in our set,
Eq. (3.30) reduces to

3. PY=(i—A)P,V. (3.31)

It is no surprise that all x-dependent terms disappear in the
transition from Eq. (3.25c) to Eq. (3.31): as Eqgs. (3.25) are
locally conformal-invariant, they are locally translation-in-
variant. This can be exploited in the reduction of the remain-
ing equations in the set (3.25). We obtain

Theorem 3.2: Equations (3.4) are equivalent to Egs.
(3.25). For fields on which the generators of infinitesimal
conformal transformations have the form (2.5), they are also
equivalent to the following:

P,P'y=0, (3.32a)
K,k =0 (3.32b)
z,uvPV'/’ = (l -4 )Py ¢y (332C)
2 Y =(+A4)k. 9, (3.32d)
(2,37, +2,2°, —&,P, —k L)W

= — 8. (2,27 +24% - 24 . (3.32¢)

Proof: Suppose Egs. (3.25) hold, and consider Eq.
(3.25d)

M, Ky =(i+D)K,¢,
=K,(2 + D)y, (3.33)

using Eq. (2.6b). Noting the forms (2.5) of M,,, and K, we
proceed to simplfy the left-hand side. We have

(x, P, — x, P )K"Y
= [2x,(x,P*) + 8ix, (x,P”)
—2ix,(x,P*) + 2x,(x, P4 + 8ix, A
+2x,x,(4 —i))P¥ + x,,(P,k") — 2(x,x")P,, (x,P*)
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—2ix,(x,P") + (x,x")(x, PP)P, + 2ix,(x,P")
- 2(x,x")P,A — 2ix, A + 2x,P,x°2," — (x,k")P, |,
(3.34)
and
3, K% = [2x°(x, PAIZ,, — (x,x")i — 4P,
+ 2%, 4+2x,3, 37" +3, 4,
(3.35)

noting Eqgs. (3.32a) and (3.32c), already seen to follow from
Eqs. (3.25). The right-hand side of Eq. (3.33) is

[2x,(x, P + 2x,(x,P")A + 4ix,, (x,P") — (x,x")P, (x,P*)
— (x,x")P, 4 - 2i(x,x"P, + 2x,(x,P")A
+2x,4% + 4ix,A
+ °(x, P42, +2x°2, A + 4ix’ S,

+ (x, Pk, + &, 4 + 2ix, |¢.
Combining these results, we see that Eq. (3.33) is
[x.(P.") + 2ix, 4 — (x,&")P, +2x,%,, 3"

+ 2,6 — 2,47 - 2ix°%,,

— (%, Pk, —K,4A — 2k, J¢ =0,

which we write as AY = 0.

Now we note that since Egs. (3.25) form an &/ -invariant
set, P, ¢ satisfies those equations whenever 3 does. There-
fore it is also true that

(3.36)

AP, =0, (3.37)
and hence that
[4,P; ]y =0. (3.38)

Evaluating the commutator appearing here, we then get
from Eq. (3.36)

[gl,u (KVP V) + ZIgAMA - KAP,u + 22;11/2 VA

-2, 47 =23, —x, P, 19 =0, (3.39)
and Eq. (3.36) then implies further that
[Z.6"—k,2i+4)]¥ =0, (3.40)

which is Eq. (3.32d). Contracting Eq. (3.39) with g** we get

k,PY=(2,2"+44% — 4id )y, (3.41)
and combining this with Eq. (3.39) we get
(22,2 =22, — kP, — K, P )¢

= —g,,(2,27+24% 24, (3.42)

which we see is equivalent to Eq. (3.32¢), using the commuta-
tion relations (2.3a). Note that Eq. (3.42) is equivalent to Eq.
(3.39), as it also implies Eq. (3.41) on contraction with g**.

In a similar way we first reduce Eq. (3.25b) to
[4x°x,Z,, 3> + 4ix,x")A — 4(x,x")4*

+ 2(x, x*)(P,k°) — 4(x, P")\x k) |t = K, K. (3.43)

But the left-hand side of this vanishes, as is seen by contract-
ing Eq. (3.39) with x*x*. Therefore Eq. (3.32b) holds. Equa-
tion (3.25¢) yields no equations not included in Egs. (3.32).
To complete the proof, we need to show that Egs. (3.32)
imply Eqgs. (3.25). It is easy to see that this is so for Egs.
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(3.25a)3.25d), essentially by reversing the arguments
above. In order to prove it so for Eq. (3.25¢), we can proceed
in the same way, or, more simply, as follows:

If ¢ satisfies Egs. (3.32), then so does P, ¥. But Egs.
(3.32) imply Eq. {3.25d), and hence

[M,WKV—(H—D)K“ 1P.y=0 (3.44)
as well. But then it follows that
[MMK Y—(+D)K,,P, l¢=0, (3.45)

or, using Egs. (2.6),

[2M;4VMVI. - 2iM,u/. +g/.;4 (KVP v)
+2ig,,D —2g,,D - K,P, —K,P, 1¢y=0. (3.46)

Contracting with g¢* we get Eq. (3.26), and substituting this
back in Eq. (3.46), and noting the relations (2.6), we get Eq.
(3.25e) as required.

Note: We also find that for fields satisfying Eqs. (3.32),
Eq. (3.24) reduces to

Jend CD¢ =6(C,+4 2)¢

Comments:

1. In view of Theorem 3.1 (2), any one (smooth) solution
of Eqgs. (3.32) generates an ./ -invariant vector space of such
solutions. Our main problem is to find for which field types,
i.e., for which finite-dimensional representations of %~ with
basis operators X, «,,, and 4, there exist any solutions of
Eqgs. (3.32).

2. Any finite-dimensional representation of %" can be
reduced to a direct sum of indecomposable representations,
not necessarily irreducible, and correspondingly, any field ¢
can be written as a direct sum of # -indecomposable fields.
Now as far as the index space of the field ¥ is concerned, Egs.
(3.32) involve only the %~ operators. It follows that when
these equations hold, they hold separately on each # -inde-
composable component field in the direct sum decomposi-
tion of ¢. In addition to this, consider the above-mentioned
&/ -invariant space % , of solutions of Eqgs. (3.32), generated
by one solution # in the manner described in the proof of
Theorem 3.1. The operators in .7, as far as their action on
the index space of ¢ is concerned, only involve the % -opera-
tors, according to their definitions (2.5). Therefore % , is the
direct sum of the .&/-invariant spaces generated by the #"-
indecomposable components of ¥. For these reasons it is
sufficient at the outset to consider fields ¢ which are % -
indecomposable, i.e., whose index space carries an indecom-
posable representation of #".

In examining the implications of Eqgs. (3.32), we begin
with (3.32¢), which we write in the form

(3.47)

T =11, (3.48)
with
Ty =220, + 2,27, +8,,Cp
=23,3°% —2%, +8,.C, (3.49)
rww =4, P, +x,P, —g,G, (3.50)
G=C, +24% - 2iA, (3.51)

and C, as in Egs. (2.7).
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We note that

Ty =Ty T =0,

Tuy =71y (3.52)
Then Eq. (3.48) implies that

r, Y =0, (3.53)
or equivalently,

Kk, PHp=2Gy." (3.54)
Equation (3.48) also implies that

T =T, 9. (3.55)

Using Eqgs. (3.52) we see that
™7, =223 22,20, -2, +¢,C)
=4zHex F"y  —4iZre¥, 3V, — 4(C,%
= 4{C,)* — 16(C,), (3.56)
using Eqgs. (2.72) and (2.74) of Lemma 2.5. Now consider
2., =2, kP, +2, k,P"—23 Gl
=P, 2, k" +k,2, P"—ig Kk P
+ ix,P,—2,Gl
[using Eqgs. (2.3b)]
=[Pi+4k, +k,(i—A)P, +ix,P,
- (z/up + 2igm, G ]'vl'
[using Egs. (3.32) and (3.54)]
= [4 kP, —Kk,P,)+ 2K, P, +&,P,)
(3, +2ig,,)G |¥
[using Eq. (2.3¢)]. Then
ze3 r, ¢ = [AZ*Kk,P, —k,P,)—Z*3, G ¥
=[24(i+4k,P*+2CG ¢
[using Eq. (3.32d)]
=2(24 % 4+ 2i4 + C,)Gy

(3.57)

=2[44* + 4C, + 1)4 * + (C,/l¢. (3.58)
Now
TVPer ¢ = Tpvrvp¢
=235 7, 1, (3.59)

using the definition (3.49) and noting Eqs. (3.52) and (3.53).
Combining Eqgs. (3.55), (3.56), (3.58), and (3.59) we get

[4(C,)? — 16(C,)°]¢ = 4[44 * + 4(C, + 1)4* + (C\\]¢,
ie.,

[A%+(C,+ 147+ (Cfl¢=0. (3.60)

Now consider this equation, together with Egs. (3.32b)
and (3.32d). Any field satisfying Eqgs. (3.32) must satisfy these
three equations in particular. In Sec. 2 we have shown that
this set of equations is # -invariant, and in fact character-
izes what we have called a representation of % of Class 2.
Therefore we have

Theorem 3.3: The nonzero components of any field
satisfying Egs. (3.32), belong to a representations of %~ of
Class 2.
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Comment:

1. In the context of free, massless fields satisfying local-
ly conformal-invariant equations it follows that we can,
without significant loss of generality, limit ourselves at the
outset to fields whose index spaces carry indecomposable
representations of % of Class 2. Then Egs. (3.32b), (3.32d),
and (3.60) hold identically. However, we must bear in mind
that such an indecomposable Class £ field may represent
only some of the components of a given field, whose index
space carries a larger indecomposable representation of #7;
and whose extra components, though set to zero by Eqgs.
(3.32b), (3.32d), and (3.60) when the field is free and massless,
could become operative when the field is “in interaction.”
Such a possibility exists because the algebra % has represen-
tations which are not fully reducible. A classification of all
such possibilities would require a classification of all inde-
composable representations of %~ which “contain” a repre-
sentation of Class 2. Such a classification will not be at-
tempted here, and we restrict our attention henceforth to
indecomposable Class £ fields.

We know that an indecomposable representation of %~
of Class 2 is of one of the types listed in Theorem 2.1. We
shall show that if Egs. (3.32) are required to admit plane
wave solutions, then representations of all types except
fA, + ;0,u] are eliminated. The existence of plane wave solu-
tions is essential if the associated fields are to be able to de-
scribe free, massless particles (at the many-particle or one-
particle level, according as the fields are quantized or not).

Definition 3.2: A massless plane wave is a field ¥(x) of
the form

¥(x) = dhoexp ( — ik x,), (3.61)

where 9, is a constant nonzero field and the & * are real

constants, not all zero, satisfying
k*k, = 0. (3.62)

H

Lemma 3. I: Let ¢f(x) be a field whose index space carries
the irreducible representation (m,n) of s1(2,C ), with basis op-
erators 2. If the equations

2,0 =lia+1)d,¢, (3.63)

where « is a constant, admit a massless plane wave solution,
then
= —(m+n+1). (3.64)
Proof: In the notation used in the proof of Lemma 2.5,
Eq. (3.63) reads as

A0y = ady. (3.65)

Suppose that these equations admit a solution in the form of
a massless plane wave (3.61). Then it follows that

Aoky, = aky,. {3.66)
Now in the representation {m,n), according to Lemma 2.5,
Eq. (2.87),

[4 — (m — n)]o[4 + (m — n)]o[4 — (m + n + 1))

A+ (m+n+1)]=0. (3.67)

Applying the operator on the left-hand side of this identity to
ki, we get from Eq. (3.66)
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la — (m —njlla + (m —n)lla — (m +n+1)]

(@+(m+n+1)]k, =0 (3.68)

Since &, ¥, by assumption does not vanish for all i, it follows
that
aefm —n,n—m,m+n+1, —(m+n+1)}. (3.69)

Case (1): a #0.
Multiply Eq. (3.66) on the left by B (again in the nota-
tion of Lemma 2.5). Then we get

BoAoky, = aBoky, (3.70)
whence, with the help of Lemma 2.5, Eq. (2.83) we have

Boky, = a™'C.kih, (3.71)
or, in view of Egs. (2.8),

2,k Yo =a""(m —n)m + n + 1k, ¥,
ie.,

2, k"o = Bk, ¥o (3.72)
where

B=a'm—nm+n+1). (3.73)

In view of Eq. (2.90), we then have in addition
Belm —n,n—m,m+n+1, —(m+n+1)}. (3.74)

Consider the u = 0 component of Eq. (3.72):
SOEk i'/’o = ﬂko¢0

ie.,

S.k¢0 = — ﬂk0¢o (375)
where

S= (S,ojzojso) = (223,231,212)

k=(k'k2k?. (3.76)

Let (s) denote the (25 4+ 1)-dimensional irreducible represen-
tation of su(2). It is known that the representation (m,n) of
sl(2,C), when regarded as a representation of su{2) with basis
operators S, is a direct sum of those irreducible representa-
tions (s) with

sefm+n,m+n—1,..|m-n|}, (3.77)

each such representation occurring once. It is also known
that if nis a real unit vector, then in the representation (s), the
operator S-n has eigenvalues s, s — 1,..., — 5. It follows that
in the representation (m,n) of sl(2,C ), S-n has eigenvalues
m+n,m+n— 1,..., — (m + nj; in particular, the largest
eigenvalue of (S-n)* equals (m + n)*>. Now Eq. (3.75) implies

(Sk)*g = Bk-key, (3.78)

since, by assumption, (k,)? = k-k. Thus on ¢, (S-n)? has the
eigenvalue 32, where

n=k/|k|. (3.79)
It then follows that
B*<(m + n). (3.80)

Next consider the # = 0 component of Eq. (3.63),
Zoik Yo = e + 1kothy
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ie.,

T-kyy = ila + 1)kgify, (3.81)
where

T = (Zo1,202:203)- (3.82)
Let us define the operators

S, =4S+ (3.83)

Then it is easily checked from Egs. (2.3a) that the S, ; (and
likewise the S _ ) satisfy the su(2) commutation relations.
Moreover, the S, ; commute with the S _;, and

S,S, =iSS—TT+2ST)

=43, 3" + iS5, I
=4C, +2C))
=m(m + 1) (3.84)
in the representation (m,n). Similarly,
S_S_=nn+1) {3.85)

in this representation. We can regard S, as the basis opera-
tors of a representation (m) of su(2), and S_ as the basis
operators of a representation (r) of su(2). Then, by the argu-
ment employed above for the operators S, we can deduce
that if n is any real unit vector, the maximum eigenvalue of
(S..-m)? is m? in the representation (m,n); and the maximum
eigenvalue of (S_-n)* is n°. But according to Eqs. (3.75) and
(3.81) we have

S, k¢ = — 4B+ (@ + V]keto (3.86)
whence
(S+ 0’ =18 + (@ + 1)]*¥p (3.87)

with n as in Egs. (3.79). From this we can conclude that
B + a + 1)’ <m?
B —a— 1)’ gn. (3.88)

The only pair of numbers a3 satisfying the conditions (3.69),
(3.74), (3.80), and (3.88) is
a=—m+n+1),f=n—m
Case(2):a=0
According to the Lemma to be proved, there should be
no massless plane wave solutions of Eq. (3.63) in this case,
since(m + n + 1)is never zero. Suppose on the contrary that
such a solution does exist. From Eq. {3.81) we have

T-ky, = ikgtds, (3.90)
while from the u = (1,2,3) components of Eq. (3.63) we get
(zijk / + Emk 0)'/’0 = iki’l/o:

(3.89)

ie.,

(kAS — kT, = — ikif,.
Now take the dot product of Eq. (3.91) on the left with T,
noting Eq. (3.90), to obtain

(T-kAs — kgT-T)py = kotbo. (3.92)

Next take the cross product of Eq. (3.91) on the left with k to
obtain

[(S-kk — (k-k)S — ko(k AT)]t, = O.

(3.91)

(3.93)
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Noting that (k-k) = (k,)°, and that
S{(kATh, =[— T-(kAS) — 2Tk]¢,
= — T-(kAS)g, + 2ko¥o, (3.94)

we take the dot product of Eq. (3.93) on the left with S to
obtain

[(Sk)* — (ko)*S-S + koT-(kAS) — 2(ko)* ¢, = 0. (3.95)
Combining this equation with Eq. (3.92), we get
Sk = (ko)1 + S-S — T-Tlfy- (3.96)

But if @ =0, it follows from Eq. (3.69) that m = n = r, say.
In the representation {r,7) of sl(2,C),

C, =42 I =88 ~TT=4rr+1), (3.97)
so that we have from Eq. (3.96)
(Sn)iho = (2r + 1)¢,, (3.98)

with n again as in Eq. (3.79). However, as argued above, the
maximum eigenvalue of (S-n)® in the representation (r,7) is
(2r)*. Thus we have a contradiction, and there is no massless
plane wave solution if @ = 0.

A closely related result is

Lemma 3.2 (Weinberg’s Lemma): Let ¢(x), 2, be asin
Lemma 3.1. If the equations

2,0 =534, (3.99)
where S is a constant, admit a massless plane wave solution,
then

B=n—m. (3.100)

Proof: On a massless plane wave solution, Egs. (3.99)
reduce to

Bokyp, = ki, (3.101)
(again in the notation used in the proof of Lemma 3.1). Mul-
tiplying on the left with 4 and using Eq. {2.83) we have

BAokyy = Crklo

={(m — n)im + n + 1)kt (3.102)

Suppose 8 = 0. Then Eq. (3.102) implies m = n, so that
B = n — m as required. Suppose 8 #0. Then Eq. (3.102) be-
comes

Aok, =B ~m — n)im + n + L)k, (3.103)
and by Lemma 3.1,

B m—nm+n+1l)= —(m+n+1)  (3.104)
whence f = n — m as required. I

Comment:

1. Weinberg*? considered free, guantized, positive-ener-
gy, massless fields, belonging to the irreducible representa-
tion (m,n) of s1(2,C ). He showed that if such a field has (Lor-
entz-invariant) helicity # then, in our notation, h = m — n.
Now the covariant statement that the field has invariant he-
licity A is Eq. (3.99), with 8 = — h [as Eq. (3.75) shows when
k, = |Kk| > O]. Furthermore, the possibility of quantizing a
field ¥ which satisfies Eqgs. (3.99) is, in the usual formula-
tions, dependent upon the existence of plane-wave solutions
of those equations. For these reasons it seems appropriate to
call Lemma 3.2 “Weinberg’s Lemma”, as we have done
here.
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Theorem 3.4: If ¢ is an indecomposable Class 2 field,
and Egs. {3.32) admit a massless plane wave solution, then ¢
is an indecomposable [4, + ;0,u] field, for some integer or
semi-integer A, and some non-negative integer u.

Proof: In view of Theorem 2.1, it suffices to show that ¢
cannot be {1} a [4, — ;Lu] field, (2) a [4, + ;/,u] field, where
I>0, 0r (3)a {v} field.

1. Suppose that ¢ is both a [A, — ;/,u] field and a solu-
tion of Egs. (3.32). Then Egs. (2.61) hold, and Eq. (3.32¢)
yields

2, Py =iM + N+ 2)P, . (3.105)
Let P,,,; denote the projector onto the ith one (in some order-
ing) of the r,,, multiples of the irreducible representation
(m,n) of s1(2,C) carried by the index space of ¢. (cf. Sec. 2).

Then P,,, commutes with X, M, and N, so that
23 P s =ilm +n + 2P, 9,0, (3.106)
where
Ymni = Prani¥- (3.107)

Now if 3 is a massless plane wave, so is ¢,,,;, if it does not
vanish. But Lemma 3.1 shows that there are no massless
plane wave solutions of Egs. {3.106). Thus ¢,,,,; vanishes, for
every / and every possible (m,n). But then ¢ vanishes, and we
have a contradiction. Thus ¥ cannot be a massless plane
wave.

2. Suppose that ¢ is both a [4, + ;/,u] field (with /> 0),
and a solution of Egs. (3.32). Then by Definition 2.5 the
smallest eigenvalue of — idis{jA | + 1 4- /), whichis greater
than (|4 | + 1). Since Eqgs. (2.60) hold here, it follows that the
least eigenvalue of (M + N ) is greater than |4 |, and that the
least eigenvalues of M and N are both greater than 0. Hence
the operator (MN | is invertible. Now let P, be the projector
onto that subspace of the index space associated with the
eigenvalue (|4 | + 1 + 1) of —id (I<t<u). Since ¢ satisfies
Eq. (3.32¢), it satisfies (by contraction)

K,Prp = (3, 5" 1 44— 4id )y,
= — 8MNy.

(3.108a)
(3.108b)
If 4 is nontrivial, then not every P, can annihilate . Of those
P, satisfying

Py£0 (3.109)

let Pbe the one having the smallest value of £. Since Eq. (2.3¢)
implies that «,, shifts the eigenvalue of — i4 (and hence the
value of ¢} upward by one unit, it then follows that

Px,P*y =0. (3.110)
Eqgs. (3.108) and (3.110) together imply
PMN ) =0. (3.111)

But the projectors P, evidently all commute with M and N,
so that

MNPy =0, (3.112)
and since (MN ) is invertible, we have
Py =0, (3.113)

contradicting the definition of 2. Thus ¥ cannot be a nontri-
vial solution of Egs. (3.32). [Note that we did not need to
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assume ¥ to be a massless plane wave solution. There are no
nontrivial solutions to Egs. (3.32) if ¢ is a [4, + ;/,u] field
with /> 0.]

3. Suppose that $isboth a { v} field and a massless plane
wave solution (3.61) of Egs. (3.32). Contracting Eq. (3.32c)on
the left with 3 7, using Lemma 2.5, Eq. (2.69), and noting
Eqgs. (2.13), we obtain

AS k"Yo=(M—N)M+ N+ 1)k, ¢ (3.114)
The p = 0 component of this equation is
ASky,= (M~ N)M+ N+ 1)k, (3.115)

where S and k are defined as in Eqs. (3.76). Since the opera-
tors 4, Sk, M and N all commute, we get from Eq. (3.115)

A¥SKPh=(M ~ NP(M + N+ 1P(kof'tho.  (3.116)
Since Eq. (2.42a) holds in a {v} representation, we then have
[introducing n as in Eq. (3.79)]

(M — NSy = (M — NPM+ N+ 1), (3.117)
Now introduce, as in Sec. 2, the projector P,,,, onto that
subspace of the index space associated with the totality of
representations (m,n) of sl{2,C ) that are contained in the giv-
en {v} representation of #". Recalling that, for each chosen
m and n, this projector commutes with4, M, Nand 3, we
get from Eq. (3.117)

(m — n(Sn)*Y,,, = (m — n)*(m + n + 174, (3.118)

where

¢rrm = Lomn ¢0' (3119)
If m#n we have then
(S0 Yy = (M + 1+ 14, (3.120)

But, as remarked in the proof of Lemma 3.1, the largest
eigenvalue of (S-n)? in the representation (m,n) of s1(2,C) is
equal to (m + n)>. It follows that

Ymn =0, m#n. (3.121)

Now ina {v} representation of 77, Eq. (2.42b) holds, and we
see that the only representation (m,m) of sl(2,C) which can
occur have

m=n=}v—1) (3.122)
Thus we have

P o=1ve r=iv-—1), (3.123)
whence

Mipy = Npy = rif,. (3.124)

We recall again that the four-vector operator «, can link a
representation (m,n) of s1(2,C) only with (m + , » + 4) and
(m £ 1, n — }). It follows that

P,k P, =0.

rru
Now # satisfies Eq. {3.108a), so that
kK, ktpy =4[MM+ 1)+ NN+ 1)+ 4% —id 1y,
=4[2MN + M + N —i4 1o, (3.126)
using Eq. (2.42a). Multiplying on the left by P, , using Egs.

(3.123) and (3.125), and noting that P,, commutes with M, N,
and A, we get

(2MN + M + N — iA b, = O.

(3.125)

(3.127)
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Then Eqs. (3.124) imply

Ay = —2ir(r + )¢, (3.128)
Now, since Egs. (2.42a) and (3.124) hold, we have

A%y =0. (3.129)
Consistency of Eqgs. (3.128) and (3.129) requires

r=0=v=1) (3.130)
and

Ay, =0. (3.131)

Now consider Eq. (3.32¢), which is supposed to be satisfied
by #. On a plane wave solution, we have

2 k=i — A4)k, Y, (3.132)
so that Eq. (3.131) implies

2 kY = ik, . {3.133)
But Eqgs. (3.124) and (3.130) imply

Pootbo = Yo (3.134)
so that we have

2,k "Pogthy = ik, . (3.135)
Since (0,0) is the trivial representation of sl(2,C),

2, Py =0, (3.136)
and Eq. (3.135) yields

k, =0, (3.137)
providing a contradiction. Thus ¢ cannot be both a { v} field
and a massless plane wave solution of Egs. (3.32). U

Comment:

1. We have yet to show that indecomposable {4, + ;0,4]
representations exist, and that plane wave solutions of Eqs.
(3.32) exist if ¢ is a [A, + ;0,u] field. These questions will be
examined in full in subsequent papers. In the next section we
shall see that well-known sets of conformal-invariant free-
field equations do provide illustrative examples, but all cor-
responding to cases with u = 0.

Now if ¢ is a [A, + ;0,u] field, then in particular,

A=iM+ N+ 1) (3.138a)

M—-N=A4, {3.138b)
and Eq. (3.32c) becomes

2P Y=iM+N)P,. (3.139)

Contracting on the left with 5 ' and using Lemma 2.5, Eq.
(2.69}, we get

ICP, = —iM+ N+ 15, P y. (3.140)

Using Egs. (2.13) and (3.138b), and noting that (M + N + 1)
has a well-defined inverse, we then obtain

2. PY= —AP. (3.141)
If this ¢ is a positive-energy (resp., negative-energy) plane
wave, Eq. (3.141) is a covariant statement that ¢ has helicity
A {resp., — A.){cf. Comment 1 following Lemma 3.2). Not-
ing Theorems 3.1, 3.2, 3.3, 2.1, and 3.4, we therefore have

Theorem 3.5: If the wave equation (1.1) is locally con-
formal-invariant on a vector space Z C &, then the nonzero
components of any plane-wave solution Y% belong to a
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direct sum of indecomposable [4, + ;0,u] representations of
%", for various values of 4 and u. Moreover, if ¢, is a direct-
summand of such a plane wave solution, corresponding to
the representation [A, + ;0,u] for some %, then ¢, has Lor-
entz-invariant helicity A or — A according as the plane wave
has positive or negative energy.

Comment:

1. In this sense we justify our assertion in the Introduc-
tion that Eq. (1.1} is not locally conformal-invariant when
is a potential, since such finite-component fields do not have
(manifestly) Lorentz-invariant helicity,*’ i.e., they do not
satisfy equations of the general form of Eq. (3.141). L]

4. CONNECTION WITH EARLIER WORK

Most earlier works on the conformal-invariance of
massless field equations have been concerned with fields cor-
responding to representations of #” of Type Ia, in the nota-
tion of Mack ez al.*’, i.e., representations in which the «,,

= 0. In the light of Theorem 3.5, the following result is sig-
nificant for such fields:

Theorem 4.1: An indecomposable [A, + ;0,u]-represen-
tation of #” is of Type Ia if and only if # = 0. For each
integral and semi-integral A, there exists exactly one (up to
equivalence) indecomposable [1, + ;0,u]-representation. It
is in fact irreducible, and remains so when restricted to
sl(2,C), thesl(2,C ) contentbeing(4,0)whenA »0,and (0, — 4 )
when A <O0. In either case, the basis operator A satisfies

A=i(d]|+1) (4.1)

Proof: In an indecomposable [4, + ;0,u] representation,
the eigenvalues of — iA are, according to (2.62),

A+ LA+ 2,4 | +u+ 1

Since — i4 is diagonalizable, the representation space is a
direct sum of the corresponding eigenspaces. But if x, =0,
Eqgs. (2.3) show that these eigenspaces are separately invar-
iant under the action of the %" algebra, contradicting the
assumed indecomposability unless u = 0.

Conversely, when u = O the representation space con-
sists of the single eigenspace corresponding to the eigenvalue
(J4 | + 1) of —iA. Since the action of «,, is to increase the
eigenvalue of — i4 by one unit, it follows that in such a
representation

x, =0, (4.2a)
A =iA]+1). (4.2b)

In view of the defining relations {3.138) of such a repre-
sentation, we have then

M+N=||A|, M—N=21 (4.3)
so that if >0,

M=A, N=0, (4.4a)
and if A <0,

M=0, N=—A {4.4b)

It follows from the meaning of M and N that if 4 >0, the
representation [4, + ;0,0), regarded as a representation of
sl(2,C), is a direct sum of replicas of {4,0); while if A <0, itisa
direct sum of replicas of (0, — A ). But when Eqgs. (4.2) hold,
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the corresponding irreducible s1(2,C ) subspaces are also %#"-
invariant, so that if the given representation of %" is inde-
composable, it must consist of a single irreducible represen-
tation (4,0} or (0, — 1) of s1(2,C).

It can now be seen that there exists exactly one (up to
equivalence) indecomposable representation of % satisfying
all these conditions for a given value of A. It consists of the
representation (4,0) of s1(2,C ) [or (0, — A4 ), if A < 0], extended
to a representation of %" by defining «,, and 4 via Egs. (4.2Ejj
It is evidently irreducible.

For an irreducible [4, + ;0,0] field then, Eq. {4.2b) holds
and it can be seen from the cotransformation law (2.4) and
(2.5) for the field under changes of scale in particular, that
such a field has the length dimension — (j4 | + 1). Thisis the
*“canonical” dimension of a field corresponding to a repre-
sentation (|4 |,0) or (0,4 |) of s1(2,C).

Combining Theorems 3.5 and 4.1, we have (cf.
Bracken*!):

Theorem 4.2: If ¢ is a field of Type Ia, and the wave
equation (1.1} is locally conformal-invariant on a vector
space % C &, then the non zero components of any positive-
energy (respectively, negative-energy) plane wave solution in
% belong to a direct sum of irreducible representations of
s1(2,C) of the type (m,0) or (0,n), with the corresponding
length dimensions ( — m — 1) and (— n — 1), and corre-
sponding Lorentz-invariant helicities m and — » [respec-
tively, — m and n].

What is the content of the critical Egs. (3.32) for irredu-
cible [4, + ;0,0] fields, or direct sums of such fields for var-
ious values of A ? Equations (3.32b) and (3.32d) are satisfied
identically. We note that since the only representations (m,n)
of s}(2,C) involved here have mn = 0, then

MN =0, (4.5)

and Eq. (3.32¢) can be written with the help of Eqs. (4.2a),
(3.138a), (4.5), and (2.13) as

Tuw¥ =0, (4.6)
with 7., as in Eq. (3.49). But in a representation of the type
under consideration, 7,,, vanishes identically because of the
following:

Lemma4.1:Let 3, bebasis operator of a finite-dimen-
sional representation (m,0) or (0,n) of s1(2,C ). Then the tensor
T, defined as in Eq. (3.49), vanishes identically.

Proof: In the representation (m,0) we have [cf. Eqgs.
(3.83) and (3.85)]

S, =—i3, (4.7)
and Eq. (2.69) of Lemma 2.5 becomes

b izﬂvz VA - ZM = ingM

=im(m + 1)g,;
=4iCi8,1,
ie.,
Tuw = 0.
The argument is similar for the representation (0,n). O

It follws that for fields which correspond to a direct sum
of irreducible [4, + ;0,0] representations of %, Eqs. (3.32)
reduce to (3.32a) and (3.32¢), i.e.,
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P, PHy =0, (4.8a)
2 PY=(i—A)P,y=—iM+ NP, ¢. (4.8b)
And furthermore, if the direct sum of fields contains no sum-
mand ¢, with A = 0, then Eq. (4.8a} is implied by Eq. (4.8b),
since
M+ Ny, =(—id - )y, = |1, (4.9)
and contracting Eq. (4.8b) on the left with P* gives
— M+ N)P*P, ¢, =0. (4.10)

We now consider the results of earlier investigations in
relation to ours.

A. The scalar field

The index space is one-dimensional in this case, and
carries the trivial representation (0,0) of s1{(2,C). This can be
extended to the nontrivial representation [0, + ;0,0] of #,
by takingx, = Oand 4 = + i. The dimension of the field is
then ( — 1). Eq. (4.8b) is trivial in this case as
2,., =0=M = N. Weare left with the single Eq. (4.8a), i.e.,
the wave equation, in our locally conformal-invariant set.

B. The two- and four-component neutrino equations

Consider the two-component neutrino field y, with in-
dex space carrying the representation (3,0) of s1(2,C) with
basis operators

S=1}0,T= —lJio 4.11)
in the notation of Lemma 3.1. Here o are the Pauli matrices.
This representation can be extended to the representation
[1, + ;0,0)of #°, by takingx, = Oand 4 = 3i/2. Theny has
dimension ( — 3/2). A locally conformal-invariant set of
equations (implying Cly = 0) is then Eq. (4.8b), which is
(since M = §, N = 0 here)

2, dy= —kid.x (4.12)
or equivalently

oVy = —duw, (4.13a)

(CAV +iody)y = —iVy, (4.13b)
where

V = (d,,0,,0;). (4.14)

Eq. (4.13b) is implied by Eq. (4.13a), so we can consider Eq.
(4.13a) alone, the Weyl equation, as a locally conformal-in-
variant equation. It implies that a positive energy field has
helicity ( + 1).

The case of a two-component field corresponding to the
representation (0,3) of s1(2,C), and [ — 4, +;0,0] of #7, is
similar. Again the field has dimension ( — ). The four-com-
ponent (Dirac bispinor) neutrino field ¢ is the direct sum of
these two two-component fields. The appropriate represen-
tation of %" is [§, + ;0,0] ® [ — 4, + ;0,0], with basis
operators

Z,, =lilrv.7r.], x. =0 4=0), (4.15)
where y,, are the Dirac matrices, satisfying
Yulv VoV = 284, (4.16)
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Equation (4.8b) reads

cltl[}/p ’7’\/ ]aV¢ = - %iay 1/17 (4 17)
which, with the help of Eq. (4.16) can be reduced to
Vulr,d W =0,
or equivalently,
Yo"y =0. {4.18)

The two-component fields are recovered with the use of the
projectors

P, =H1xvs), (4.19)
where

Vs = — VoV1V2Vs (4.20)
Thus if

v, =P, (4.21)
then ¢, satisfies

sy = ¢, . (4.22)

and corresponds to the representation [ + 1, + ;0,0] of %",
This can be seen by evaluating

C, =43, 3" =3 (4.23a)
C,=4Z, 3" =4 — iysZ, ) 3" =()ys.  (4.23b)
A comparison with Eq. (2. 13) shows thaton¢, ,M =land

N =0, whileon¢_, N=1and M = 0. The fields ¢ , have
helicity + 1 (for positive energy) in accordance with Theo-
rems 3.5 and 4.2.

C. Maxwell’'s equations for the free electromagnetic
field

The index space of the electromagnetic field
(x){ = — F,,(x)] carries the representation (1,0} & (0,1)
of s](2 C). We can extend this to a representation
[1, +;0,0]®[ — 1, +;0,0] of 77, by taking x, = 0 and
4 = 2i. Then F,, has dimension { — 2). Since (M + N} = 1
here, a locally conformal-invariant set of equations (imply-
ing OF = 0) is, from Eq. (4.8b),

3, F= —id,F. (4.24)
The sl(2,C) operators act on F 4 as
( F)aﬁ_(zyv)aﬁ po? (425)
where
- Zi(zuv)aﬁpa = (gya v gva " )613
*‘éa @ﬁﬁav ngMq
- (gy,Bévp - gvﬁayp)aaa
- 5Bp(gua 8v — &va 6u 0)’ (426)

and on substituting this expression in Eq. (4.24) and using the

antisymmetry of F,, , we get

g#aaprﬁ - gﬂb‘apra = - auFaﬂ aaFBu - aBFua
{4.27)
Contracting both sides with g,,, we find
&F,, =0, (4.28)
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and Eq. (4.27) then implies also
0, Fop + 0pF,, +0,F; =0. (4.29)

Egs. (4.28) and (4.29) are the free—ﬁeld Maxwell’s equations.
They are written in compact form in Eq. (4.24) [or Eq.
(4.27)]. Note that by Theorems 3.5 and 4.2, the [ + 1, + ;0,0]
component F, ‘%' of F,, satisfies also

2 OF'* = 9 F'*), (4.30)
an equation which is also locally conformal-invariant, and

which states that the invariant helicity of (positive energy)
fields F,,'*'is + 1. Itis easxly checked that

1y

F;:vli 2%( ;tv+l )’ (431}
where
F;u % L‘V(IO'F e (432)

Thus F'* (respectively, F'~)) is the right (respectively, left)
circularly polarized component of F.

D. The Bargmann-Wigner equations

The index space of the fields £ used by Bargmann ez al.'®
to describe massive and massless particles with spin s{ > 0) is
the symmetrized tensor product of 2s identical, four-dimen-
sional Dirac bispinor spaces, which we may label with
a = 1,2,..,2s. Let 7,'* be the Dirac matrices acting on the
ath four-dimensional space. Then for each @, the relations
(4.16) are satisfied, and y,, ' commutes with ,,*' if a #.
Introduce also 5\, @ = 1,2,...,2s, by analogy with Eq.
(4.20).

For massless particles with helicity + s, Bargmann et
al. further required that £ { = £, now) satisfies

yEL =£,, a=12..2s. (4.33)

Since the eigenvalues + 1 and — 1, respectively, of 5 la-
bel the representations (1,0) and (0,}) of s1{2,C) carried by the
ath factor space, it follows that the index space of £ ;. carries
the symmetrized tensor product of the representation (4,0)
with itself (2s) times. This is the representation (s,0). Similar-
1y we may introduce £ _ satisfying

P&, a=12,.,2s,

and associated with the representation {0,s} of sl{2,C ).
Thesl(2,C ) basis operators in both cases are (restrictions

of)

(4.34)

v l Z [v." 7. ]

a=1

= —isg,, + ?i 2 yﬂ(al?,v(al, (4.35)
a=1
so that
25
=33, 3 =us+1)—— Y (7, )’
a<f=1
(4.36)
According to Egs. (2.8), on the representation (s,0) or (0,s),
= 2s{s + 1). (4.37)
It follows that
25
2 (7, 1a)}/1(5})2§i =0 (4.38)
a<fB=1
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Now 7, and iy,'® { j = 1,2,3) can be taken to be Hermitian,
without loss of generality, for each value of a. Thus
(v,,'”¥**#)) is Hermitian. It then follows from Eq. (4.38) that

¥, PPN =0, a#p. (4.39)
Conversely, it can easily be seen that if £ satisfies Eqgs. (4.39),
then it belongs to that part of the tensor-product space assoi-
cated with the representation (5,0} & (0,s) of sl(2,C). Eqs.
{4.39), and equivalently the symmetrization conditions and
Eqgs. (4.33)and (4.34) of Bargmann ez a/, are not to be thought
of as dynamical conditions, but rather as statements defining
the index space of the fields to be used to describe massless
particles. One could, of course, start with 2(2s 4+ 1)-compo-
nent fields corresponding to this representation of sl(2,C),
but the advantage of the approach used by Bargmann et
al.—introducing redundant components and then imposing
conditions which set them to zero—is simply that one can
employ the familiar algebra of the Dirac matrices.

The representation (s,0) @ (0,s) can be extended to the
representation [s, + ;0,0] ® [ — s, + ;0,0] of 7, by setting
k, =0and A4 = + i{s + 1). Then § has the canonical dimen-
sion ( — s — 1). Since (M + N) = s here, alocally conformal-
invariant set of equations for £ (implying 0& = 0) is then,
from Eq. {4.8b},

2,.0¢= —is. (4.40)
Substituting for 2, from Eq. (4.35), we get
2s
> 7Ny, M) =0. (4.41)

a=1

Contracting on the left with ), using the commutation

and anticommutation relations between the y,'®), and noting
Egs. (4.39), we get
(1, PIME =0, B=12,.2s. (4.42)

Conversely, if Eqs. (4.42) hold, then so do Egs. (4.41) and
hence Eqgs. (4.40). Thus the locally conformal-invariant Eq.
(4.8b) is in this case equivalent to Eqs. (4.42), which are the
Bargmann-Wigner equations.'® The component £ _ corre-
sponding to the representation [ + s, + ;0,0] of % can be
obtained as

£, = ] 11+ 7)€

a=1

(4.43)

It satisfies the locally conformal-invariant equation (3.141)
with A = + s [and also Eqgs. (4.33) or (4.34)], and so (for
positive energy) has helicity + s as expected.

The Egs. (4.40), where the index space of £ carries the
representation (s,0), (0,s), or {5,0) ® (0,s) of s1(2,C ), were consi-
ered before the work of Bargmann ef al. by Dirac,'® Fierz,'®
and Garding,'* using the dotted—undotted spinor formalism.
The complete equivalence of these different ways of writing
the same equations must be emphasized. Those sections in
other works,'92*?® concerned only with showing the confor-
mal invariance of these equations, were repeating in different
formalisms part of the work of Gross.'” McLennan'® had
previously shown the local invariance of these same equa-
tions.** Note also that for s = | and s = 1 the Bargmann-
Wigner equations are completely equivalent to the neutrino
equations, and Maxwell’s equations, respectively, as can be
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seen from our discussion above.

When we write all these equations in the forms (4.12),
(4.17), (4.24), and (4.40), we see most clearly that they belong
to one family—the family of conformal-invariant equations
for Type Ia fields.

E. Errors in the work of McLennan and Post

McLennan"? claimed to prove the conformal invari-
ance of certain sets of field equations described by Gard-
ing.'* In these papers the dotted-undotted spinor formalism
is used. The index space of a field with p undotted indices and
g dotted ones (p and ¢ are non-negative integers}, separately
symmetric in each set, carries the irreducible representation
(4p,4g) of s}(2,C) in our notation. In particular, fields ¢ corre-
sponding to the representation (1p,iq) ® (ig,4p) [With p#q]
are considered, together with first-order field equations
[McLennan’s Egs. (3.19)] which imply that the wave equa-
tion (1.1) is satisfied. According to our results above, these
equations can not be locally conformal invariant unless
pgq = 0. This contradicts a claim made by McLennan, but it
is easy to find an error in his analysis. He supposes [see his
Eq. (6.4)] that under a special conformal transformation, a
component of the field corresponding to the representation
{1p, iq) transforms in such a way that its p undotted indices
are not affected. Similarly, for a component corresponding
to (1g, 1p), the p dotted indices are not affected. But such
transformation laws are not consistent with the structure of
the Lie algebra of the conformal group, for an infinitesimal
translation does not affect spinor indices, but the commuta-
tor of our infinitesimal special conformal transformation
along one spatial axis, and an infinitesimal translation along
another, is an infinitesimal rotation about the third [cf. Eq.
{2.61)], and so affects all dotted and undotted indices. There-
fore, an infinitesimal special conformal transformation must
in general also affect all dotted and undotted indices.
McLennan’s proposed transformation law is not consistent
if p#£0.

In claiming to deduce the conformal invariance of equa-
tions satisfied by fields with p = g and zero helicity (such
fields can also be thought of as symmetric, traceless, tensor
fields ,,,. , with p indices), McLennan merely remarked
that such sets of equations *‘are equivalent to the scalar or
pseudo-scalar wave equation” (1.1), which is conformal in-
variant. In fact one can show that*’

@rvp =3,0,,0. (4.44)

where @ satisfies Eq. {1.1). However, the conformal invari-
ance of Eq. (1.1) for ¢ does not ensure the invariance of the
equations satisfied by ¢,,,., defined as in Eq. (4.44), and in
fact our results imply that these equations are not invariant.
The index-space representation of s1{2,C ) associated with
this tensor field is (1p, }p). This can be extended to a represen-
tation of % only by settingx, = Oand 4 equal to a constant,
so that the field is in particular of Type Ia. But then Theorem
4.2 shows that the wave equation is not locally invariant on
such a field, if p£0. The reason for this breakdown of con-
formal invariance in the passage from @ to @,,,..., is easily
seen—the operators d,,,d, - in Eq. (4.44) are Lorentz-covar-
iant but not conformal-covariant objects.
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More recently Post?® considered free, massless, posi-

tive-energy fields ¢™"(x) whose index space carries an irre-
ducible representation (m,n) of sl(2,C ), and which have Lo-
rentz-invariant helicity A = (m — n) [cf. Lemma 3.2]. He
claimed to prove that the equations satisfied by such fields,
including the wave equation (1.1), are conformal-invariant,
even if mn#0. This contradicts our results, and indeed, the
result given by one of us*' before Post’s work appeared. His
proof is incorrect, and depends crucially on a result attrib-
uted to Mack e al.?* [See the paragraph following Post’s Eq.
(5.11).] This result, which is in fact invalid, was not proved in
Ref. 22, though its validity was implied there. The result in
question can be described as follows.

A Hilbert space of the fields #*™" can be defined, carry-
ing the unitary, irreducible representation of ISL {2,C) ap-
propriate to a massless “particle” with positive energy and
helicity (m — n). This representation extends to a unitary
irreducible representation of SU(2,2), with self-adjoint gen-
erators P ,K 7,D’, and M, satisfying, on a suitable do-
main, the commutation relations (2.6). Then these operators
can be identified on the Hilbert space with the generators
{2.5) of conformal transformations for these fields, after ap-
propriate choices for «,, and 4 are made.

Mack and Todorov showed that this is so if mn = 0, but
they did not consider directly the cases with mn #0. Instead
they quoted a result of Weinberg,*? who showed thatif a free,
massless positive-energy field y corresponds to an irreduci-
ble index space representation (m,n) of sl(2,C) with
m — n = A, and has Lorentz-invariant helicity A, then y isa
linear combination of the rth partial derivatives with respect
to the variables x*, of a field £ which also has invariant heli-
city A. If 10, then £ corresponds to an index-space repre-
sentation (4,0), and r = 2n. If 1 <0, then £ corresponds to
{0, — A), and r = 2m. On this basis, Mack and Todorov con-
cluded that they could restrict their attention to the cases
with mn = 0, in order to prove the desired result for the
operators P;,K ;,D',and M, . However, as remarked in
the Introduction, and as implied by Theorem 4.2, the result
in question is not valid if mn#0. In fact one finds that the
operators K ; in these cases, unlike the K, of Egs. (2.5), are
nonlocal. The reason for this breakdown of conformal in-
variance, in the context of Weinberg’s result, is again that the
operator d, relating massless fields with mn = 0 to ones with
mn #0 [cf. Eq. (4.44)] is not conformal covariant. Essentially
the same misunderstanding of this point led McLennan into
error, as noted above.

F. Other related works

Several authors***** have considered the conditions
to be satisfied if classical field equations derivable from an
action principle are to be conformal invariant. However,
they have not been concerned with the specific situation
where the wave equation (1.1) is required to be one of the
field equations obtained. The conditions obtained are ac-
cordingly much less specific than ours. (In another sense,
they are more specific, since it is not clear which of the sets of
field equations we have described are derivable from an ac-
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tion principle.) Furthermore, these works have concentrated
on fields of Type Ia.

The conformal invariance (in a weaker sense) of wave
equations for massive particles has been considered by other
authors.>' 1245464 Because the taking of the zero mass limit
is a nontrivial matter, particularly in the context of confor-
mal invariance,5’ it is not clear how the results obtained in
these works relate to ours.

The conditions under which Lorentz-invariant equa-
tions of the form (1.2) are also conformal invariant have been
analyzed by Kotecky et al.*® But again, because they did not
specifically require that Eq. (1.1) should follow from Eq.
(1.2), their results are not easily related to ours. They did
relate their results to some extent with those of McLennan, '
but did not detect any errors in that work. Only fields of
Type Ia appear in the results of Kotecky ef al. One reason for
this is easily seen. If fields of Type Ib are involved, then one
has a four-vector operator «,, acting on the index space, and
having scale dimension { + 1). Then as well as equations of
the forms (1.2), field equations of the form

L,y =A¢ (4.45)

must also be considered, where 4 is a dimensionless matrix.
Equation {3.54) provides an example. Massless wave equa-
tions of the general form (4.45) have appeared in a more
general context in the work of Wightman.®® Let us remark
also that for field equations of the form (1.2}, (4.45) where L,
is rectangular, an important and nontrivial constraint [cf.
Theorem 3.4], not considered by Kotecky et al., is that the
equation should admit plane wave solutions.

Fields of Type Ib have received comparatively little at-
tention in the literature. Ciccariello and Sartori*? (see also
Ferrara et al.,>® and Lopuszanski and Oziewicz*®) consid-
ered fields of Type Ib and associated conformal-invariant
wave equations, but once again, their aims were different
from ours, and their results and ours are not easily related.
Lopuszanski et al. did note the appearance of conformal-
invariant equations of the form (4.40) for fields of Type Ia, as
one of us had done earlier.*' (See also Seetharaman.*®)

Since the Lie algebra 7 is a subalgebra of su(2,2), any
finite-dimensional representation of the latter defines a re-
presentation of the former. Mack ef a/.* have considered
fields of Type Ib generated in this way. But it must be empha-
sized that only a limited class of representations of %", and
consequently, only a limited class of field types, can be ob-
tained in this way. There is a countable number of inequiva-
lent, finite-dimensional representations for su(2,2), but an
uncountable number for %" and representations of % in
which 4 is not diagonalizable [cf. Egs. (2.17)] are not con-
tained in representations of su(2,2).%

Dirac® and Hepner®' (see also Mack et al.** and Bu-
dini®®) have considered the particular case of Dirac spinors
¥(x) and the associated four-dimensional representations of
su(2,2) with [cf. Egs. (2.5) and (2.6))

pu :%K_l(l in)y;u muv =‘lti[7,u'7/v]’

d= Fliys k,=kl1F7s),- (4.46)
Here the Dirac matrices are as in Sec. 4.2, and « is a nonzero

constant with dimensions of length. (Representations with
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different values of x are equivalent, so this value has no phys-
ical significance.) Then one may take for the generators of
conformal transformations of ¥{x)
P, =id, +p.,, M, =x,P, —x, P, +m,,
D=x"P, +in+d, K,6 =2x,(x"P, + in)
—x"x, P, +k,, (447)

where n is a constant. These operators satisfy the relations
(2.6), but are not of the form (2.5). However, by a similarity
transformation®?

Plx)—exp( — ix’p, )Yi(x),

P, —exp( —ix'p,)-P, -explix’p, ), (4.48)
etc., one can bring them to the form (2.5), with

Ky =Wl Fys), A=inFliys

2z, =4iv.r]. (4.49)

These operators (4.49) span a representation, D, say, of
#", which is not a [A, + ;0,u] representation for any A, u.
However, the representation D, , for example, is indecom-
posable but not irreducible, and contains the representation
[4, + ;0,0] as an invariant subrepresentation, associated with
the subspace of spinors on which s = + 1. Accordingly,
the equation (1.1) is then locally conformal invariant pro-
vided Egs. (3.32) hold, and here they reduce to

(v.P*)¥ =0, (4.50a)

s =1 (4.50b)
This is an example of the type of behavior whose possibility
was indicated in Comment 1, following Theorem 3.3. In the
present example, so long as we are concerned only with free
massless fields, there is no real loss of generality if we restrict
our attention to spinors for which Eq. (4.50b) is satisfied
identically—i.e., essentially two-component spinors corre-
sponding to the representation [{, + ;0,0] of #”[cf. Sec. 4.2].

On the other hand, the equations

PPY=0 (4.51a)

and

ys=—9¢ (4.51b)

are not conformal invariant if we adopt the representation
D, , for iy, since they are not consistent with Eqs. (3.32). [The
roles of the equations (4.50b) and (4.51b) are interchanged if
we consider instead the representation D, _ for #.] The situa-
tion here is to be contrasted with that in Sec. 4.2, where the
representation [}, +;0,0] ® [ — §, + ;0,0] of #” was adopted
for ¢, and both sets of equations, (4.50) and (4.51) are confor-
mal invariant. When we vary the relevant representation of
#" on Dirac spinors, we are really changing the field type,
and when we talk about conformal invariance or noninvar-
iance of equations like (4.50) of (4.51) we must be clear as to
what type of fields we are considering. Failure to do so seems
to have led to some confusion in the literature.®®® In par-
ticular, we should not confuse the results described here for
spinors corresponding to the representations D, ,, D, _, or
(3, +;0,0) @ [ — 1, +;0,0}) of # with the result implied by
Dirac’ {see also Budini*® and Castell®) that the equation

(1 tyshPyp=0 (4.52)
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is conformal invariant if ¢ corresponds to the representation
D, , of #".Eq.(4.52)does not imply Eq. (1.1), so#(x)isnota
massless field according to our definition, and our general
results are not directly relevant to this case.

5. CONCLUDING REMARKS

We have derived the conditions under which the wave
equation (1.1) is locally conformal invariant, and have seen
as a result that although some well-known sets of massless
wave equations for fields of Type Ia are invariant, many oth-
ers are not. Indeed, it is fair to say that most massless wave
equations for fields of this type are not conformal invariant.
In particular,*' Eq. (1.1) is not invariant if the index space of
1 carries an irreducible representation (m,n) of sl{2,C) with
mn##0.

Most generally, we have shown that only [4, + ;0,u]
fields are of direct interest in the discussion of locally-invar-
iant wave equations, and that these always carry Lorentz-
invariant helicity 4 (for positive-energy plane waves). For
u > 0, these fields are of Type Ib. In subsequent papers, we
shall describe the representations [A, + ;0,u4] of %" com-
pletely, and also examine in detail the consequences of Egs.
(3.32) for such fields, thus completing our analysis.
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Il. Classification of relevant indecomposable fields
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It has been shown in Part I that the requirement of local conformal invariance of the wave
equation for finite-component fields focuses attention on fields whose index spaces carry a certain
type of finite-dimensional, indecomposable representation of the nonsemisimple Lie algebra
(ks D d )P sl(2, C)). All representations of this type are here described in complete detail, in each
case in an sl(2, C) basis. Although indecomposable, these representations are in general not fully

reducible.

PACS numbers: 11.10.Qn, 11.30.Ly, 02.20. + b
I. INTRODUCTION

In an earlier work' (henceforth referred to as BJ1), we
have considered the conditions for local conformal invari-
ance of the wave equation

O¢ix) =0, x=(x"), p=0,1,2,3, (1.1)

where ¢ is a classical field with some fixed, finite number of
complex-valued components. The index space of this field is
assumed to carry a corresponding finite-dimensional repre-
sentation of the Lie algebra

¥ = (k,Dd)Dsl2, C)), (1.2)

with basis operatorsk,,4,and 3, (= — %, )satisfying the
commutation relations

i[zﬂv’ zpa ] = g#PZVU + gvaz#p

— 8o — BuoZups (1.3a)
i[5, 20, ] = 8upk, —8uKps (1.3b)
[«.,«,] =0, (1.3¢)
[2.:4]1=0, (1.3d)
i[«,, 4] =x,. (1.3e)

Only if this assumption is made? can one define, for an arbi-
trary infinitesimal conformal transformation of space-time,
an appropriate cotransformation law for the field 1. The
generators of infinitesimal conformal transformations of ¥
then take the forms

homogeneous Lorentz

transformations: xude = %.0,) + 2, (L42)
space-time translations:  id,, (1.4b)
dilations: ix*d, + 4, (1.4c)

special conformal
. 2ix,x"3, +2x,4 — ix*x,3
transformations: # + X voH

+23,x" 4K, (1.4d)

*Present address: Department of Mathematics, University of Queensland,
St. Lucia 4067, Queensland, Australia.

"Present address: Department of Mathematics, University of Toronto, To-
ronto, Ontario, M5S1A7, Canada
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and satisfy on suitably smooth i the commutation relations
appropriate to the Lie algebra of the conformal group. The
significance of %" in this connection stems from the fact that
it is the Lie subalgebra associated with those conformal
transformations which leave invariant the point x = 0, viz.
those composed of homogeneous Lorentz transformations,
dilations, and special conformal transformations. (An iso-
morphic subalgebra is associate with the dilation group,
composed of homogeneous Lorentz transformations, dila-
tions, and space-time translations, and is of independent in-
terest. The dilation group, like the conformal group itself,
has been discussed as a possible approximate space-time
symmetry group in particle physics. In that context, howev-
er, the main interest is in infinite-dimensional representa-
tions® of #°.)

The problem of classifying all finite-component field
types having inequivalent cotransformation laws for infini-
tesimal conformal transformations, is seen to correspond to
the problem of classifying all inequivalent finite-dimensional
representations of 7. Such representations have been
called? of type I, as distinct from infinite-dimensional (type
II) representations. More particularly, a finite-dimensional
representation and corresponding field is called of type Ia if
the associated basis operators «,, vanish identically, and of
type Ib otherwise. The Lie algebra % is not semisimple, and
its representations of type I or II are not in general fully
reducible. The problem of classifying all inequivalent repre-
sentations of type Ib in particular seems quite beyond our
present powers.

In BJ1, we have defined the wave equation (1.1) to be
locally conformal-invariant on a vector space % of smooth
solutions, if % is invariant under the action of the conformal
algebra (1.4). Then we have shown that the non-zero compo-
nents of any 3 in such a % must belong to a representation of
" from a certain class &, characterized by the property
that the basis operators of any representation from this class
satisfy the % -invariant set of equations

K =0, (1.5a)
S =4 +ik,, (1.5b)
A%+ (C,+ 1A+ (G =0, (1.5¢)
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where
C,=42,2",
C,=(1/8)ie"*°%, . 2,,.

(The metric tensor is diagonal with
800 = — &1 = — &= — &3 = -+ 1, and the alternating
tensor has €' = + 1.) Accordingly, we have restricted our
attention to indecomposable (but not necessarily irreducible)
representations of %" in Class £, and associated indecom-
posable Class 2 fields.

We have shown furthermore that if {a) ¢ is an indecom-
posable Class 2 field, (b) a locally conformal-invariant vec-
tor space % of solutions of the wave equation (1.1) does exist,
and (c) at least one of the solutions in % is a plane wave, then
the associated indecomposable Class £ representation of
% must be, for some integer 24 and non-negative integer u,
a representation of the type we have labeled [A, + ; 0, u].
Since we are interested primarily in the possibility of using
locally conformal-invariant spaces of solutions of Eq. (1.1} in
the description of free massless particles, the condition (c} is
important, and our attention has therefore been limited fur-
ther, to indecomposable [, + ; 0, u]-representations and
fields.

The basis operators of such a representation satisfy, by
definition, certain conditions additional to (1.5). In order to
be able to describe these conditions, we must first recall that
every finite-dimensional representation of %" must be fully
reducible when regarded as a representation of the sl(2, C)
subalgebra associated with the basis operators 2, . Let
(m, n) label the (2m + 1)(2n + 1)-dimensional irreducible re-
presentation® of sl(2, C), where 2m and 2n are non-negative
integers, associated with eigenvalues 2[m(m + 1)

+ n(n + 1)]and [m(m + 1) — n{n + 1)] of thesl(2, C }-invar-
iants C, and C,, respectively, of Egs. (1.6). An arbitrary fin-
ite-dimensional representation of #” must decompose into a
direct sum of such representations (m, n), with various values
of m and n, and various multiplicities. The operators C, and
C, in such a representation of %~ will therefore have the
form

C,=2MM+1)+2N(N + 1), (1.7a)
Cy=MM+1)— NN+ 1), (1.7b)

where M and N are non-negative, simultaneously diagonali-
zable, sl(2, C) scalar operators whose eigenvalues are non-
negative integers or semi-integers. On that subspace of the
representation space for % which is associated with the to-
tality of irreducible representations {m, n) of sl(2, C ) for fixed
m and n, M and N have the eigenvalues m and n, respective-
ly.

(1.6a)
(1.6b)

The additional defining properties of a [4, +; 0, u]-
representation of %" are then

A =iM+N +1), (1.8a)
implying in particular that 4 is diagonalizable,
(i) M —N=A4, {1.8b)

(iii) the eigenvalues of — i4 are exactly the set of
numbers

{Al+1 Al +2,= |A]+u+1}. (1.8c)
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The conditions (i) and (ii) taken together are stronger than,
and imply condition (1.5c), as can be seen with the help of
Egs. (1.7). Thus the independent conditions characterizing a
[A, + ;0, u]-representation are Egs. (1.5a), (1.5b} and condi-
tions (i)-{iii) above.

In BJ1 we have shown that a [4, + ; O, u]-representa-
tion is of type Iaif and only if u = 0. We have shown also that
for each integer 24 there exists, up to equivalence, exactly
one indecomposable [A, + ; 0, 0]-representation. It is in fact
irreducible, and remains so when restricted to sl(2, C), being
then labeled (4, 0) if A>0 and (0, — 4 ) if A <0. The basis
operator 4 is constant, having the value i(|4 | + 1), and of
course x, = 0.

We have shown also that if ¢ is an indecomposable
[A, +;0, 0] field, and lies in a locally conformal-invariant
vector space % of solutions of Eq. (1.1), then 1/ actually satis-
fies a set of equations including (1.1). These equations are
equivalent to the scalar wave equation if A = 0; to two-com-
ponent neutrino equations if |4 | = 1; to Maxwell’s free field
equations if |4 | = 1; and in general to the Bargmann—
Wigner equations for massless fields of helicity A. The con-
formal invariance of these sets of equations is well known.®
In order to find new conformal-invariant free massless field
theories, possibly of interest to physics, it is therefore neces-
sary to look at what are in effect, the only remaining possibi-
lities, indecomposable [A, + ; 0, ] fields with u > 0. These
are fields of type Ib, and the corresponding representations,
although indecomposable, are not irreducible.

We have not attempted a complete description of these
representations in BJ1. Indeed, we have not even proved
their existence for arbitrary integers 24 and u > 0. It is the
purpose of this work to fill these gaps. That we are able to
achieve this object completely, as the ensuing Theorem 2.1
shows, is remarkable, given the apparent intractability of the
corresponding task for the totality of representations of type
Ib, or even those of Class £. Our success depends upon the
diagonalizability of 4 in [A, + ; 0, u]-representations, and
the availability of Gabriel’s theorem,®” whose substance
should not be underestimated. We were able to derive our
own proof of the latter from ““first principles” for the special
case of interest to us (i.e., for the quiver corresponding to the
Dynkin diagram for 4, , | - see Sec. 2} but this proof runs to
several pages.

In subsequent work we shall describe the structure of
the new sets of locally conformal-invariant massless field
equations obtained for indecomposable [4, + ; 0, u] fields
with u > 0.

Il. STRUCTURE OF THE RELEVANT
REPRESENTATIONS OF 77~

Theorem 2.1: Up to equivalence, there is exactly one
indecomposable [4, + ; 0, u}-representation of %~ for each
integer or semi-integer A and each non-negative integer u.
When regarded as a representation of sl(2, C), this represen-
tation of 77 has the decomposition

A, 0 & (A + 4, %)9...@(/1 + Lu, iu) (2.1)

if A>0, and
0, —A)eh,i—A)e...e(u, lu—A1) (2.2)
A. J. Bracken and Barry Jessup 1948



if A <0. The dimension of the representation is

d=Yu+ 1)u+2)2u+3+6/1]). (2.3)
A basis consisting of vectors

|8, s, 83,

SeflAl+ 1L, 141 +2,.., |2+ 1+u},

sefl[A, 1A+ 1, .,6—1],

sEf{s, s —1,..., —s}, {2.4)

can be introduced, on which the operators 4, > vs Ku» and
the related operators M, N, C,, and C, of Egs. (1.6) and (1.7)
act as follows [we write

(Z2 23, Z10) =8, (2.5a)
(Zoi» Zoz Zo3) =TJ: (2.5b)
A18,s,5;,) =i8 6,5, 54), (2.6a)
S-S|8, 5, 5,) = s(s + 1)18, 5, 53), (2.6b)
S$516, 8, 83) = 5516, 5, 53), (2.6¢)
Cil6,8,5,) =A*+ 82— 1)|8,5,55), (2.6d)
C,l6,5,5,) =488, 5, 55), (2.6e)
M|6,5,55) =46+ A —1){5,5,53), (2.6f)
N|8,5,53) =46 — 4 —1)|, s, 53), (2.6g)
(S, £ i$5)6, 5, 53)

=[{s s+ s Fsy)]'"?8, 5,52 1), (2.7)

158, s, 53)
= D (s)[(6 — )6 + 5)is — s3)s + 551"
X 18,5 — 1,583) + 5:6E (s)18, 5, 53)
—Dis+1)[6—s—1)6+s+1)
X (s — 55+ s + 5, + D]V, s + 1, 55), (2.8)
(T) £ iT5)|6, s, 53)
= + D(s)[(6 — N6 + s)is Fsslls Fss — 1)]'"?
X186, s— 1,55+ 1)
+8E ()is Fs3)ls 55+ 1)]'/%18, 5,55 + 1)
D+ 16 —s—16+s+1)
X(s 53+ L)fs 55+ 2)]'2
X|8,s+ 1,5+ 1), 2.9)

KO|5’ S, S3>

=l — )6 +5+ ]2+ 1,5, 55), (2.10)

K38, 5, 53)
= ikD (s)[(6 — s)6 — s + 1)(s — s5)(s + 53)]'"?
X6 +1,s—1,s;)
+ ik E ()6 — )8 + s+ D]'V25 4+ 1,5, 55)
—ikDis+ 16 +s+ 1)S+s+2)s—s5;,+ 1)
X(s+s3+ 10]"V36 4+ 1,5+ 1,5,), (2.11)

(), + ix))|8, s, 53)
= kD (s){{6 — sW6 — s + 1)s F s3)
XEFs;— )36+ 1,s— 1,534+ 1)
+ ikE (s)[(6 — 5)(6 + 5 + 1)(s F 53)
X(s+ 53+ 1)]”2|5 +1,85+1)
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+ikD(s+ D)6 +s+ 16 +s5+2)
X(s + 554 1)(s £ 55+ 2)]'"

X|6 + 1,5+ 1,55+ 1). (2.12)
where
D(s)= (32 .y 2)'/2/5(4s2 _ l)l/z,
E(s)= —il/s(s+ 1), (2.13)

and « is a nonzero constant. The nonzero value of « is imma-
terial, representations which differ only in this value being
equivalent.® The formulas (2.10, 2.11) for «,, applied to
|8, s, 55) are only valid for § < (|4 | + 1 + u), and

k(A |+ 1 +u)s, 530 =0. (2.14)
The operators x,, are nilpotent, and the product (k,«, ...k, ) is
not identically zero only if it does not contain more than u
factors. (In particular, if # = O thenx, =0.)

Proof: We know that in such an indecomposable repre-
sentation of %7, ( — i4 ) has the eigenvalues (1.8¢)

S=A1+LA|+2, ., A|+1+u

Since Egs. (1.8a, b) hold, it follows that, if 10, the pair
(M, N ) has eigenvalue pairs

(m,n)=(A4,0,4 + 1,4, ..., (A + du, du), (2.15)
while if A <0, it has eigenvalue pairs
(m,n)=(0, —A), (1 —A4), ..., §u, ju — ). (2.16)

Accordingly, this representation of %7, when regarded as a
representation of sl(2, C), has the general form

rod, 0)erd + 4, )@ or, (A + du, bu), (2.17)
for A0, or
0, ~A)ernli—A)e-er,(uiu—1), (2.18)

for A <0, where o, 74, ..., r,, are certain positive integers. It is
convenient at this stage to go from the (m, n) to the [k, ]
labeling scheme* for the finite-dimensional irreducible re-
presentations of sl(2, C), where

ko=m —n,
c=m+n+ 1l (2.19)

In the case at hand, because Eq. (1.8b) holds, we get only
representations with k, = A, and the decompositions (2.15)
and (2.16) have the common form
rfd, 14|+ 1lerfA, A | +2]eer,[4, |4 +ul
(2.20)

We see that the eigenspace 7”4, associated with the eigenva-
lue & of { — i4 ), carries the direct sum of 7, copies of the
representation {4, § ] of sl(2, C), wherer =6 — |1 | — 1. We
imagine these copies ordered in some definite way, and la-
beled by an index «a taking values 1, 2, ..., 7.. Now each
representation [4, 6 ] of sl(2, C), when regarded as arepresen-
tation of its su(2) subalgebra spanned by the operators S, is a
direct sum of (25 + 1)-dimensional irreducible representa-
tions (s} of suf2), fors = |A {, |4 | + 1, ..., 6 — 1 {each occur-
ring once). And each representation (s) of su(2), when regard-
ed as a representation of its u(1) subalgebra spanned by the
operator S, is a direct sum of one-dimensional representa-
tions [s,] of u(1), fors, =s,5 — 1, ..., — s (each occurring
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once.) Accordingly, we can introduce a set of basis vectors
for the whole carrier space of the given representation of %,
labeled

|6, a, s, 557, 2.21)

where & runs over the eigenvalues of ( — i4 ) as in Egs. (2.4);
foreachd (=7 + |A | + 1),arunsoverthevalues 1,2,...,r,,
and independently s runs over the values |4 |, |1 ]| + 1, ...,
6 — 1; and for each 5, 5, runs over the valuess,s — 1, ..., —s.
On the basis vector (2.21), the operators 4, S-S and S, will
have the eigenvalues i, s(s + 1), and s;, respectively. More-
over, in view of Eqgs. (1.6) and (1.7), the operators M, N, C,,
and C, will have the eigenvalues §(§ +4 — 1), 46 — 4 — 1),
(A2 4+ 8% — 1),and A8, respectively. The action of thesl(2, C)
operators in an su(2)>u(1) basis of an irreducible representa-
tion [k, ] is well known.* We get Egs. (2.7), (2.8), and (2.9)
with |8, s, 5,) replaced by |8, a, s, 55) throughout. (These
operators do not “see” the label a.)

We now turn to the action of the operators «,, . In view
of the commutation relation (1.3e) and the fact that x, com-
mutes with S, we must have

Kolb, a, s, 53) = ZA,M |6 + 1,8, 5, s5), (2.22)
B

for some complex numbers 4, , which & priori could depend

ondands (but not onss). Thesumis overther, , | valuesof 8

(with 7 =6 — |4 | — 1). Equation (2.22) can only hold for

6 <bax = (|4 | + 1 + u), and we must have also

K()HIA I + 1 + ll), a, s, S3) - 0 (223)

According to Eq. (1.3b), «,, is a four-vector operator. The
most general structure possible for such operators within a
finite-dimensional representation of sl(2, C) is well known.*
We can apply these known general results to the particular
situation at hand, or determine the structure directly, noting
that a necessary and sufficient condition for «, as in Egs.
(2.22) and (2.23) to be the fourth component of a four-vector
is that

(ko T3], T51= — o (2.24)
[The remaining components of k,, can then be defined by
ik; = [K0, T; ], (2.25)

and the commutation relations (1.3b) will then be satisfied.]
We get, in place of Eq. (2.22),

K|, @, s, 53)

=S BRIE—s)6 +5+ 116+ 1,85, 53),(2.26)
2

wherethe BY,, r=(6 — |A| —1)=0, 1, ..., u — 1, are com-
plex numbers which do not depend on s or s, but are other-
wise not restricted by Eq. (2.24). For each value of 7, we may
regard them as the elements of an (r, , , Xr,) matrix B 7. We
might expect these matrices to be restricted in form by the
relations (1.5a), (1.5b) and (1.3c) which are required of a

A, +;0, u] representation, but in fact this is not the case.
These relations place no restrictions whatsoever on the B
but are satisfied once «, and «; have the forms determined by
Eqs. (2.26), (2.23), and (2.25). We see this most simply as
follows.
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The operators «,, as defined so far are shift operators for
(—id), M, and N, and in fact we have

Mk, =x,(M+1)), Nk, =k, (N+}). (2.27)
It follows that
Mlk,, k. ) =[x,k M+ 1),
[ 1= [0, 107+ 1) -

N[k, k. )= [k, 5, J(N+ 1)
Thus [«,, «, ] shifts any vector from a repesentation sub-
space of sl(2, C) labeled (m, n) to one labeled (m + 1, n + 1).
But, just as a four-vector operator [transforming according
to the representation (!, ) itself] can only link* (m, n) with
(m+ 1, n £ 14)and (m — 4, n + 1), so any antisymmetric ten-
sor operator like [«,, «, ] [transforming according to the
representation (1, 0) @ (0, 1)] can only link {m, n) with (m + 1,
n), (m, n), and (m, n + 1). It cannot link (m, n) with (m + 1,
n + 1)}—and to avoid a contradiction it must be true that

[« x.]1=0. (2.29)
Similarly, we have
Mk, k) = (K, )M + 1),
(i, i) = i, k) ) 2.30)

N [k, 1) = (K, "IN + 1).

But a scalar operator like (x, ) cannot link (m, n) with
(m+1,n+ 1), and so

K,k =0. (2.31)
Consider the commutator
[Kﬂ’ CI] = [K;u %Evpz Vp]
=22, k" + 3k, (2.32)

using the relations (1.3b), already established. In view of Eqgs.
(1.7) and (2.27) we then have

iS00+, = [k, MM +1)]+ [«, NN+ 1)]
=x, MM+ 1) = MM+ 1)k,
+ K, N(N+1) = NN+ 1)k,
=K, MM+ 1) — &, (M + )M +3)
+ K, NN+ 1) — &, (N + )N +3)

= —k,(M+N+1}), (2.33)
so that
2K =ik, M+ N+3) .
=iM+N+2k, =(i+4Kk,, (2.34)

as required. Thus we see that Eqs. (1.3c), (1.5a), and (1.5b) are
all satisfied.

How then are the matrices B ™ restricted? It is easy to
see that for no 7 can B '™ be identically zero; otherwise the
representation space splits into the direct sum of nontrivial
% -invariant subspaces, contradicting the assumed inde-
composability of the given representation. But the indecom-
posability restricts them much more than this. Consider the
effect of a change of basis, of the special form

16, @ 55,0 = SSELIS Brs, 530, (2.35)
B

where, for each & as in Egs. (2.4) and corresponding
r=6— |4 | — 1, the (r, Xr,) matrix S ™ with complex ele-
ments S 7, is nonsingular. Then
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lav a, s, S3) = ZS(BTJI—‘ 1|61 ﬂ) S, S3>’, (2'36)
B
where 7~ ! is the inverse of $'7, and so, from Eq. (2.26),

KOE Sg);_ I|5’ B; S, S3>’
B

=ZEB(5TK)Z[(6_S)(5+S+ 1)]"2
y B

XSS+ 1,7, 8,55)
ie.,

K0|69 a, s, S3>’

=S BZ(6—s)6+s+ 1D1'28,8,5,55),  (2.37)
B
where
B‘L{(L':EZS‘,;YJF”"B‘;),SE,’),. (2.38)
v
In short,
B =gtr+-1gHgn  +—0,1,..,u—1. (2.39)

Since we are only interested in the structure of the represen-
tation [4, + ; 0, u] up to equivalence, we may look for a
canonical form of the matrices B " with respect to transfor-
mations of the form (2.39).

Consider a sequence of {# + 1) complex vector spaces
Y., 7=0,1,..,uofdimensionr,, r,, ..., 7,, respectively. The
matrices B " define a sequence of linear mappings between
the spaces Y, shown diagrammatically thus:

B© B Blu—1
[o) lo) o s O O
Y() Yl Y2 Yu—l Yu
(2.40)

Now consider in abstraction the oriented, connected graph
appearing in that diagram,

0. o] O s O (o]

(2.41)

Such a graph, and more generally, any finite, oriented, con-
nected graph, is called a guiver. If with each vertex of the
quiver (2.41) is associated a finite-dimensional vector space,
and with each directed edge a linear mapping in the appro-
priate direction, as in the diagram (2.40), then one has a re-
presentation (Y, B) of the quiver. The direct sum of two such
representations (Y, B ),(Y ', B ')istherepresentation(Y ",B "),
where for each 7,
Y"=Y &Y./
B =B g R
A representation (Y, B) is indecomposable if it cannot be re-
presented as a direct sum of two nontrivial representations.

Two representations (Y, B), (Y', B') are equivalent if there
exist invertible mappings S

(2.42)

SY! —Y, (2.43)
such that
B! =glr+N-1ping(n (2.44)

fort=0,1,...,u — 1.t can be seen that an indecomposable
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[A, +;0,u] representation of %~ defines an indecomposable
representation of the quiver (2.41), and that any indecompos-
able representation of the quiver in which none of the B is
identically zero, defines a [A, + ; O, u] representation of %"
Moreover, equivalent representations of the quiver define
equivalent representations of %", The problem now arises of
classifying the equivalence classes of indecomposable repre-
sentations of the quiver (2.41). The notion of a representa-
tion, and of the indecomposability and equivalence thereof,
can be defined for any quiver. Gabriel® (see also Bernstein ez
al.’) has posed and answered the following question: for
which quivers are there finitely many equivalence classes of
indecomposable representations? He found that a necessary
and sufficient condition is that the graph, when unoriented
(i.e., with the arrows removed from the edges) must coincide
with the Dynkin diagram for one of the simple Lie algebras’
Ay Ay, .y Dyy Dy, ..., E, E,, or Eg. What is more remarkable
is that in every such case there is a one-to-one correspon-
dence between the equivalence classes and the positive (inte-
gral’) roots associated with the corresponding Lie algebra.
In the case at hand, we have the Dynkin diagram of 4,, _ ,,
and the result is that, if the positive root is (r,, 71, ..., 7, ), then
the dimension of Y, is r, in any representation (¥, B ) from
the corresponding class. There are }(u + 1)(z + 2) positive
roots of 4, , |, viz.”

(1,0,0, ..., 0), (0, 1,0, ..., 0), ..., (0,0,0, ..., 1)
(1,1,0,..,0,(0,1,1,0,...,0), ..., (0,0,0, ..., 0, 1, 1)

(1,1,1,.., 1)
(2.45)
But we are only interested in the situation where all B'™ are
nontrivial, as already remarked, so only the last root is of
relevance. (The others correspond to representations
[A, +;1,v] of # with I>0 or v <u.) Accordingly, each of
the spaces Y, is one-dimensional, and

(2.46)

We may now drop the unnecessary label a from the basis
vectors (2.21). Each matrix B ™ reduces to a nonzero con-
stant—and furthermore, since there is just one equivalence
class corresponding to the last of the roots (2.45), we can
without loss of generality take all these constants equal, to x
say. Thus we arrive at the form (2.10) for the action of x, on
the basis vector |4, 5, 55}, and the forms (2.11) for the remain-
ing components are simply obtained from Eq. (2.25). The
dimension d of the representation of %" is now obtained by
adding the dimensions of the irreducible representations
LA +1LIA A +2) . [A 1A ] +u] of sI(2, C), as

d= S r+ )24 +7+1),

r0=rl='"=ru=1-

(2.47)

yielding the result (2.3). That the product (k,.K,K,) is not

identically zero only if it does not contain more than u fac-
tors, follows at once from the action of «,, as defined by Egs.
(2.10), (2.11}, (2.12), and (2.14). O

{ll. AN ILLUSTRATIVE EXAMPLE
Consider a [0, + ; 0, 1] field. It has five components,
and the sl(2, C) content of the index space representation is
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0,0)&(}, 4). (3.1)

The basis vectors |8, s, 5,) of Theorem 2.1 run over |1, 0, 0),
12,0,0),]2,1,1),]2,1,0),and |2, 1, — 1). Represent them
by column vectors (1 0000)7, (0100 0)7, etc. Let

Egs (R, Se{1,2, 3,4,5}) denote the 5 X 5 matrix witha 1 in
the R th row and S th column, and zeros elsewhere. Then
according to Eqgs. (2.6}2.14), the matrix representations of
the %  operators are

S;=E;;—E,, T,=E, —E,,
Sy +iS; = (V2{E;4 + Ejs),

S, —iS; = (V2)Es + Esl),

T, +iT, = (V2{Eps + Ey),

T, —iT,= — (V2)Es, + Epa),

Ko =K(V2Ey, K= —ik(V2)E,,

Ky + iy = 2IKE;|, Kk, — ik, = — 2IikEs,,

A =IiE,; + 2Ey + Ey; + Ey + Ess). (3.2)
Now make a unitary transformation

A—-UAU? (3.3)

of each of the %~ operators 4, where
U=E, +E,,—iEs,
+ (1/V2iE;3; — iE3s — Ey3 — Eys). (3.4)
This corresponds to a change from the su(2)>u(1) basis to a

tensor basis. An arbitrary [0, + ; 0, 1] field then takes the
form

Yix) = (ZL(Z:)) (3.5)

where @ is an sl(2, C)) scalar field, and 4,, a four-vector field.
The action of the %~ operators is then found to be

() =g, -5,4.) =
4 (/Z; ) = i(?j"), (3.6b)
K, (:’v) - x'(g v‘p), K =Kv2. (3.6¢)

Consider an infinitesimal scale transformation
x™" = (1 + ex* (3.7)

and the corresponding transformation of ¥, as generated by
the operators (1.4c),

¥'(x) = ¥lx) + ielix“d, + A Wix)
= (1 + ied (1 — €)x),

ie.,
¥ x') = (1 + ied Wix). (3.8)
Then
P'(x’) = (1 — el (x), (3.9a)
A,'x') = (1 —2¢e),,(x), (3.9b)
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so @(x) has length dimension ( — 1) and 4, (x) has dimension
( — 2). [Note that the four-vector potential of the electro-
magnetic field has dimension ( — 1).] Now consider an infini-
tesimal special conformal transformation

x'*=x"420"x x* —0"x x" (3.10)
and the corresponding field transformation
¥'(x) = Y{x) + i0#(2ix,x*3, + 2x,4
—ix"x,d, + 22, X" + K, ix)
=(1+42i0"x,4 + 2043, x" + i0*x,)
X ix* — 20 %x, x* + §%x,x"),
ie.,
Yix')=(1 4 2i0"x, A
+2i04Z, x" + i0 "k, J(x). (3.11)
Then
P'(x')=(1 —20"x,)p (x), (3.12)
the usual transformation law for a scalar field, while
A, (x)=4,(x)—40"x,4,(x) — 26,x"4,,(x)
+2x,0°4,(x) + ix'6, @ (x). (3.13)

Here we see the novel feature of Type Ib fields—under the
action of the conformal group, fields belonging to different
index-space irreducible representations of sl(2, C ) are mixed
together.

Note that the subspace of fields having @(x) = 0 is in-
variant under this action. This corresponds to the fact that
although the representation [0, + ; O, 1] of %" is indecom-
posable, it is not irreducible, and it *“‘contains” the indecom-
posable (and irreducible) representation [0, +; 1, 1] as an
invariant subrepresentation. More generally, we can see that
[A, +;0, u] contains [A, + ; 1, 4], which contains [4, + ;2,
u}, etc. Of the representations [4, + ; 0, u], only those with
u = 0 are irreducible.
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A general method for constructing the extension of an ordinary Lie algebra .o”, to a superalgebra
& ® 2, is given, once one knows in which representation of .27, the odd generators .o, are.
Explicit matrix representations for the superalgebras F (4) and G (3), and for ordinary algebras E,

F,, and G, are presented.
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1. INTRODUCTION

Superalgebras play an increasingly important part in
physics, since they are the mathematical foundation of su-
pergravity theories. In mathematics, a complete classifica-
tion of all simple superalgebras has been given by Kac.! A
superalgebra is per definition a finite set of generators which
can be divided into even ( = bosonic) and odd ( = fermionic)
elements (a Z, grading), such that the bracket relation
between any two generators is antisymmetric, except that for
two odd generators it is symmetric. Moreover, the super-
Jacobi identities are satisfied. They differ from the usual Ja-
cobi identities by signs and an easy way to derive them is to
require that they become identities if one defines the bracket
relations by commutators and (in the case of two odd genera-
tors) by anticommutators. However, for the specific matrix
representations which we consider below, the bracket rela-
tions are not simply given by supercommutators. (They are,
of course, always supercommutators for the adjoint repre-
sentation).

The simple superalgebras consist of two main families:
Osp(n/m), with O(n) and Sp(m) in the even sector, and
SU(n/m), with SU(n) X SU(m) X U{1) in the even sector, ex-
cept that for n = m the U(1) is omitted. [One may always
consider only generators with vanishing graded trace, since
they form an ideal. For n = m the U(1) is generated by the
unit matrix which has vanishing graded trace but which
forms an abelian ideal for n = m.] Moreover, there are three
kinds of exceptional superalgebras:

(i) the algebras F(4), G(3), and D (2, 1, a);

(i) the algebras P (n) and Q (n); and

(iii) the algebras W, S, S, and H which can be represent-
ed as general coordinate transformations or canonical trans-
formations of anticommuting variables only.

In this article we shall give matrix representations for
F(4) and G (3) as well as for the purely bosonic exceptional
algebras G,, F,, E;. [We stick to V. Kac’s name F (4) for the
superalgebra, although it should not be confused with the
ordinalry algebra F, from Cartan’s classification.]

Most of the known applications are based on Osp(N /4),
which yields N-extended Poincaré supergravity with cosmo-
logical constant,” and SU(4/N ), which yields N-extended
conformal supergravity® (at least, this is known to be the case
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for 1<N<3). The reason is that Sp(4) and SU(4) {or, rather
SU(2,2)] are the space-time algebras for d = 4 dimensions,
namely the de-Sitter algebra SO(3, 2) and the conformal alge-
bra, respectively. It is known that if one goes to higher di-
mensions, supergravity theories can go only as high as
d = 11 dimensions,* not higher, since otherwise spins ex-
ceeding 2 enter, and it has been shown that for such spins no
consistent coupling to gravity exists.” Gauge supersym-
metry® is based on Osp(3,1/4N ), which leaves the line ele-
ment in superspace = (x')* + 3 (6@} invariant, where x’ are
the coordinates of 4-dimensional Minkovski space-time.

The question arises which superalgebras yield super-
gravity theories in dimensions d > 4. It is known that simple
Poincaré supergravity in d = 5 is described by SU(4/1),”
where SU(4) ~SO(6) is the de-Sitter algebra ford = 5. It
seems possible that the superalgebra F (4) (the number 4 de-
notes the rank of the bosonic part as usual) whose even sector
consists of spin (7) X SL(2, R ), will give rise to Poincaré su-
pergravity in d = 6 dimensions, since O(7) is the de-Sitter
algebra for d = 6, while its spinor representation spin (7) is 8-
dimensional, which is indeed the dimension of the Clifford
algebra in d = 6. Another possibility for F(4)® would be that
it leads to conformal supergravity in d = 5, since O(7) can
also be viewed as the conformal group in d = 5 (the gener-
ators 2, and 2, yield then P, and K, withi = 1, S while X,
yields the dilaton generator D). Since one needsind = 5 an
even number of spinors (in order to be able to define Major-
ana spinors) pairs of spinors would then fill up the 8-dimen-
sional columns and rows in the off-diagonal parts. Quite gen-
erally, the matrix representations have in the even sector the
spinor representations of the bosonic groups, since the odd
charges must transform under the bosonic symmetries as
spinors {due to the spin-statistics theorem). The superalgebra
G (3) has no space-time group in its bosonic sector, but it may
play a role in grand unified schemes, where it may combine
several internal symmetries. The problems here will be the
occurrence of ghosts, just as they occur in SU(2/1).°

We have added explicit matrix representations for the
ordinary exceptional Lie algebras Eg, F,, and G,. After the
demystification of the exceptional Lie algebra E, by Crem-
mer and Julia,'® and of E; by Cremmer, Scherk, and
Schwarz,'! this seemed not only possible, but even desirable.
We thank E. Cremmer and B. Julia for discussions about
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these matters. It may be that our explicit matrix representa-
tions will be helpful for the gauging of super F (4), and for
phenomenological applications based on the ordinary F, and
G,. Since E; and E arises as global symmetries of the largest
supergravity theory in d = 4 '%and d = 5,"! respectively,
after dimensionally reducing the only supergravity model in
d = 11, one may expect Eg to emerge in d = 3.

2. STRUCTURE OF LIE SUPERALGEBRAS

We recall that a Lie superalgebra .7 is a vector space
(real or complex) that decomposes into two vector spaces .«/,
and & | (& = &/ ® &) and is endowed with a binary
bracket operation [ , ]: & X .&/— .« satisfying the laws

[X, Y] = — (= 1"[Y, X], 2.1)
[X, [Y,Z]] + (- 1™+ 2[Y, [Z,X]]
+ (= 1+ Y[Z, [X, Y]] =0, (2.2)

forallX, Y, Zin &/ Here a symbol appearing in an exponent
of ( — 1) is understood to have the value O or 1 according to
whether the corresponding element lies in &/, or . ,. Such
elements are called pure. Equations (2.1) and (2.2) are ex-
tended to the impure case (i.e., to arbitrary elements of .« ) by
application of the linear laws

[X, aY] = a[X, Y], (2.3)
X, Y +2Z]=[X, Y]+ X Z], (2.4)

a being any number (real or complex).

Equations (2.1) and (2.2} are nontrivially self consistent
only if the bracket of two pure elements is itself pure and if
(— 1)Y= (— 1)**+Y. The problem of classifying all Lie
superalgebras is equivalent to finding all possible solutions of
these equations. Kac' has given the complete classification
of the simple Lie superalgebras, i.e., those that possess no
nontrivial subalgebras invariant under the bracket oper-
ation. Most of these are easily described in terms of specific
representations of low order. A few, notably the exceptional
superalgebras D (2, 1, a}, F(4), and G (3), appear to have no
matrix representation of order lower than that of adjoint
representation. In this respect they are similar to the excep-
tional ordinary Lie algebra Ej.

The adjoint representation ad <7 is obtained by assem-
bling the structure constants into matrices. The structure

constants themselves are defined relative to a pure basis {e, }
def
[en ej] = ekckij' 2.5)

Since any element of .« is expandable in terms of the e; the

structure constants determine the superalgebra. Equations
(2.1) and (2.2) may be replaced by

c‘jk = — (- lykcikj, (2.6)
c[jmcmkl + (= 1k I)cikmcmlj + (= 1)+ k)ciimcmjk =0.
(2.7)
where now an index appearing in an exponent of ( — 1) takes
the value 0 or 1 according to whether the associated basis
vector lies in &, or &7 .

Let D, denote the matrix (¢’; ). Then Eq. (2.7) is equiva-
lent to

[D,, D;] =D, (2.8)

i
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where the bracket symbol now denotes the
Supercommutator:

def
[D,D;] = D,D, —(— 1)D,D,. (2.9)

The D; are the generators of ad . [The symbol “[, }” is
often used for the supercommutator. This notation is deplor-
able in two respects: (1) It leaves the antisupercommutator
D,D; + (— 1)D,D; in limbo. (2) It fails to emphasize that
the supercommutator is the analog of the commutator of
ordinary Lie algebra theory, not of the anticommutator.]

It will be convenient to use Greek indices from the first
of the alphabet to designate basis vectors lying in .2/, and
Greek indices from the middle of the alphabet to designate
basis vectors lying in o7 ;. Such indices are often referred to
as fermionic and bosonic, respectively. Because of the rule
{ — 1)**%! = { — 1)+, structure constants bearing an odd
number of fermionic indices vanish, and the adjoint gener-
ators D, have the block structure

D (CVILU 0 ) D (Lﬁo cvay) (2 10)
““\No &) 7\, 0/ '

Equations (2.7) decompose into the following four equations:

o+, + e, =0, (2.11)
€y g + €% g + %%, =0, (2.12)
HayClpy — 5T + ¢0C%0g =0, (2.13)
CpuCys + €% g + 5,6, = 0. (2.14)

Equation {2.11) shows that the ¢’s with purely bosonic
indices are the structure constants of an ordinary Lie alge-
bra. This Lie algebra is just &/, which is a subalgebra of .«
Equation (2.11) and (2.12) together are equivalent to

[D,,D,]=D,c°,, (2.15)

which shows that the D, generate a representation of &/,
namely the direct sum of ad &/, and another representation
generated by the matrices

def

G, = (")

i’

(2.16)

The latter representation, denoted by .« o & |, will be called
the extending representation because its existence is what
makes possible the extension of &, to a superalgebra &7 It
determines the action of &, on 7 ,: Let X be an element of
& yand Y an element of 7. Then [X, Y] = X*G, Y, where
X are the components of X relative to the basis {e, }.

The extending representation cannot be just any repre-
sentation of &/, for it must also be compatible with the struc-
ture equations (2.13) and (2.14). Checking this compatibility
is the hardest part of the problem of constructing and classi-
fying Lie superalgebras. We outline here a method that
works in many cases:

First, choose ., to be a semisimple Lie algebra. For
such an algebra there always exists a nonsingular symmetric

matrixm = (7, )such that5,.c",, is completely antisymme-
tricin the indices i, v, and 0. One such matrix is the Cartan—

Killing matrix ( — ¢%,,¢",,,). However, if &7, is not simple
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this is not the only possibililty. In an appropriate basis  may

be built out of blocks, each block being the Cartan—Killing
matrix of one of the simple invariant subalgebras of &/, and
each block carrying its own arbitrary scale factor. The arbi-
trariness of the independent scale factors is important.

Next, choose for & : &, a representation of .o/, for
A

which there exists a nonsingular antisymmetric matrix q
A
= (7,) such that the matrices 4G, are all symmetric. The

s A s
matrices v and 1, together with their inverses n~! = (")

1

A
and ™! = (7®°) can be used to lower and raise bosonic and

fermionic indices, respectively. If they are combined into a
single matrix

s

def n 0
M= 4 =) (2.17)
U
then the matrices D, are antisupersymmetric:
def
(“Dy )ij = ﬂikck;.tj = Cyy = — (~ l)ijcjui' (2.18)
Finally check whether the identity
A A
G,SNG'= — % G, tr(S n G“),
def
G =G, (2.19)

holds, where S is any symmetric matrix. This is the crucial
identity. It turns out that in order to satisfy it .« ,: &/, usual-
ly has to be a reducible representation of .7 .. If 7, is chosen
to be simple «7;: .7, can be irreducible only when

& o = SL(n) [or SU(n)]«,: o, is then the adjoint represen-
tation. [This leads to the superalgebra Q (n — 1) (see Ref. 1).]
Among the so-called classical Lie superalgebras' the only
other examples for which .« ;: ., is irreducible are D (2, 1,
a), F(4), and G (3). For each of these superalgebras .27, has
SL(2) as an invariant subalgebra, and the independent scale
factors multiplying the blocks of which (7, ) is therefore
composed have to be chosen in a special way to make the
identity {2.19) hold.

Give a Lie algebra .7 , and an extending representation
satisfying the requisite conditions, one immediately has half
of the structure constants of the Lie superalgebra &/, & .7 |,
namely, ¢,, and ¢®,;. The remaining structure constants
are obtained by defining

def

a

Chy = — s (2.20)

def

cﬂaﬁ = - n”vnaycrvﬁ = cuBa .

It is easy to see that Eq. (2.13) is then equivalent to (2.12), and
Eq. (2.14) is an alternative version of (2.19). Moreover, the
matrices nD, are symmetric, and n,,c’jk is completely anti-
supersymmetric in the indices i, j, and k.

(2.21)

A
We have not actually used the nonsingularity of v in the
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A
above. However, it is not difficult to show that if  is singular

then .« is not simple, nor even semisimple. If ./ is simple
then 7 is necessarily nonsingular and the Cartan—Killing
matrix is necessarily a multiple of it. That is,

—str(D, D) = — (= 1)’c*; ey = Any, (2.22)
or, equivalently,

—~ €T + gy = Ay, (2.23)

— oy o + T au gy = Allags (2.24)

for some constant 4. Because it is the supertrace (str) that

appears here, nonsingularity of the Cartan—Killing matrix is
not a necessary condition for a Lie superalgebra to be simple,
as it is for ordinary Lie algebras. For example, A vanishes in
thecaseof D (2, 1a), althoughnotinthecaseof F (4)and G (3)."

3. STRUCTURE OF ~(4)

For this superalgebra .«7, is SO(7) ® SL(2) and &/ : &,
is spin (7) X sl(2), spin (7) being the 8-dimensional spin repre-
sentation of SO(7) and s(2) the 2-dimensional fundamental
(or defining) representations of SL(2). &7, has dimension 24
and rank 4 [the latter number explaining the “4” in “F (4)”’]
and /| has 16 dimensions.

Spin (7) is most easily described in terms of ¥ matrices
satisfying

(Vur v} =261, pv=1.7 (3.1)

There are only two inequivalent irreducible faithful repre-
sentations for the #’s, each of dimension 8 and each the nega-
tive of the other. It does not matter which representation is
chosen, for the generators of spin (7) involve the s only in
the bilinear combinations

def

G,uv = 5[7/;4’ }/V]' (3'2)

It turns out that the y matrices for spin (7) can be chosen
unitary, antisymmetric and pure imaginary. For example,

Y1=1X03X0,,
V2 =1X0, X0y,
Y3 =0, X1Xo3,
Ya =0, X1 X0y,
Vs = 03;X0,X1,
Ye =0, X0, X1,
V7 =0,X0; X0y (3.3)

where the o’s are the Pauli matrices. With such a choice,
which will be assumed from now on, the 21 matrices G,, are
antisymmetric and real while the 35 matrices

def

Guva = 3(?/;4 Gva + YVGa,u + ?/onu)’ (34)

are symmetric and imaginary. Any antisymmetric 8 X 8 ma-
trix A can be decomposed in the form

A=aﬂyﬂ + %aqu;w’ (3.5)
and any symmetric 8 X 8 matrix S can be expressed as
S=51+1,.,,G,.0» (3.6)
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where

a, =tr(y,A), a,, = —}tr(G,A), (3.7)
s=§trS, s,,= —4tr(G,,,S). (3.8)
We shall need the trace relations
try, =0, (3.9)
tr(y, v 7.) =0, (3.10)
Y, ¥, 7. ¥-7,) =0, (3.11)
tr(G,,G,.) = —2(6,,6,, —95,.6,,), (3.12)
as well as the following identities:
G,.G, = — %1, (3.13)
Gu?oGu = — 37, (3.14)
G,,G,G, = — iG,, (3.15)
G, G, G, =3G,., (3.16)
[G.., G, 1= —6,,G,, +6,.G,,
-46,.G,, +6,,G,,. (3.17)
Equation (3.17) can be rewritten in the form
[Gm,, G, |= 4G Con v ors (3.18)
where the ¢’s are the structure constants of SO(7):
Corpvor =0p,81,8,0 —81,8,,6,,
+ 85,6300, — 63,8056,
+8,,6,.6,. —8:,8,.8,,
+6,,64.6,, —641,6,,8,,. (3.19)

The Cartan—Killing matrix is, up to a factor, just the unit
matrix in the 21-dimensional vector space of 7 X 7 antisym-
metric matrices:

(3.20)

- icu( uv pA cp,{ ori 108#1' o7

def
5;4va1- = ay.oavr - 5y75va'

(3.21)

Turn now to SL(2). This is the 3-dimensional algebra of
all traceless real 2 X 2 matrices, the bracket operation being
the commutator. Any such matrix B can be expressed in the
form

B=B%G," with B4, =0,a,b=1,2,
def

Gab = Mab - %5abl’

(3.22)

(3.23)

where M, ? is the 2 X 2 matrix that has 1 in the gth row and
b th column and zeros elsewhere. The G, ® are the generators
of sl(2). They are traceless and satisfy

[Gab’ ch] = Gefcefabcd’ (324)
where the ¢’s are the structure constants of SL(2):
et =6 6,28° —6°.8,°8. (3.25)

The Cartan-Killing matrix in this case is given by
=t e = — 48,185, —16,°6.). (3.26)

Expressions (3.20) and (3.26), with appropriate scale
factors thrown in, are the blocks of the matrix n discussed in

Sec. 2. It turns out that we shall succeed in securing the
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identity (2.19) if we choose for 1 the 24 X 24 matrix with

elements [introduction of an overall scale factor changes the
construction only trivially.]

Nuvor =0pyor =6,,8,, —6,,6,,, (3.27)

N, =3%68,98."—18,°6.) =1."." (3.28)

Nuva =Ta’ uy =0. (3.29)
The elements of the inverse matrix ':1_' are given by

Nuvor = Oy ors (3.30)

% ‘4= %(5ad 5y — %‘Sab &), (3.31)

Ny 6 = Npy =0, (3.32)
and satisfy

Nuvpr Mpaor = Oy ors (3.33)

7 7/ =69 (3.34)

where 6 9, . is the unit matrix in the 3-dimensional vector
space of traceless 2 X 2 matrices:
def

8% .4 =688,9-186.° (3.35)

In addition to the structure constants (3.19) and (3.25) of
SO(7) ® SL(2) we have, for F (4), also the structure constants
given by the matrix elements of the generators G,,, X1 and
1XG,* of spin (7) X s1(2). Using indices from the first part of
the Greek alphabet to denote components in the 8-dimen-
sional spin space, we have

caa,uv Bb = (Gyv Xl)aa Bb = 5[7/;1.! YV ]aﬂaab! (336)
¢! g = (1XG.),° Bb
= Eaﬁ(5c"5d,, — 566"5“,,). (3.37)

We come now to the crucial role played by SL{2) in the
structure of F (4) [as well as G (3), see below]. It consists in the
following elementary fact: Every traceless 2 X2 matrix is
converted into a symmetric matrix through mulitplication
by

a2 Y

This allows us to choose (there is, in fact, no choice in the
A

(3.38)

matter) for the matrix v in the present case

Naa pb {3.39)

It is then straightforward to compute the remaining struc-
ture constants of F (4):

= 6aﬁéab - - nﬂbaa‘

S by = —Ca’ pvpy = _3[7’#: Vv]aﬁ‘sab’ (3.40)
% g ol = e
= — 5aﬁ(5c"5bd —16.%6,%), (3.41)

Covaapp = — NMuvorNaaye €, ot

= — 411[7/;;7 Vv ]aﬁ €6 = CuvBbaas (3.42)
Cdaapy =Na efnaayg Cyg efBb

= — 300p(€2a0°s — 4€26°%)

= — 35(13 (0 €pa + Op€0a)

=C4ppaa- (3.43)
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In order to verify the identity (2.19) form the
combination

v orCuv aa 86 Cor ye 8d
+ 77 4" ¢ ran s ye sa
= i(Gyv)aﬁ(Gpv)ya (5ac5bd - 5ad5bc)
+ 380c8ba + 8248pc — 26446.a)- (3.44)

Next note that any 16X 16 symmetric matrix S can be de-
composed in the form

Saa B8b = 6aBSab + é{Gp.vo )aB Tpva ab
+ Uy (7;& )yﬁeab + %V;w (Gpv )aﬁ'eab’ (345)

wherethe S'’s, T’s, U’s, and V’s are appropriate coefficients.
A straightforward computation, which makes use of the
identities (3.9)—(3.16), then leads to

h
(i”yv or c;w aa cy caf ds b8 + nefg Cefaa cy cgh ds bB )Scr ds

= - 4va(G;w)aB€ab - 66aﬂ(sab - 6abscc )’ (346)

f ke
—i(inyvmcpvaaﬁbcarcyds +77e g Cfaaﬁb cghcrdﬁ)‘gcyda

= - 4va(G;w)aﬁ€ab - 66aﬂ(sab - ‘Sabscc)' (347)

The equality of the right sides of these equations shows that
(2.19) is indeed satisfied. The reader who goes through the
algebra will discover an intricate cancellation of terms,
which comes about only because of the special choice that
has been made for the matrix v [Egs. (3.27), (3.28) and (3.29)].

Every element X of F (4) can be associated witha 10X 10
matrix:

(5A v Gy Ce)
X .
cr B

A[ =(4,,)] is an antisymmetric real 7 X 7 matrix, B is a
traceless real 2 X 2 matrix, and C is a real 8 X 2 matrix. The
elements of A and B are the components of X that lie in o7,
and the elements of C are the components that liein 7 ,. The
obvious relation of (3.48) to spin (7) X sl{2) suggests that F (4)
has a relatively simple 10X 10 matrix representation. Unfor-
tunately, this is not so. The bracket relation for the superal-
gebra is not faithfully reproduced by the supercommutator
of matrices of the form (3.48). That is why we are forced to
work directly with the structure constants, i.e., with the
40< 40 adjoint representation, in constructing F (4).
Actually, the supercommutator does not fail by much.
Denote by X, the bracket of X, and X,, and by A,, A, A,,
etc., the associated components. Then using the structure
constants that have been constructed above, one finds

(AIZ uv = [Al! AZ]uv - itr[Gyv(Clecg + C2€C1T)],

(3.48)

(3.49)

B, = [B,, B,] +j(C{C, + C]C,le, (3.50)
C12 = %(A 1 ;wavCZ - AZ vayvCl)

— (C,BT — C,BY). (3.51)

By virtue of (3.5), Eq. (3.49) may be rewritten in the form
iAl2quuv = i[Al’ AZ]vayv + C]eC‘I + C2T€Cl
— §y.tr[7,(C,eC] + CleC,].  (3.52)
Equations (3.49}3.51) show that the bracket operation for
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the elements of F (4) may be recovered by taking the super-
commutator of the matrices (3.48) and then subtracting the
block matrix

(gy,‘ tr[7,(C,eC] + C,eC])] 0 )
0 {CTC, + C]Ce/
(3.53)
Because the elements of F'(4) are so naturally assembled
into the matrix (3.48) and because the supercommutator of
this matrix does give correctly some of the bracket relations
for the superalgebra, we propose to give the name “matrix
pseudorepresentation” to what we have constructed here. In
Sec. 6 an alternative, partly heuristic, derivation of this pseu-
dorepresentation is given, in slightly different notation.

4. STRUCTURE OF G(3)

For the G (3) superalgebra & yis G, ® SL(2) and & : &7,
is g, X sl(2), where g, is the 7-dimensional fundamental re-
presentation (representation of lowest order) of the excep-
tional Lie algebra G,. .« ; has dimension 17 and rank 3, and
the dimensionality of .| is 14.

G, is often defined as the subalgebra of SO(7) generated
by matrices of the form {4, G,,, having zeros in the eighth
row and column. The matrices themselves constitute g,.
This way of defining G, and g, turns out to be rather cumber-
some for applications. We give here a simpler description.
(For additional details see Sec. 5.)

Let X be an element of G,. X has 14 real components. In
an appropriate basis 8 of these components may be assem-
bled into the real and imaginary parts of the elements of a
traceless anti-Hermitian 3 X 3 matrix A,and the remaining 6
components may be assembled into the real and imaginary
parts of a complex 3 X 1 matrix or 3-vector V. If A and V
themselves are assembled into the traceless anti-Hermitian
7 X 7 matrix

A (1/V2ev: v
DX)=| (1/V2eV A* v+, (4.1)
-vt —v7 0
then
[D(X,), D(X;)] = D(X,, X2)) (4.2)

where [X,, X,] is the bracket operation for G,. Here € and ¢
denote the antisymmetric tensors €**” and €,,,,,, respectively.
€-V and €-V* stand for the 3 X 3 matrices (€, V'?) and
(€“V'*,). The asterisk denotes complex conjugation and
effects a raising or lowering of indices according to the rules

VR =Vx, AF =A% = —A",. (4.3)

The matrices (4.1) constitute an explicit realization of
g, which allows a direct computation of the structure con-
stants of G,. Denote by X, , the bracket of X, and X, and by
A, Vi, ALV, etc, the associated components. Then Eq.
(4.2) yields

A, =[A, A;] +4(EVTeV, —EVEeV))

—(V,VI —V, Vi), (4.4)
V12 = A1V2 - A2Vl + \/%VTV?: (4~5)
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VE = ATV - ASVE 426V,

= —A{V} + AJVY 4+ V2V |V, (4.6)
Use of the identity
eﬂvpfpaf = 6#05 V-r -6 ’ur6 Va’ (47)

permits Eq. (4.4) to be rewritten in the manifestly traceless
form

A12 = [Als Az] - %(ViV; - Vzv’]r)

- %l(vllr vV, — VEV:)- (4-8)
Multiplication of the identity
O=€,,, 47, —€,,47, +€.,47, —€,,A7,
=€,,,4", —A*,€,, +€,,47,, (4.9)
by V7 yields the relation
(eVIA — A¥(eV) = — e(AV), (4.10)

which allows the entry in the second row and first column of
D (X,,) to be expressed in the form

1 1

—— €AV, — A, V) — (VFV] —V*VI}=——¢eV,,,
‘/2_(12 21) (12 21) \/2-l2
(4.11)
as is necessary for consistency.
The structure constants of G, are defined by
X, =" X, PX,C (4.12)

Replacing X“ by 4#,, ¥* and V'*,, and keeping only the
nonvanishing structure constants, we have

AI2#V =" /{AIUTAZPA

vo p

+ VIV + T VRV (4.13)
Vit =7 47, Vo + ¢ V4,
+ VR VL, (4.14)
V12*u = c/wUTAxva V*, + . Ve Vi* Ay,
e VeV, (4.15)

which, on comparison with Egs. (4.5), (4.6), and (4.8), yield

c”,,arp;' = 5"05‘,'{5’# - 5“/,5,,"5’10, (4.16)
¢, == T, = 384,87, — 18,7, {4.17)
== T=684087 — 1846, 7 (4.18)
€.,)'=—¢,7,7= —=6,76,"+15,78.°, (4.19)
e = I, (4.20)
Cpvo =V26,,,. (4.21)

The terms involving the factor 1 in expressions (4.18) and
(4.19) arise from application of the projection operator onto
the subspace of traceless matrices in the space of 3 X3
matrices.

The Cartan-Killing matrix for G, is readily computed:

¢ v A T K
4 pcoziax_

v T vAa TP
Kt m AC/LO' p_cp Cio

I
= —8(6,78", —15,"5,"), (4.22)
_...CUT’u Pcp VUT_Cd#rPCTP va —”CU#TCTVU — 126#1', (4'23)

T ¢ o__ .ouT —
—caf Hpcl’ ve CC,'( rpcrpv 4 Crvag = 126”1/' (4‘24)
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When this matrix is multiplied by a scale factor, expressions
(4.22), (4.23), and (4.24) must all scale together.

The structure constants and Cartan—Killing matrix for
SL{2) are given in Sec. 3, Egs. {3.25) and (3.26). It turns out
that in order to satisfy the identity (2.14) we shall need, for

G (3), amatrix 1] that contains the Cartan—Killing matrices of

G, and SL(2) scaled by factors | and — & respectively:

., = —16,6,"—16,"6,"), (4.25)
7;’# "=18," (4.26)
", =316%,, (4.27)
7.° " =3§16,°6." — 16,6, %) (4.28)
The elements of the inverse matrix ;1‘ I'are
7T = — (64,67, — 164,67, (4.29)
7 lH, =2, (4.30)
n ', =13, (4.31)
N g =360 — 16°,8%). (4.32)

Let the indices #, u»and 0 label, respectively, the first
three rows, the second three rows and the last row of the
matrix (4.1), and let the indices ,, *, and 0 label, respectively,
the first three columns, the second three columns and the
last column. We can read off directly from Eqgs. (3.37) and
(4.1) the nonvanishing matrix elements of the generators of
the extending representation g, X sl(2):

T = (8,67, —164,6,7)6% = — .7, (4.33)
6= — (8,78, —18,8,718% = — ¢, """
(4.34)
Ty =(1/v2)et8, = — v, 7, (4.35)
€. op = 5p05ab =—¢ 0" (4.36)
7= —06°6% = —¢,% ., 7, (4.37)
oy =8,0% = — M op0s {4.38)
& o = (1/V2€5,0% = — €, 1o (4.39)
C'o e = — 8,8 = — ¢ Vo (4.40)
e cd vo = &tv(sacsdb - %5ab5cd)
= —c* "% {4.41)
% 4, =5#V(5ac5db —16%8.%)
= — c#”"bcd, (4.42)
o’ fop =8°8% — 16% 8.°
= —co" opc (4.43)

Expressions (3.25), (4.16)-{4.21), and {4.33){4.43} con-
stitute for G (3), the structure constants that were called ¢, ,,
¢®,p1 €5, in Sec. 2. To obtain the remaining structure con-
stants, denoted by ¢,z in Sec. 2, we need to apply the matrix

A
"' [Egs. (4.29)-{4.32)] as well as the matrix 4, which in the
present case we choose to be [cf. Eq. (3.39)]

77”:1 vo = auveab = — N #a’ (444)
Noaosr = €ap+ {4.45)
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This yields
c#v Ua ke =C“v1b an
= - 77#1/ p,{ 770a xchc p/l b
= (64,8, — 164,07, )€, (4.46)
c'uva Ub = -7 N IM*1“qvapccpc.rdb
= (V'2/3)e"*’¢,,, (4.47)
cy vaob — 7]*1“1‘ Nva pc cpc rob
= (V'2/3)€,,0€u» (4.48)
Fraor = obva = — N M %€ o
Y (4.49)
cy. VaOb = C;J.Obva = - 17_1;.11 nvaoc Cac r0b
= — 8, %, {4.50)
P evs =Cha e
= =7 Mo ¢ v
= — 304, (6% €4 + O°y€s), (4.51)
rocoa = — 1% MocogCo’ efad
= — 6% €4 + 8%E) (4.52)

It is now a straightforward computation to check that
the identity (2.14) holds:

A A
np LKCP,{ ”a vbCLx ac rd + 77p Cp#a wCi ac 8
k
+ nefg cef ”a vbcgh Uc Td + cyc (vb, ac’ 'rd)
= 3(5“1/5‘77 - 5“r5‘7v )(eab €cd + €uc€ap + 6-adebc) = 0,

(4.53)
7,767 1 06Cp ¢ 0a T+ nefghcef;m 0% T oa
+ cyclops"er0a) = 0, (4.54)
7.°c” 0aubCp Tcoa t nTpCTOa,ubcpvcod
+ 1.7 " rounsh “coa + €YClups er0a) = 0, (4.55)
nefghcean 06noc0a + €YClobocoa) =0 (4.56)

It is also straightforward to verify that Eq. (2.22) holds with
A=4

Just as every element of F(4) can be associated with a
10X 10 matrix so every element X of G (3) can be associated
with a 9 X9 matrix

A (I/V2EV:r V  Ce

.V A* V*  C*e
X e . . (4.57)
-V -V 0 De
Cf CcT DT B

A and V are the matrices appearing in Eq. (4.1). B is a trace-
less real 2 X 2 matrix, Cis a complex 3 X2 matrix and D is a
real 1 X2 matrix. The 17 independent real and imaginary
parts of the elements of A, V, and B are the components of X
that lie in .« ,. The 14 independent real and imaginary parts
of the elements of C and D are the components of X that lie in
.

Using indices #, ,, 0, and “ to label the rows of the ma-
trix (4.5) and indices , *, 0, and , to label the columns, one
can read off from the structure constants the bracket rela-
tions for F(4):
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A]z = [Ap Az] - %(Vlv\; - VzVU - ﬁl(V}‘ -V2 - V; ‘Vx)

4 CeC} + C,eCl — 11(C,eCh + C,eCl),  (4.58)
Vi, = AV, — AV, + V2EVHV] 4 128CreC,}

+ 3C,eD] + C,eD/), (4.59)
B,,=[B,B,] + %(CTcz +CiC, + ClCx

+ CJC* + D'D, + DID,Je, (4.60)

Ci,=1[A,,C] — [Ay C] +(I/V2)E(VICE ~ VICY)
+V,D,—~V,D, — C,BT + C,B/, (4.61)

D,,= —VIC,+ VIC, —V[C! +V;C, —~ DB} + D,B.
(4.62)

The double dot appearing in some of the terms above indi-
cates that contractions are to be performed over two pairs of
dummy indices. The reader can easily compute by how
much these bracket relations fail to be given by the super-
commutator itself. The matrices (4.57) do not yield a matrix
representation of G (3), but rather, once again, a
pseudorepresentation.

5. MATRIX REPRESENTATIONS FOR £,, £, and G;

In this section we use the work of Cremmer and Julia,'®
who gave a simple matrix representation for E;. Their work
was extended to E, in Ref. 11, and we here extend their work
to Eg, F,, and G, so that one now has simple matrix represen-
tations of all the exceptional groups, in a form suitable for
physical applications.

Suppose one wants to find a matrix form for a linear
representation R of an algebra 4 which acts on coordinates
x'. One first selects a maximal subalgebra H so that
A = H + K, and determines how the x’ decompose into irre-
ducible multiplets of H. For example, in the case of G,, one
maximal subgroup is # = SU(3} and x' (i = 1, 7) decompose
into 3 + 3 + 1. {See the preceding section.) Usually there are
only a few decompositions possible, and out of these the cor-
rect one is always obvious. Since H is a maximal subalgebra,
A = H + Kis a Cartan decomposition which means that [H,
K]CKand[K, K]CH. The former means also that the para-
meters of K are representations of A. In the example of G,,
there are 8 parameters for SU(3} while the remaining 6 can
onlybein 3 + 3since the 7 of G, is real (as are all its represen-
tations). The [K, K ] C H relation is a test on the correctness of
the choices made so far.

Different choices for the maximal subalgebra H lead to
matrices which look quite different, and only one particular
form may be useful for a physical application, but all these
matrices are equivalent, of course.

Although the separation of 4 into H + K looks like a
coset approach, it is not. For example, G, has 14 generators
and H = SU(3), so that there exists a 6-dimensional nonlfin-
ear representation of G on the coset space 4 — H. Only H
acts linearly on the coset space, but by adding one extra
dimension in this example, one finds a 7-dimensional linear
representation of the full G,. We now consider E,, F,, and
G,.
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Es

The exceptional Lie algebra E, has 248 generators, its
lowest dimensional representation is the adjoint representa-
tion, and is thus real. O{16) is a maximal compact subgroup.

Since spin (16) is 128 dimensional, one expects a repre-
sentation of Eg on an antisymmetric tensor ¢ Y = — @7 (i,

J =1, ..., 16) which has 120 components, and on a spinor ¢*
(@ =1, ..., 256). Since in d = 16 dimensions the Dirac matri-
ces I'/(256 X 256) with j = 1, ..., 16 can be chosen real, and
one can impose in even dimensions the Weyl condition on
spinors

Y =('D2.0'pyf =T ", ¢F, (5.1)
it follows that ¥ has 128 independent components. Thus we
expect that ¢ Y and ¢ represent the fundamental representa-
tion. As parameters one has, of course, the 120 parameters
A 7 of SO(16), plus 128 other parameters. Clearly, these
could form a real spinor A * which satisfies again the Weyl
condition. Therefore we write

8¢ =(A" " + Al d ™)+ AT L¢F),

&Y = (A T ;%) + (¢ "T ;54 7). (5.2)
Clearly, the Weyl condition on A is the same as on ¢. Since
the Dirac matrices are real and Hermitian, they are symmet-
ric, so that the charge conjugation matrix C, defined by
Cy,C ~' = + ¥/, is unity if one chooses the positive sign.'?
(For the negative sign choose I" '”.) Thus one needs no Dirac
(or rather Majorana) bar on the spinors and this proves the
covariance of the transformation rules under O(16).

The nontrivial commutators are those with one or two 4
parameters. For the former one easily finds that A is indeed a
spinorial parameter, as shown by the following commutator

AL =8[A"=A,TA], (5.3)
which holds both when acting on ¢ ¥ and when acting on ¥°.

The (4, A ) commutator on ¢  is easy to evaluate. Sup-
pressing spinor indices and defining ¢-I" = ¢, I" ¥ one has

[(6(A.), 84 )¢ Y= AT, — 12. (5.4)
Since the I" 7 are antisymmetric, one finds easily {assuming
that A, and 1, commute)

(6040, 8(A)19=8[A"; =4, A,]9". {5.5)

On %, however, the A4 commutator is more interesting
to evaluate. One starts from its definition

[6(42), 8(A) 1Y = (AT WY PA,) — 152, (5.6)
The product of all the /"' forms an orthogonal and complete
set, given by
01 — {1’ Fi, Fi,iz, vy Fi""i”, F 17’ r 171—~i’ oy r 171—~i,...i7}‘

(5.7)

This is the analog of the set of 16 Dirac matrices in four

dimensions. Due to the completeness of the O/, one can easi-
1y derive the following Fierz rearrangement identity:

(AMY)(NA,)
= >(4,0 2)INO’My)tr 0'07) . (5.8)
1J
From the Weyl condition satisfied by A,, 1,, and ¢ it is clear
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that the O’ containing I' !’ double or cancel the contribu-
tions of the corresponding O’ without I"V’. In fact, the O
with an odd number of I"’s cancel. This leaves

Ol= {LFU’ Iﬂ:_'ikl’ri,...i,,, Fi""i“}. (59)
It is easy to show that A, A,, A, %A, and A "1, are

symmetric in (12), and hence also these do not contribute to
the commutator. Finally,

reri-sps =0 (k1=1, 16) (5.10)

as one may verify
6 10
=6 .

(6)+(3)=ox)
Hence
[6{42), 6 A)]¥

= At T 12 )~ YA, LA LRI <y, (5.11)
From I'*¥Iir* = — 1281 9% (note that one sums over k> /

and k </ in 8¢~ but that in O the I' ¥ are counted once, so
that in O / one has / <), one finds again the same result as for
the (4, A ) commutator on ¢ 9.

Clearly, the O(16) generators and the rest of E; form a
Cartan decomposition, as expected since O(16) is a maximal
subgroup.

F,

The exceptional algebra F, has 52 generators, a 26-di-
mensional real representation, and O{9) as a maximal subal-
gebra. Since spin (9) is 16 dimensional, one expects a repre-
sentation in terms of a vector v’ (f = 1, 9), a spinor ¥* (@ = 1,
16), and a scalar 5. Of the 52 parameters, 36 parameters A
come from O(9) while the remaining 16 parameters A * clear-
ly form an O(9) spinor. Thus we put

=AW+ AT e
8y = (JA 'T;° p¢F)
+ (sA* + v T4 %),

8s = ald “y), (5.12)
where a is a free parameter which cannot be scaled away.
The (A, A) and (A, A ) commutators are guaranteed to be
uniform for v/, ¥*, and s, due to the manifest O(9) covariance.
Let us therefore only check the (4, A ) commutator.

On v' one finds

[6(A,),6(A)] =8(A" =24, ;A,), (5.13)
using the fact thatin d = 9 dimension the Dirac matrices can
be taken real and Hermitian, thus symmetric. On s the same

result is found (namely zero). On ¥, finally, one finds after a
Fierz rearrangement

[6{4.), 814}

= 41,04, —A,04,)0a0" + C*O'r* )y, (5.14)
where the factor & is due to the fact that the Dirac matrices
are 16X 16 matrices in d = 9. The complete set O’ is given
by

O'= {1, [, .., iy (5.15)
and 1, I, I', , are symmetric. Hence we only need to con-

fyoedy
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sider 0/ = %" and O ! = I"'"">. The former yield zero if
a = 3, and with this result the latter yield the desired
commutator.

The scalar s is thus needed because I" “I" "*“" * does not
vanish. In the case of E; no scalar is needed, because in 16
dimensions the identity (5.10) holds.

G2

The exceptional algebra G, has 14 generators, its lowest
representation is 7 dimensional and real, and SUj is a maxi-
mal subgroup. Clearly, one can only have the following SU,
reduction

7=3+3+1 (5.16)

Thus we expect a representation on an SUj triplet x%, an
antitriplet X, = (x*)* and a real scalar x°. The parameters
consist of 8SU; parameters A “; and six other parameters,
which can only be a triplet o® and an antitriplet &, = (0°)*.
Thus we expect the following matrix representation for G,:
Ox* = A %xP + L eP5,%, + 0°x°,
8%, = J€.5,0%" + A.P%5 + 5, X°,
6x° = ag,x" + aox,, (5.17)

where a is a free constant to be fixed below. Again we only
need verify the (0, ) commutator since all transformation
laws are manifestly SU, covariant.
Acting on x“ one has
[6(aa), 6 (o)) ]x" = (aofﬁz,ﬁ)xﬂ + ao“l’ogfg
+ %(faﬁya—'l.ﬁeyéeag)x‘
+ (I/V2)(€¥75) 55, X° — 12,
(5.18)
The composite parameters are thus
(A I)aﬁ ={a — %)(Ulaﬁz,ﬂ - 0'(215'1.5) - %62(51“72 -~ 0,:04),

(0')* = V2e*1G, 45, ,,

(0)e = — av2e,5,0,°0%. (5.19)
Clearly
a= —1, (5.20)

and with this value A ' is traceless, as it must be, while also the
(o, o) commutator is consistent. This completes the 7 X 7
matrix representation of G,. In terms of x + X, (x — X)/i and
x%it is real, but we prefer in this paper to use the basis x°, X,
and x°.

6. ALTERNATIVE CONSTRUCTION OF THE MATRIX
PSEUDOREPRESENTATION FOR G(3)

We now extend the methods of Sec. 5 from ordinary Lie
algebras to superalgebras, and show how one can derive the
9} 9 matrix pseudorepresentation for G (3). The result coin-
cides of course with the results obtained by the general meth-
od used in Sec. 3, but it may be that the simplicity of the
arguments used below makes them useful also for non semi-
simple superalgebras.

Since the odd generators must be in the same represen-
tation as that used for G,, the odd matrix elements are
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¢, 3. d"), (6.1)
with 7, transforming under SU(3) as 3 and with d " real.
Thus we consider the matrix

/{ aB &7(6'5)(1’/ o.a qai
Eo i? 7, G,
ar = | HEer =1 62
-5, —o* 0 d
Goi q% ad, ¢/

where (€-6)"7 = €755 and (€:0),, = €,4,0”. We shall now
discuss the elements in the last row. Since d ' is real, and this
property must be preserved, ¢/ must be real, and one can
take ¢ traceless (its unit matrix forms an ideal). Since under
ordinary matrix multiplication the elements of ¢ contain
terms g, ,;4,” + ¢5.4,..’ + ad, . dy + 12, reality of ¢
requires

Grai = g7:)* (6.3)
If ¢ is to be traceless, d, ,d,’ + d, ;d,' = 0. This can only hold

ifi=1,2andifd,, = €,d/. Thus we have found the ele-
ments of the last row of M

Gui = eij(qaj)*! q; = frjqaj» d, = ffjdj- (6.4)
It also follows that the matrix ¢ is an element of SL(2, R ).
Thus the bosonic algebra is G, X SL(2, R ).

One must be careful with these arguments and we only
present them as a heuristic guide to guessing the correct bo-
sonic group. In fact, as we shall see, the matrix composition
rule is not given by ordinary (antijcommutators, but in the
even sector extra terms are needed. Hence, the above argu-
ments are simply not applicable, since we assumed that the
odd—odd elements of ¢ were obtained by anticommuting the
corresponding generators. Nevertheless, one arrives at the
correct starting point and such arguments may also be useful
for other cases.

One can rephrase the form of M as a set of transforma-
tion rules on coordinates (x%, X, x°) and (y;):

8x® =A% xP + LePG,%, + 0°x° + ¢*,,
6x°= — g, x*—0"%, +d'y,,
— 7 a ag 0 j

Oy = §ux® +q,°%, +ad,x’ + ¢’y (6.5)
and one easily convinces oneself that the only free parameter
is a.

If one takes the commutator or anticommutator of two
matrices M, and M,, the result must be again a matrix of the
same form. In particular, the composite entry g% must be

related to the composite entry §,, ,; by §12,; = €; (g12)*.
This means that

eij(/l g7 + %f‘alqzj +o,d/ + qlkcz,kj)* — 12

=§A2+ $ha1.€0, —ad, ;5 + cl.ijqz,/’ — 1-2.(6.6)
All terms match if one fixes & to be given by

a= +1. (6.7)
With this value for @, the composition rule of the parameters
for the last row and column of M is consistent with ordinary
matrix commutators or anticommutators.

In the even—even sectors, the composition rule cannot
be given by ordinary matrix muliplication, as we already
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stressed. For example, the composite A “; is no longer trace-
less, though it is still anti-Hermitian. By accident, c is still
traceless, but we take now the most general composition rule
for the elements of the bosonic sector, and only assume that
the terms with purely bosonic parameters are as usual. The
requirements of SU(3) and SL(2, R } covariance severely re-
strict the possible form of the terms bilinear in ¢ and d.

A 8 =+ A4 [‘]‘111’ Gopi — %5$(q1’i¢72.y.-) + 1""2] s

B - = af
o = ..+ “ﬁ[faﬁthﬁ‘h,yi] +C [41 d,, + 1"*2],
¢p/=..+D [(7) 092 + c.0) + 12]

+ E [d,;df + 1-2]. (6.8)

The terms denoted by ... in 4, and o, are bilinear in A, and
o;(i = 1, 2), while the terms denoted by ... in ¢, / are given
by [e), €21/

In order to fix the five free parameters 4, B, C, D, E we
consider the Jacobi identities. As an example, consider the
three matrices M (g,), M (d,), and M (o). Since M (7,) and
M (d,) are odd generators, while M (o) is even, the Jacobi
identity reads

[{M(g)), M(d,)}, M (03)] — [[M(d,), M(03)], M (g,)}
+ {[Mo3), M(g))], M (d2)} = 0. (6.9)
The signs are easily understood: pulling M (,) in the first
term to the right, it passes the odd generator M (d,) which
results in an extra minus sign, but permuting M (o) to the
left, no minus signs can appear since M (g,) is bosonic.
Consider now the (1, 1) entry in the Jacobi identity (the

entry which in M is called A “;). The composite parameter 4,
due to combining two matrices M; and M, is given by

Atup = Aidu)s + \e-01€0y )% — 0705 — Lo11
+4 [qiu-q-n,/sf —48%% a4 " Gy + I‘_’H]~ (6.10)
It is clear that the only contributions of the form g,d,o, in

the (1, 1) entry from the three terms in the Jacobi identity are
given by

from term 1:  i(€:0),€-03)% + (03012)%>
fromterm2: —4 (qg;ql.ﬁi —1639%:4. ), (6.11)
from term 3: none.

The only terms in o, of the form g,d, and in g,, of the form
d,o, are

T120 =Eai.ad2,n g5 = —o5d}. (6.12)

To make life even simpler, one may consider only the terms
with & “. There are only two such terms, and one arrives at
(using ¢'d; = —g.d’).

C=+4. (6.13)

In the odd sector of M one finds the relation between 4
and B, C on the one hand, and between D, E and B,C on the
other hand. Consider for example a relation C~ E. Since C
corresponds to gd terms and F to dd terms, we consider
d,d,gq, terms. Since the C terms come from oy ; and the E
terms from ¢, ;;, we must consider an entry whose composi-
tion rule contains terms like od and gc. This is clearly the (1,
4) entry (the one called ¢* in M ). Thus we consider the Jacobi
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identity for three matrices M, containing parameters g¢,, d,,
and d,, respectively,

LM (q3), M(d)}, M(d))] + [{M(d\), M(d,)}, M (g3)]
+ [[(M(d,), M{gs)}, M(d))] =0.

The composition rule of the parameter ¢g* reads

(6.14)

at i 1 =~ i i j i
gin = Aiqn — 7‘2“6'01411 +ody + ey, — IoIL
(6.15)

Each of the terms in the Jacobi identity can contribute g,d,d,
terms to the (1, 4) entry. The first term in the Jacobi identity
corresponds to g, ;; with I = (31) and II = 2, and thus we
must consider those terms in g;;; which contain d;,. Hence
one receives a contribution from term 1 given by o,,d 5.
Similarly, the second term in the Jacobi identity can only
contribute if there is a ¢;; term in g, ;. Finally, the last term
in the Jacobi identity is equal to the first if one interchanges
the indices 1 and 2.

The sum of all contributions of the form ¢,d,d, to the
Jacobi identity for the (1, 4) entry of M is given by

(U,ndzi) + (- Q3jclz‘/i) + (Uzsdlf)
= (Cq,%jdx‘/)dzi —g¢/E(d,;d)' + dy,;d))

+ (q3jd2,j)dl,i =0, (6.16)
from which one easily deduces that
E=C (6.17)

The other parameters are fixed in a similar way. The
g,d,0 terms in the (4, 4) entry of M yield E = D, while the
G.9.05 in the (1, 1) entry yield B = 4 4. Since there is al-
ways a free scale in the (odd, odd) bracket relations, our final
result contains still one free parameter which we fix by
A =1.Thus

A=1, C=E=D=1 (6.18)

The completes our discussion of G (3). The matrix repre-
sentation is (6.5) with @ = 1. The bracket relation of two
matrices is given by the usual commutators or anticommuta-
tors, except that for the bracket between two odd elements
one must use the formulae (6.8) and (6.18).

B= +34,
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Study of superluminal electromagnetic fields
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Behavior of Maxwell’s equations under imaginary and real superluminal Lorentz
transformations respectively has been reexamined and the expression of a Lorentz force acting on
an electric charge interacting with superluminal electromagnetic fields has been derived. It has
been shown that in four-dimensional space-time as well as in six-dimensional space-time the
electrically charged tachyon interacting with electromagnetic fields behaves neither as a purely

electric charge nor as a purely magnetic monopole.

PACS numbers: 14.80.Kx,12.20. — m

1. INTRODUCTION

Diverse approaches have been developed to carry out
the field theory of tachyons, probably because fundamental
quantal properties of these particles are not yet very well
known. In the classical theory of tachyons, two main ap-
proaches have been followed by different authors. In the first
one, adopted by Recami et al.,' Corben,? Teli et al.* and
others,* the components of a four-vector in the directions
perpendicular to the relative motion become imaginary on
passing from the subluminal to superluminal realm, while in
the second approach adopted by Antippa,® Antippa and Ev-
erett,’ Gonzalez-Gascon’ and Lemke,® the real superlu-
minal Lorentz transformations are used.

We?® have recently derived the transformations of elec-
tromagnetic fields, four-potential, and four-current density
under both types of superluminal Lorentz transformations
and showed that the Maxwell’s equations are not invariant
under any type of transformation in general, while the com-
ponents of superluminal electromagnetic fields transverse
with respect to the direction of the relative motion appear to
satisfy field equations similar to Maxwell’s equations under
the superluminal Lorentz transformations of the second
type. In the present paper it has been shown that the chrono-
topical mapping (3,1)—(1,3) in the first type of superluminal
Lorentz transformations does not retain the invariance of
Maxwell’s equations, and to retain such an invariance we
must include an extra negative sign in the transformations of
four-current source density. The expansion for the superlu-
minal magnetic field under the first type of transformations
and mapping (3,1}—(1,3) is then inconsistent and it becomes
isotropic, having the same strength in all directions. It has
also been shown that under these transformations the nature
of the Lorentz force is changed and an electrically charged
tachyon interacting with superluminal electromagnetic
fields does not behave exactly as expected of either electric
charge or magnetic monopole, in contradiction with the re-
sults of Recami~Mignani,'® Vysin,'' and Dattoli-Mig-
nani.'? It has also been shown that in six-dimensional space-
time formalism originated by Demers,® the consistency of
the magnetic field may be retained under the first type of
superluminal Lorentz transformations and the mapping
then becomes one to one. It has aiso been shown that in six-
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dimensional space-time formalism, though the expression
for the Lorentz force on the charge tachyon in the superlu-
minal electromagnetic field is similar to that derived by Dat-
toli-Mignani,'? it cannot lead to their conclusion that an
infinite-speed tachyon behaves as a magnetic charge at rest.
Rather, it has been shown to be similar neither to the force
acting on a purely electric charge nor to that on a purely
magnetic monopole.

We also reexamine in this paper the question of invari-
ance of Maxwell’s equations under real superluminal Lo-
rentz transformations by using the reduced expansion of
electromagnetic fields and potentials in terms of standard
helicity representations of the Poincaré group and it has been
shown that no suitable charge and current source densities
satisfying equation of continuity can be defined for the Max-
well’s equations to be satisfied even for transverse superlu-
minal fields.

2. SUPERLUMINAL ELECTROMAGNETIC FIELDS
UNDER SUPERLUMINAL LORENTZ
TRANSFORMATIONS OF THE FIRST TYPE

Let us start with two parallel frames K and K “ inrelative
motion with velocity v > ¢ along the Z direction such that
their origins coincide at time ¢ = ¢ ' = 0. Transformation
equations for space and time coordinate in these frames may
be written in the following form' in the natural units
c=f=1;

x'=+ix; (j=12),
Xy = £ ylxy —vt), (1
t'= + vt —vx,),

where x, = x' = x,x, = x> =, x, = x> =z, and ¥ is given
by

y= (U2 _ 1)—1/2'

From these equations we get

3 3

12— Y xi= Y xi? 1" (2)
=1 =1

which shows that thereference metric(+ 1, — 1, — 1, — 1}

in frame KX is transformed to the metric{ — 1, + 1, + 1,

+ 1) and the transformations (1) and the roles of space and
time get interchanged. In other words, the transformations
(1} are incorporated with the chronotopical mapping
(3,1)—>(1,3), or
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(x, p, z, it\—(t', ix', iy', iz'), 3)

from which we get

O= -0 (4)
and the mapping
(72} ). (5
ot at’

Similar superluminal Lorentz transformations have been de-
rived'* for the components of the electromagnetic four-po-
tential {4, } and it has been shown that

4,17 = —|4,[% (6)
with the corresponding (3,1)—(1,3) mapping

(A 1s AZ’ AJ» ’¢ )_’(¢ '9iA l’! iAZI’ "A3')’ (7)
where ¢ = — id,. Using relation (2) and the mappings (5)

and (7) and the similar mapping for the components of four-
current density {J, }, we may transform the Maxwell’s field
equations

04, =J, (8)
in the frame KX to the following equation in frame K ":
04, = -J,, ()

which are the equations according to which the superlu-
minal electromagnetic field is coupled to the tachyons
(which may be considered as bradyons in superluminal
frame K’ in view of tachyon-bradyon reciprocity). These
equations are not similar to Maxwell’s field equations (8) for
the superluminal electromagnetic fields. In other words, the
field equations are not invariant under superluminal Lo-
rentz transformations (1). In order to retain these field equa-
tions under the transformations (2) and mappings (5) and (7),
we must include an extra negative sign in the transforma-
tions of four-current density, i.e., we must consider the
mapping

(ip, Iy Iy I y—> — (', W 00, i), (10)
In spite of the change in sign in this mapping, the real and
imaginary components of the four-current lead to the corre-
sponding real and imaginary components of the four-poten-
tial. Change in sign leaves the total charge and current densi-
ties invariant because the volume element also changes sign
under the transformations (1). With this change in sign in the
mapping (10) of the components of four-current density,
Maxwell’s field equations may be treated as invariant upon
passing from the subluminal to superluminal realm and vice
versa through the transformations (1).

Under the mappings (5) and (7) the usual equation for
electric and magnetic fields for the superluminal case trans-
form to the following equations for superluminal fields:

B A’
E'= —grad¢’' — —,
grad'¢ E
(11)
=, 4
H' ="¢"3,
a’

where 7 is the unit vector in the direction of the magnetic
field. These equations are neither similar to those of fields
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produced by an electric charge source nor to those produced
by a magnetic charge source. It may therefore be concluded
that an electrically charged tachyon interacting with super-
luminal electromagnetic fields observed in frame K does not
behave exactly as expected of either an electric charge or a
magnetic monopole. This result is in contradiction with
those of Recami,'® Vysin'' and Dattoli-Mignani.'?

A similar conclusion can be drawn by transforming the
usual expansion of the Lorentz force

—

F=e-‘zi“—+eﬁ¢+e5><ﬁx2’) (12)
t
under the mappings (5) and (7) into the following form:

Froevg 4o L 5%, 13

F'=eV'¢ +eat,+ewat' (13)
where &'is the inverse velocity defined by dr /dX. This is simi-
lar neither to the Lorentz force acting on an electrically
charged particle nor to the corresponding force acting on a
magnetic monopole. This equation shows that a subluminal
electric charge interacting with superluminal electromag-
netic fields or an electrically charged tachyon interacting
with a subluminal electromagnetic field behaves neither as a
purely electric charge nor as a pure magnetic monopole.
However, according to Eq. (13) an electrically charged trans-
cedent tachyon (moving with infinite velocity i.e., @ = 0) will
behave like a pure electric charge interacting with a sublu-
minal pure electric field, while a subluminal electric charge
moving with velocity close to the velocity of light and inter-
acting with a purely superluminal magnetic field will behave
like a magnetic monopole with magnetic charge g = —e.

Equation (11) for a superluminal magnetic field derived
by using transformations (1) and mappings (5) and (7)is not a
consistent one since it gives an isotropic magnetic field hav-
ing the same strength in all directions. Moreover, under
transformations (1), the components of the position-vector
become imaginary in the directions perpendicular to the di-
rection of relative superluminal motion between the frames
K and K'. Similarly, the electromagnetic fields, potentials,
and currents become imaginary in the direction perpendicu-
lar to the relative motion under the superluminal transfor-
mations (1}. Consequently, a particle exposed to superlu-
minal electromagnetic fields will not have real momentum
and energy. In other words, the transformations (1) lead to
the conclusion that once we are prepared to consider the
tachyons, we must give up the idea that dynamical variables
in relativistic classical mechanics are always real. Further-
more, we have already shown in our earlier papers® ' that by
using the superluminal Lorentz transformations (1) (of the
first kind) it is not possible to derive the reduction of fields
associated with spin-1 and spin-} tachyons in terms of the
standard helicity representation of the inhomogeneous Lo-
rentz group.

To overcome these problems of the superluminal Lo-
rentz transformation we may adopt the formalism'?, where
space and time play a symmetrical role and where the time ¢
is considered as a vector in six-dimensional space-time with
three spatial and three temporal coordinates. Recently a
number of authors have supported the idea that the theory of
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relativity should involve the use of three dimensions of time.
Ziino'® argued in its favor on the grounds that light-speed
invariance is not fully consistent with the standard relativity,
while Pappas'” has introduced the notion of parallelism and
the desirability of space-time symmetry as a justification.

Following Demers’ formalism,'? in which the three
components of the time vector are coupled together giving
|t] =(t2 + ¢} +t2)"? as measurable and all the individual
space coordinates are measurable in the subluminal frame,
while on passing from bradyon to tachyons via superluminal
Lorentz transformations, all the components of time become
measurable and the space components couple together giv-
ing only mod|r| = (x* + y* + z%)"/? as measurable, we get
the following mappings under superluminal Lorentz
transformation:

(Fir=i(t2 + 12 + 12)" 2} {rirmix? + )2 + 24172}, (14)

(_V’,,ii)_»(_v', ,ii), (15)
ot ar

where _V’, and _V’, are del operators in three spatial and three
temporal coordinates, respectively.

In a similar manner the corresponding mapping may be
written for the components of electromagnetic potential in
six-dimensional space

(A, )—(B,id ), (16)

where
p=(¢>+¢;+¢2)"° A=MAI+4;+40)"517)
then in place of equation (11), we get

E'=— [V:A — 8_¢
. . or’ (18)

H' = - Vr X¢7
which is similar neither to the fields produced by an electric
charge source nor to those produced by a magnetic charge
source in, contradiction with result of Dattoli-Mignani.'*

Similarly, the Eq. (12) for the Lorentz force is mapped
into the following equation:

Fre =¥, +e2 b arx (v, x8), (19)
/4

where & is the inverse velocity defined by

& =di/dr. (20)
Though the expression (19) is identical to that derived earlier
by Dattoli-Mignani,'? it cannot lead to their conclusion that
an infinite-speed tachyon behaves as a magnetic charge at
rest. Rather it will behave as a purely electric charge inter-
acting with a pure electric field.

In a forthcoming paper we shall undertake the study of
classification of bradyons and tachyons in six-dimensional
space-time, where it will be demonstrated how observable
speeds are related to nine observables dr; /0t (i, j = 1,2,3).

3. SUPERLUMINAL ELECTROMAGNETIC FIELDS
UNDER THE SUPERLUMINAL LORENTZ
TRANSFORMATIONS OF THE SECOND TYPE

Let us consider two frames of reference K and K’ in
relative motion with superluminal velocity #{v > 1) along an
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arbitrary direction of the tachyon corridor. Real superlu-
minal Lorentz transformations of the vector and scalar parts
of the space-time four-vector { X, }, with x, = it may be writ-
ten as follows'* in natural units ¢ = # = 1:

2=+ (= VL g,
(21)
xo = py[xs +ilvx)),
where
p=— and y=@p-1)"'2

b
Using these transformations and the techniques of Moses'®
for the reduction of the wave function in terms of the stan-
dard helicity representation of the Poincaré group, we’ get
the following reduced expansions of the scalar and vector
electromagnetic potential under the Lorentz condition
[Ok,B,0) = fO*{k,B,0) with the usual definition for
V = (id/dx,, j8/Ix,, k3/dx,) and V, = id/Ir:

- mfdﬁ { FkB0) expli( 32 — oT)]

+ f*(k,8,0) exp[ — { p-X — 0 T)]} (22)
and

52477,13/2 dﬁﬁ)(ﬁ)[f(kﬁo)exp[zﬁf wT)]

+f*(k’ﬁ’0 exp[ - l(ﬁx’\ - wT)]}
1 A ( dp

+ 4173’21;‘2”2 wlk,p) VikaA)

X&I(k’ﬁr}‘ ) exp[l'([}"f - a)T)]

+ f*(k,pA )Gk BA) expl — i( X — 0T)1}, (23)

where

B-X=pix, + pyxy + pit,
(24)
0T = wx,,
andf'(k,5,0)andf (k,B,A )arethecomplex functionsdepending
upon mass k and momentum J of tachyons of spin-1 with
helicity A = OandA = + 1, respectively. Vector &,(k,5,4 ) in
Eq. (23) is given by
-1
GikpA) =] —il } (25)
0
Reduced expansion of electromagnetic fields may be given as
follows:
- 1 dﬁ
EL= !
47 ) w(kp)
— f*(k,B,0) exp[ — i( X — wT)},
> ] A dp
E T _ ps
4173/2 A :z:t 1 2”2 a)(k,i)')
X { f(k,p.A)3(kpA)expli( B-X — oT)]
— f*kpA)GF(kDA) exp[ — i p% — oT)1},

(k”){f(kif 0) expli( 3% — &T)]
(26a)

(26b)
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and

IrT 1 1
Br=-Lr 3 Shfa i skpapika)

+1

X expli{ X — oT)]
+f*kpA)GYKBA) expl — i( % — 0T)) }(, |
27

where ELand E7 are, respectively, the longitudinal and
transverse parts of electric fields while the magnetic field is a
purely transverse one. If these reduced expansions of electric
and magnetic fields are required to satisfy usual Maxwell’s
equations then the charge and current source densities can-
not both be made to vanish simultaneously and they must be
given by the following reduced forms:

p= — [P 1Sk 0 Pl 32 — 0T ]

+f*(k,B,0) exp[ — i( f-X — 0T )}} (28)
and
k .
| dﬁ(f) (£ 1kB0) explil % — wT)]
+ f*(k,3,0) exp[ — {( X — 0 T)]
k> A dF
T ann '{:zil 22 ) wlk,g)
X { flk,gA)d (k,pA)explil X — 0T)]
+ kA ot kA )expl — i fX —wT)]}, (29)

which do not satisfy the equation of continuity and, there-
fore, can not be considered as source densities for electro-
magnetic fields satisfying Maxwell’s equations. As such,

J=

1967 J. Math. Phys., Vol. 23, No. 10, October 1982

even the transverse superluminal electromagnetic fields do
not satisfy ordinary Maxwell’s equations. The expression for
a Lorentz force acting on an electrically charged tachyon
interacting with superluminal electromagnetic fields has al-
ready been derived in our recent earlier paper.'’
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The influence of the finite nuclear size and screening effects on the evaluation of the interaction
matrix elements of the Dirac electron in the nuclear Coulomb field is manipulated into a closed
analytic form. An application to the evaluation of the Bremsstrahlung cross section is discussed.
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I. INTRODUCTION

In the high energy photonuclear reactions, it is custom-
ary to employ a photon radiator to convert the primary inci-
dent beam of electrons into the photon beam according to
the Bremsstrahlung process. While it is so essential to have a
precise knowledge of the Bremsstrahlung spectrum as to in-
terpret the succeeding photonuclear reactions, there has not
been a single reliable experimental determination of the
spectral distribution. This makes it very important to have
an accurate theoretical estimate of the photon intensity
available for the entire photon spectrum and for various inci-
dent electron energies. There have been many such calcula-
tions, which were extensively compiled and categorized by
Koch and Motz in their review.! Most of these calculations
are essentially based on the Born approximation supple-
mented by various kinds of corrections, such as the screening
corrections, or by the extreme relativistic approximations
and so on. Since the electron energy is getting so high, there
is no doubt that the fully relativistic treatment is mandatory.

In order to evaluate the interaction matrix elements,
one needs the Coulomb wavefunctions by solving the Dirac
equation for the electron in the nuclear field. The radial wa-
vefunctions have been known in terms of the confluent hy-
pergeometric functions, which made the evaluation of the
matrix elements a considerably difficult task, because one
had to perform an integration involving a product of two
such functions, which required a summation of infinite series
one way or the other. Earlier calculations involve certain
kinds of extreme approximations, such as the Sommerfeld-
Maue approximation,>* to make the problem within the
reach of the computational capability.

There is an elaborate work of Gargaro and Onley,* who
have succeeded in expressing the integral of this kind in
terms of the generalized hypergeometric functions for more
than a couple of cases. Their radial integrals are extended
from zero to infinity by assuming that the nucleus might be
regarded as a point charge rather than having a finite size.
There has been a considerable interest as to whether the fin-
ite nuclear size might affect this type of evaluation as the
available energy of the primary incident electron is getting
higher and higher.

In this paper we will report that these authors’ method
can be extended to finite integrals, some of which are direct
extensions of their results and the rest are partly along the
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same line, but are more convenient for practical uses. When
such finite integrals are considered, we bear in mind that
either the finite size of the nucleus may affect the evaluation
or the screening of the nuclear field by the atomic electron
cloud would shield out the Coulomb field outside the Thom-
as-Fermi radius, or both. As far as the latter is concerned, th-
ere have been many attempts to include the idea of the finite
range of the effective interaction into the theory,>” but noth-
ing has been seriously considered for the former. So far, all
formulations simply ignore the finite nuclear size effect
probably because of the mathematical complexity and of the
optimistic anticipation that such an effect would be very
small. However, the contribution arising from the integral
around the origin may be neither negligible nor strongly di-
vergent, but there is no doubt that the Coulomb field is mo-
derately divergent near the origin if the point nucleus picture
is used.

In the following, we will consider a finite integral of the

type
J drr*~'e= 5" \F\(a;b;K 'r) F\(@;b;Kr).

(Of course, one finite limit suffices for our discussion.)
When the finite-size nucleus is considered, we have as-
sumed that no photon emission took place within the nuclear
volume and that the finite nuclear charge distribution al-
tered the pure Coulomb field solutions of the Dirac equation.
In order to find the new wavefunctions, we have used a
modified trapezoidal nuclear charge distribution® and calcu-
lated the radial wavefunctions outside, as well as inside, the
nuclear radius. Since the nuclear potential range, other than
the Coulomb potential, is finite, the effect of the nuclear po-
tential is represented by an extra phase shift,” which can be
evaluated at the nuclear surface together with the mixing
amplitudes of the regular and irregular solutions. One can
use the outside solutions thus obtained to evaluate the above
integral with appropriate upper and lower bounds. We, how-
ever, use the approximate phase shifted regular solutions to
evaluate the integral, which may be expressed as a difference
of two improper integrals, to see if we can find a feasible
result. It is further necessary to convert this phase shift into
an appropriate form of the scattering phase shift,'® because
of the phase ambiguity of the Coulomb phase shift 7 by a
multiple of 77, which will be explained in Sec. III. The evalua-
tion using the exact solutions is currently studied and may be
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discussed in our future publication.

As for the screening effect, there has been a convincing
criterion for the cutoff radius,”~” which seemed to be consis-
tent with our preliminary estimate and will not be discussed
any further in this context.

In the next section we will derive the closed expressions
for the finite integral, which will be applied to the evaluation
of the cross section of the Bremsstrahlung in Sec. II1. A brief
discussion is given in Sec. IV.

{i. FINITE INTEGRALS

The integral we are considering is of the form
p -
= J drr®~'e %" F\(a;b;k’r) ,F,(@;b;kr). (1)
(+]

The limiting case of this integral when the upper limit goes to
infinity has been studied by Gargaro and Onley.* Our eva-
luation method of the finite integral {1} closely resembles the
method used by these authors and, therefore, we follow their
procedure as nearly as possible at the beginning.
Casel:|k | >|k'|, Relk)<0<Relk’),
Re(b)> Re(a)>0,Re(b ) > Re(@) >0, and Re(a)>0:
a+4+n
L= 3l 00
p = 2 g a1

" n
. . k — (@ + m)
X Fila +nl + a; p)mgo(m)( )
[r B,zz_‘—(a+m)
—(a+m)
X3F,(b—a,a +m,1 +(a+m)—
bl+a+m)—ak'/k)

(k')ﬁ-1a+m)
s

[b,l_),(a+m)——?1,b—a—(a+m)+6]
r - L -
b—ab—-aga+mb—(a+m)+a
Xein—(ﬁ—m)

X F (@l +a3—bb—a—(a+my+a;

l+a—(@+m)b+a—(a+m)k'/k)},
(2)

where
r [a,b,---] _I'@Ib)-
Prgs )" (g)--
and ;F, are the generalized hypergeometric functions.
In order to prove this equation, the integrand F, is
converted into an integral representation form by making

use of Eq. (A6), after using Kummer’s first theorem (A2) as
given in the Appendix:

I — b—a—1 a — 1
£ r[aab—ab— ]fduu (11—

dev V¥ (1 —U)B_‘_’_‘fdr’ﬂ—le—[k’u—ku]r'
0 o
4)

(3)
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The integral over 7 gives nothing but the incomplete gamma
function'":

0
Jdr'afl ~ [k uvkv]r

0

[k'u — kv] ~*va,lk'u — kv]p),

(5)
where p is the nuclear radius and y(a,x) is

Hax) = f “~le='dt [Refa)>0]

=a~'x% " F|(lia + 1;x). (6)
Thus we can write the result (5) as
- ku=kle F(La + 1[k'u — kv]p).

Then we apply the multiplication theorem for F,, (A12),
. and we get

u—kle B (1 + 1;[k'u — kv]p)

kv]“’i—(g)i

n=0 n!
X(1— [k'u — ko] ™), Fy(1

>, a+n
_p p[
p";, a+1n+1

x 3 (=" hw - ko) e, )

m=20

— 1 .a

a~'p
a~'p%e~

=a~ 'p%e Plk'u—
—ml+a;p)

] Fila +ml +a; —p)

where (@), = I" [* 1 "].(’,) are the binomial coefficients, and
use has been made of the Kummer’s first theorem (A2) and
the binomial theorem.

Substituting (7) into (4),

]fduu” a1
b—a

X(1 —u)"“fdvv"“(l —pfp-a-!
0

per]
£ aab

N a+n ]
xp ,,Zoa+1,n+1

X \Fila+ml+a;—p) 3 (= 1)"

=0

—la+m)
<= ()]
m k'u
Integration over v is carried out, using (A7), and we get
b ] i [ a+n ]
1, =r ey r
. [a,b_a”n;) a+1n+1

X\Fla+ml+a—p) Yy (- 1)
m=40

(o

1
xfdu ub—a—(a+m)—l(1 _u)a—l
(4] .

_z k
X 2F,(a + m,a;b;—’). (8)
k'u
Since the absolute value of the argument of ,F |, |k /k 'u|, is
greater than unity, one has to use the analytic continuation
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formula (A11) to convert the argument into its inverse, and
express (8) as

= a+n
I”—r[ab-—a] Z:O [a+l,n+l]

X Fila+n1+a; —p) Z(_”m( )k) (e + m)

1
X{f duub =1 —uP!
()]

5’? a+m)]( 1)~ 1a+m)(k) @+ ml
a,b— (a+m) k’

X Fila+ml+(a+m)—b

1+(a+m)—a;-kk—u)

)a-l

1
+fduub—"-(“+M>+a—'(1 —u
0

i) SR CON
xzp,(a,l+a~5;1+a—(a+m);-';c—'u)]. (9)

Finally, applying (A8), one gets Eq. (2).
Case 2:|k'| > |k |, Re(k)<0<Re(k’),
Re(b)> Re{a) >0, Re{®(b)> Re(@) >0, and Rela} > 0.
a+n
ST ]
L=r ,,;, [a+l,n+l

X, Fila +n1 + a; —pj z( )(k} (e + m)gimm

—a—|a+m)
{1" b—ab—(a+m)
X F{(a,a+ml + (a+m)—

B,l+(a+m)+a—-b;i)

k!
k'’ a—b+{a+m)
+(T)

b,B,((l + m) -
XF[ a,a,a + m,z
Xein-(a—b+a+m)

b+a,5——(a+m)+b—~a]
—(a+m)+b—a

X3F2(1 —'a,b_a,a'—(a+m)+b—a;
l+b—a—{a+m)b+b—a—(a+m)
_k_)}
k' /N
The proof of this result is similar to the Case 1. After inte-
grating over r, we get

T 1
b’b_ _”.duu”_“"(l——u)"_l
(o]

aab—ab-—-a

(10}

1,,=1‘[

L a+n ]
a— 1 _ b— a—l
XJ;dvv (1—1v) Z [a+l,n+1
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X Fila +m1 + a; — p)

AWEY
x|1-()

Integration over u can be done by using (A7)

a(kU) {a + m)

(11)

b it a4+ n
st ol o)
g a’b_a( )pn;o a+1n+1

X Fila+nml +a; —p) i (’:)(k)”“’*’"’
m=0

1
devua”“’*"”"'(l —yp-a-t
0

kl

XzFl(a + m,b — a;b;—z—u—). (12)

Using the analytic continuation formulas (A1 1) and (A8),
integration over v can be done, and one gets (10).

Case 3:k = k', Re(k) =0, Re(b) > Re(a) >0, Re[b
—a+a—(a+m)]>0 for all values of (@ + m) — b + 1
€Xcept zero or negative integers:

had a—+n
|
p";() a+1)n+1

< B foer

X{ein(a+a—5;

b,1 +(a+m)—l;]

a’l +(a+m)—-
X3Fyb —a,@ +m,1 + (@ + m) —
b1 + (a + m)—a;l)

@ bl+(@+m—b ]
oo, _
e b—Gl+lat+m+a—5b

XsFla,a + m1 + (@ + m) —b;
bl+a+m)+3—bl)}.

] WFile + 1 +a; —p)

(a + m)

(13)

We start with the recurrence relation'? for the unit argument
(A10).

alyl+az+a3_b2, b

b,1+a, — byl +a,—b, } 1£5(a1,a5,a5;0,b,;1)

rf

a
=r [bl] (b, — aaya5;6,1 +ay + ay — byl)
1

—I‘[l +a,— b1 +a, +a;— by,b, — 1]
1+ b, — b,a,,a;
XsFy(1+ay— byl +a, — by,1 +a; —by;
146, — b2 — by1).
(14)
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Choosinga, =b—a, a,=a+m,
ay,=1+(@a+m)—b, by=b,and b, =1+ (a+m)—a,
the identity (14) gives
b,l;,(a+m)—6,b—a—(a+m)+a]
b-——a,E—&,a+m,b——(a+m)+5
X JFo@,1 +a@ —b,b —a — (@ + m)+G;
1+3—(a+m)b+a— (a+ m)l)
b1+ (a+m)—
[B—a,1+a—3+(a+m)
X Fola,a + m,1 + (@ +m)—bb1 +3 — b+ (a + m)1)
b1 + (@ +m)—ba—(a+m)
b—aal+a—b ]
X Fob —a,a + m,1 + (a + m) —

-r
b;b,1 + (@ + m) — a;1).
(15)

Setting (k ‘/k ) in Eq. (2) equal to unity and substituting (15),
we get

Y I T
X 3 (1 oyt
Aerls e
_ eam
<)

X Folb — a0 +m +(@+m)—b
b1+ (a 4+ m)—a;l)

b1+ (a+m)—
—al+da—b+(a+m)
X Fyla,c +m,1 + (@ +m)—b

b,14+a—b+ (a@+ mjl)}

m(a—m)r[_
+e 5

Using the relation I (¢)I" (1 — ¢) = #/sinc, the factor of the
first term in the braces can be expressed in a single form, and
Eq. (13) follows.

These results contain infinite series ,F), to be evaluated.
We can also show that there are another form of these results
expressed in terms of finite series, by making use of another
formula of the multiplication theorem (A13).

Case 1|k | > |k '| and other conditions are the same as
for Case 1:

z y(a+np) Z( )(k)'"]“[ba+m

o ab+m

X3F2(b —a, — mll —m— E;b,l —m — a;kT).

(16)

After integrating over r, we select the alternative choice of
(A13):
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a”'p® \Filaa + 1; — [k'u — kv]p)
o @(—pr
=f x,.z'oa(a+ 1),n!
X ([k'u —kv] — 1)"
XiFila +ml +a+n —p)
a+n )
Z Ya +np)

n=0

A 1)"'(,’;)(k upr

x [1 — (_];"7) u]"'. (17)

Integrating over v, we have

Lerl, |3 S (e
XJ;duu”“’*"'“(l—u)""‘zF,(—m,E;E;kL,u).
(18)

As we have done before, the analytic continuation formula
must be used in order to make the absolute value of the argu-
ment of ,F, less than unity. If we formally apply (A11), we
get

I —
r[ab—a

& rat+np) & m(") nm
X —_— -1 k
2,0 p MZ=0( ) m( )

1
deuub—a+m—l(1_u)a—l

0

ba+m k \"

|- A
X[ 5,b+m( k')
Xu""zF,(—m,l—m—l;;l—m

5,—E—m k\-@
r[ b _(_—)
T _mp—al\ T

-k’ )
—a—u
k

Xu® 2F1(5,1 +a—bl+a+ m;-—lf];— u)]
(19)

The second term in the curly bracket has an infinitely large
value of I ( — m) in its denominator and, hence, it should
vanish. As a matter of fact, the ,F, in Eq. (18) is nothing but
the Jacobi polynomial, and its analytic continuation formula
lacks the second term of {19). This is shown in the Appendix.
Dropping the second term and integrating over u, one gets
(16).

Case 2":|k’'| > |k | and other conditions are the same as

for Case 2:
& va+np) & (n) . [b —a+m

I = L T e r

? nZ'o n! m2=0m( k) b—ab+m
Xst(l_’—E,—myl—m—b;E,a—b—m+l;%),

(20)
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Again, we start from Eq. (4) and integrate over r. After ap-
plying the multiplication theorem (A 13), we get

a™'p® \Filaa + 1; — [k'u — kv]p)
= 3tk 3 (o wr[i= ()] e

Integrating over u, we again have a Jacobi polynomial:

=0
T B P
XJ. dov?tm (1 —pf %! 2F1< —mb —a;b;—).
o kv
(22)

Formal application of the analytic continuation formula re-
sults in a vanishing term as before, thus proving (20).

lll. APPLICATION TO BREMSSTRAHLUNG

As was discussed in the first section, we apply the result
of the preceding section to the Bremsstrahlung. The photon
beam in the photonuclear reactions is generated by the
Bremsstrahlung from the incident electrons interacting with
the nuclear Coulomb field of a radiator. The cross section
can be expressed as

W, pWok dkdg2,

d3c= P P Zdﬂ2§2|Mif‘2’ (23)
1 € 2
where
|M,.f|2 = |J-W{e-ae““"¥/1 d>r|%. (24)

The quantities p, W, and ¢ are the momentum, energy, and
spin of the electron, respectively, and € is the unit polariza-
tion vector of the outgoing photon of momentum k. ¥’s are
the electron wavefunctions and the subscripts 1 and 2 refer
to the initial and final states, respectively. a is the Dirac
matrix, and o = (¢ §), where o is the Pauli spin matrix. We
use the natural unit:#i = ¢ = m = 1. In calculating the
Bremsstrahlung intensity spectrum, the most crucial part
arises from the radial integration in Eq. (24). We intend to
proceed as strictly as possible and the following plans are
adopted unless otherwise stated:

(i) The electron mass is kept in the entire calculation.

(ii) The finite size of the radiator nucleus is taken into
account by considering the uniformly charged sphere of ra-
dius p.

(iii) The electron wavefunctions are expanded in partial
waves with the appropriate phase shifts.

(iv) The nuclear recoil momentum is kept in our kine-
aatics.

The Dirac equation for the electron in the nuclear Cou-
lomb field is

lop+B+V1v=Wy, 25)
where
I o
= (o - 1)‘
The potential V assumes the form 26)
V= —aZ/r for r>p,
V= —(aZ/2)(3—7r/p>) for r<p. 27
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Here o is the fine structure constant. The potential form is in
accord with our plan (ii). Z is the nuclear charge of the radia-
tor. The solutions for the Dirac equation (25) are written in
the form, for a given angular momentum,

(&) X’:(?))
‘”"“(ifx(r) .n) 28)

where 7 is the coordinate unit vector of the electron and y%
are the spin-angular functions, which are written'?

X‘: = 2(1.“ —ms m|ls j:u)YI,u—m(?)Xm’ (29)

where (/ 4 — m sm|ls ju) are the Clebsch—~Gordan coeffi-
cients, Y, _,, are the spherical harmonics, and y™ are the
spin functions. These spin-angular functions y% and y* , are
the eigenfunctions of the operator X = (1 4 o-L). Angular
momentum quantum numbers /, /*, and j are defined accord-
ing to

J= k| =14 (30)
1K=l=[" if x>0,
—x—1 if k<0,
vi=l'={K_1 %fK>O,
—x if k<O.

(31)
When a point nucleus is considered, only the solutions regu-
lar at the origin are needed, and they are expressed as

rff(r)} 3 {i(l — W) (2pryTe™ | (y + iy)|
rfn) L+ W) @p)2ry +1)
<ol Lty + e~
X Fily + 1+ iy;2y + 1;2ipr)], (32)
where the superscript C denotes the pure Coulomb field and
V=« —(aZ},
y=aZW /p, (33)
M= — (k— /W)y +iy).

As far as the electron wavefunctions are concerned, we
find a very close resemblance between the Bremsstrahlung
and the beta-decay process for which the conditions (i), (i),
and (iii) are all met. Since we have a very reliable code for the
beta-decay analysis, as was demonstrated in our earlier pub-
lication,® we have extended our code for the application to
the Bremsstrahlung. We should, however, note that the
phase convention employed in the beta-decay analysis is not
the same as that employed in the electron scattering formal-

ism, that is, the asymptotic form of the radial wavefunction,
regular at the origin, say, in the electron scattering case (de-

signated as YRW) is

18~ sin(pr + y In2pr — §(j — Yjm + 4,), (34)
while in the beta-decay case (designated as BR")
rg, ~ sin(pr + y In2pr + 4,). (35)

A method transforming the BR to the YRW scheme is de-
scribed elsewhere. '° It should be mentioned that the electron
mass is set equal to zero in the YRW method. Table I shows
our phase shifts obtained via BR together with the YRW
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TABLE I. Values of phase shifts for gold.*

YRW® Ours

(x>0) k>0) {x <0)
I«] s8¢ 4-5¢ PE 45 s8¢ 4-5€
1 0.407 36 — 085820 0.406 04 ~0.857 14 0.408 65 —0.859 58
2 — 023797 —027143 — 023862 —027159 ~0237 13 027258
3 — 053303 —0.076 33 ~ 053347 —0.7598 —0.532 60 —0.07636
4 —0.726 59 — 001494 ~0.72691 —0.01491 ~0.726 26 — 001501
5 —0.870 98 —0.00199 ~0.87123 —0.001 96 — 087071 — 0.001 98
6 —0.98623 —0.000 17 —0.986 44 ~0.000 19 — 0.986 00 —0.000 19
7 ~1.082 18 — 0.00001 ~ 1.08236 —0.00001 —1.08198 ~0.00001
8 — 1.164 38 — 0.000 00 —1.164 52 ~ 0.000 00 — 116420 —0.00000
9 — 123628 —0.000 00 — 123641 —0.000 00 ~ 123612 — 0.000 00

*The electron mass is neglected here, and the incident energy of the electron is taken to be 113.12 MeV in our calculation.

bSee Ref. 14.

results. For the sake of completeness we also list in Table I
the Coulomb phase shifts § £ due to a point nucleus. As can
be seen from Table I, our phase shifts are in excellent agree-
ment with those of YRW. Table II shows our results when
the electron mass is not taken to be zero.

For a point nucleus the irregular solution does not play
a role in the radial integration involved in Eq. (24), but even
the regular solution becomes mildly divergent at the origin;
e.g., for || = 1, g€=fS=r"~ . The divergence associated
with this behavior of the wavefunction is inevitable for the
point nucleus approximation. For an extended nucleus, on
the other hand, the divergence would not occur if we inte-
grate from the nuclear surface to the cutoff radius of the
screened potential. It is then necessary to find the external
electron wavefunction expressed as a linear combination of
the regular and irregular solutions, which should be
matched to the internal solution at the nuclear surface. We,
however, in this work, only consider the regular solution
whose asymptotic form is given by Eq. (34). If there is indeed
an appreciable difference between a point nucleus approach
and our approximation method, we may attribute the differ-
ence to the nuclear finite-size effect. More rigorous method
in which the irregular solution is also taken into account will
be presented in our forthcoming paper.

Once this approximation is adopted, the electron wave-
functions for the initial and final states are of the form

w-41r( ) 5.0 e, (36)

TABLE II. Values of (4 — §7) for gold."

| k>0 k<0

1 — 0.856 80 —0.859 25
2 —0.271 09 —0.272 09
3 —0.07594 —0.076 31
4 —0.014 84 —0.014 93
5 — 0.001 96 —0.00197
6 —0.000 19 — 0.000 19
7 —0.000 01 ~—0.00001
8 — 0.000 00 — 0.00000

*The electron mass is explicitly included in this calculation.
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where v is the “large component” of the Dirac spinor and S,
is the amplitude of the k-component eigenfunction. Since the
initial and final states are asymptotically described by a
plane wave plus outgoing and ingoing spherical waves, re-
spectively, the superscripts (o) and (i) distinguish these
spherical waves.

) o i (37)
and ¥* is defined in Eq. (28). For " a phase factor ¢
should be replaced by e .

Having obtained the electron wavefunctions for the ini-
tial and final states, we rewrite Egs. (23) and (24) in a calcula-
ble form. The photon plane wave' is expanded in terms of
the spherical harmonics:

e~ M = 4772 )~ 4 [A{Okr) + b Pkr)]

X Yy (k)Y 50 (P) (38)
where h {'(kr) are the spherical Hankel functions of the ith
kind. In the following we will consider the outgoing compo-
nent, & {"(kr), only. After summing over polarization and the
final state spin variables and integrating over the final elec-
tron angles, we have'”

dio=-22WWa an,
27 p,

X| > AP (cosf)
L=0

+#g, S BLP,,(cost )], (39)

where @ is the angle between p, and k, 7 is a unit vector in the
direction of kX p,, and P, ,,(cos@ ) are the associated Le-
gendre polynomials. In practice, we are interested in the
photon intensity averaged out for the photon angles; thus
only the first term in the expression (39) is the most impor-
tant. The coefficient 4, is expressed, in general, as

=264’ ¥ T Aid,A TI0 Ty — 1)+

Kk T

X(IOTO[ILO)Y T,z .31, (DI ), (40)
i
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Tx,x,E./T;f]L = %5/}“?(110710”17114 0)
X W (LG FLOW (134, .1,)
+ 5'7%(1010(1120) £ W (£,21;1F)

X (L )"2(1,01,0{1,,L "0)
2,

X (L '020|L 2L O)W (1AL 7F,;,1,)

2 L' L
S
Joo 1
(41)
{DI} =Dx2wx,1 KK;I(DKZ'KI K;ZI)
+D TP 27 ;1:7)'
- KZAK,IfIK,KZI(D—»QK, ;,;27
_D—KZK,I K,KEI(DK —x, 1 fI;,;J) 4 (42)
and
D,/ = (= 1{1)""(101,0[11,1,0)

XW(ljihf; %I)W(l ]212, S (43)

_where angular momentum numbers with a hat (l,f, etc.) are

T=21+ 1, A = |k| =j + L, W (abcd;ef ) are the Racah coeffi-
cients and
a b e
¢c d ¢
VAR 4
are the 9-J symbols. The radial integrals are
Lo = f rdrS,. S, i) 1., 8., "h i kr), (44)
et = f r?drS,S. () g ., "k Plkr). (45)
After integrating over the photon angles {2, ,
= 2m2 DWW i e 4, (46)
27)  p

where A, is given by

= 12(4nP 3 2,4, 313 (DI}
7

KKKy I

X [gaff L, J|J|
+ 5'/2(1010]1120) 77,{7,)"/%(1,020/1,2],0)
X W (2L (14275 )W (F 24 1))
(47)
The spherical Hankel functions in the integrands are now
expanded'®:

T ol I ](i)"_’_z(Zkr)_" (48)
1 (kr)=e ,,;, n2+1—n '
Substituting (48) into (44), we get

Ly = 8o, S P+~ h e T Al 2)C (1))

X ([eﬂ"l " ’72)(7/2 + ) vy + )
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l+n

141 [
X
z r n2+17—

n=1

2k —nfan—1-—2
n]( )"0
XJmdrry.+n—nefi(p.+pszlr

yel

XG0 Fl + 7, + 32y, + 1;2ip,r)
XF(L+ 7+ 52y, + 1,2ipyr) — c.c.}

imf — 73 , .

4 {emi -t — ip))yy + iyy)

1+ 1 ]+n ]

X r 2k)y ")t
21 PSS (L3 ht

w
XJ‘ drr%*y:‘”e‘i([’l"’l’z_k)’
P

X Fily: + 0232y, + 1;2ip,r)
XGF(+ v, + 52y, + L2ipyr) — ce.}), (49)
where C; and C, are the normalization factors shown in Eq.

(32) multiplied by the spinor function normalization factor
in Eq. (36). The 7/ are defined by the equation

771’ = 771‘ + 5/(1 ’ (50)

and the 5,(, are the difference in phases between the extended
and the point nuclei,

6., =4, — 8. (51)

™ in Eq. (49) as
compared to e for the point nucleus [Eq. (32)] guarantees
the correct asymptotic form of the radial wavefunctions, as
was exemplified in Eq. (34). It should be noted also that the
appearance of the exponential e = ' *#: — ) ip the inte-
grands of Eq. (49) is very crucial. The method of evaluating
the integral of Eq. (1) developed in Sec. II can formally be
applied only when the nuclear recoil momentum

q = p, — P, — k is totally neglected since, under such an ap-
proximation,

The presence of the exponential factors ¢

—ip, +pz—k)rze—12pzr’ (52)

hence reducing the integrals to the form of Eq. (1). This is
exactly what Gargaro and Onley* initially suggested to make
the evaluation of such integrals possible. The discrepancy
arising from the ¢g-dependent terms in the integrands, how-
ever, can be removed with the aid of the addition theorem
(see Appendix) through which we can fully take into account
of the ¢ dependence and yet are still able to make use of the
results obtained in Sec. II. In the following we express Eq.
(49) as
=8, S, (P mh e ) C ) C )
X [(M, — c.c.) + (M, — c.c)], (53)
where

M. = itn] + 73
1=€ (71

K,K2

+ ily2 + i)
(I +72+ Do (— ig)™
& ent ), | m

U I+n
r
Xngl nyl+2_

-2
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XA\l + 7, + iy + m2y, + 1 + mi(2p, + g);
V47 4+ i,2v, + Li2py), (54

(1 + )y, — i)
e (Y2t Da)m (—ig™
2:() 2y + 1), m!
I+1 ]

n=1

m

X/(aﬂ’z + iy, + m2y, + 1 + m,i2p, + q);
1471+ .27 + Li2py), (55)
with
Fla;a,bK "a,b,K )

= J drr*—'e=X" F(a,b;K'r) F\(@bKr (56)
P

and
a=y,+y,—n+m+ 1. (57)

(@),, is the Pochhammer’s symbol defined in Sec. II. Similar-
ly we arrive at the expression for J,

x,le:
et =S, Sy ({078 N CA{2) C, (1)

XM, —cc)— (M, —ccl)]. (58)
IV. REMARKS AND CONCLUSIONS

It may be seen that the finite size integrals of the Cases
1, 2, and 3 [Eqgs. (2), (10), and (13}] reduce to those of the
infinite integrals of Ref. 4 if the upper limit of the integrals
approaches infinity. These formulae, however, involve cer-
tain difficulty when they are used to evaluate the cross sec-
tion, mainly because of the unfortunate combinations of the
parameters appearing in the generalized hypergeometric
function ,F,. The alternative Cases 1’ and 2’ [Eqs. (16} and
{20)] are free of such difficulty and also require less computa-
tion time to evaluate the finite series of the ,F,. Even though
these formulae contain extra infinite summations as com-
pared with the infinite integrals, the computation time is
found to be reasonably manageable for our IBM 3031 com-
puter.

The main reason why the above difficulty was encoun-
tered is because of the violation of a couple of conditions for
the convergence of the integral representation formulae
(A6)~(A8). When the finite size correction was introduced
through the multiplication theorem formula (A 12}, it left the
possibility of violating a condition for Eq. (A8) inevitable,
while the use of formula (A 13) eradicated the root of the
trouble. A similar situation also exists for the recoil momen-
tum correction by means of the addition theorem formulae
(A19)—(A21). Use of either Eq. (A20) or (A21) causes viola-
tion of the conditions for (A6) and (A8) in Case 1’ and those
for (A6)and (A7)in Case 2', whereas the use of formula (A 19)
does not cause any violation at all.

As was mentioned in Sec. I, the experimental data are
very scarce, and this makes it difficult to test the theoretical
calculations. On the other hand, the theoretical plane wave
intensity spectra with various corrections are readily avail-
able in Ref. 1. Among those calculations, the formulations

,ei(AKI + A4
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after Schiff and Bethe-Heitler are commonly used, but there
are considerable discrepancies between those spectra, par-
ticularly in the end point region of the photon energy. We
also note here a remark made by Stoler ez al.'® that the end
point region of the Bremsstrahlung spectrum is not experi-
mentally well verified. Notably, Matthews and Owens*°
have stated that the spectrum obtained by using the Schiff
formula was about 10% too high over most of the photon
energy region than that from the Bethe-Heitler formuia and
also that it had incorrect shape in the end point photon ener-
gy region.

Since the shape of the spectrum obtained from our
method was expected to be in gross agreement with those of
Ref. 1, we started with the calculation for the incident elec-
tron energy of 90 MeV and the atomic number Z of the
radiator nucleus being 78. This provided a first check of our
computer program, and served as an indication as to
whether our method would provide a means for detailed
comparison between the theoretical calculations, particular-
ly in the end point region of the photon energy.

Because of the computational complexity, we first cal-
culated, in our initial phase of the computation, the cross
section without including any of the corrections described in
the preceding sections. Although the result was far from rea-
lity, we could have allowed the electron angular momentum
variable in Eq. (36) to go up as high as to 20. When those
corrections were introduced, the calculated intensity spec-
trum approached much closer to the ones found in Ref. 1. It
became, however, inevitable to reduce the upper limits of the
multiple summation variables in Eq. (47). Since we had ob-
served during the trial runs that the calculated values had
been practically the same when the electron angular momen-
tum summation variables had gone beyond 8 and up to 20,
we set, most of the time, the upper limit of the variable at
around 8, whereas the range of the photon angular momen-
tum was solely determined by Eq. (43) and the / summation
was always extended within the full range of all possible val-
ues.

Ahrens et al.*' measured the intensity spectrum with an
end point energy of 140 MeV. To compare their result with
our calculation, we expect, however, much higher partial
waves are yet to be taken into account than those discussed
above. It turned out, according to our realistic estimate, that
the CPU time for the summation was proportional to the
fourth power of the maximum value of the electron angular
momentum variable and that a single run for the maximum
value of 10 would require a continuous run of a whole day.
Taking into account a further delay of the actual turn around
time, we had to conclude that any further attempt to find a
real criterion for the convergence of the series could be far
beyond what one could afford. For such huge calculations, a
direct integration of the integrals of Eqgs. (44) and (45) is
much more recommended. We are now in the process of
converting the analytic calculation into the numerical inte-
gration. A practical limit for the summation associated with
the recoil momentum correction is observed to be not more
than a few couples of terms.

It should be pointed out here that the accuracy of the
computed values is solely dependent on the software of the
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available computer. In other words, the accuracy is limited
by that of the library subprograms of the individual comput-
er, and, in particular, for this type of calculation a substantial
inaccuracy®” associated with the gamma function subpro-
gram and its logarithm subprogram limits the meaningful
summation of the terms in the series expansion formalism,
even though we have overwritten some of these commercial-
ly available subprograms with our own more accurate algo-
rithm.

In our current version of algorithm, most of the series
are terminated when the magnitude of the last added term
becomes less than a preset limit which is controlled by an
input data set and the value of the limit is usually comparable
to that of the truncation error due to a chosen length specifi-
cation.

The nuclear radius parameter was tested for
p = 1.24 '/* and for p = 1.44 '/ (in Fermi units), where 4 is
the mass number of the radiator nucleus. Once a reasonable
agreement was reached, the parameter was varied within a
range around these values. It turned out that if the value of
the parameter was away from these values by about several
percent, the calculated intensity spectrum deviated from the
experimental spectrum significantly. This indicates that the
calculation is really sensitive to the choice of the radius pa-
rameter, but that the best choice of the parameter is consis-
tent with the value determined from other experiments such
as the electron scattering, u-mesic atom, etc.

It is important to point out that the condition Re (@) > 0
appears to fail in a few cases. This happens when/ =1/, + /}
or /| + [, and the summation variable in Eq. (48) takes its
highest value. This prohibits one from calculating the differ-
ence of the two improper integrals of the type of Eq. (1). One
would have to overcome this difficulty by calculating direct-

1

! aq,dp;
fx“"(t—xf“qu l sz"(t—x)s] dx
o byyebys ‘

ly the difference between the incomplete gamma functions
appearing in Eq. (16) or Eq. (20) by setting the value of the
argument of the function equal to the nuclear radius and the
cutoff radius, say, in order to estimate the contribution aris-
ing from these cases.

One of the most interesting facts is that if one replaces
the outgoing photon spherical wave in Eq. (38) with the pho-
ton standing wave, the extra ingoing component introduces
an infrared divergent type spectrum, which destroys the
whole calculation.
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APPENDIX

We give here all relevant formulae used in the main text.
The confluent hypergeometric function, called Kummer’s
function, is defined as %3

had (a)n z"
Fila;c;z) = ~—. c¢#0,—1, —2,,
il ) ’;::O €, n #
_Tle) & I'la+n) 2"
Ta) o Cc+n n
This function satisfies the Kummer’s first theorem
Fila;e;z) = € ([Fi(c — a;c; — 2). (A2)

More generalized hypergeometric functions may be given in
terms of integral representation®*:

(A1)

a a+1ma+k—lﬁﬂ+lmﬁ+s—1_

ay,e ' L]

"y P’k k k s s ’ s ’kksstk+s
:Ba,ﬂt“"’ﬁ_l SF s .._.._.z
@h) prirearky boop CFBatB+1 a+Btk+s—1  (kysfo| (A3)
VR4S k+s k+s ’

where ,F, are generalized hypergeometric functions and
B(a,) are Beta functions
a
B(a,ﬁ)zwzr[ A (A4)
Ta+p) a+p
Equation (A3) is valid if Re (@) >0, Re(8) >0, k and s are
nonnegative integers, but not both zero, and no b; is to be
zero or a negative integer. In particular, if k = 1,5 =0, and
t=1,
ay,00,30;
Ao d
P+1%g+1 b1,~--,bq;a ‘+‘B;
a +ﬁ 1 al,...,ap;
—_—1“[ ]f a- Yl —xpP ! F[ zx]dx,
arﬂ 0 ¥ ( )B b bl""’bq;
(A5)
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from which we have the following relations for Re{a,) > 0,
Re(b,)> 0, and |z| < 1 for the last equation:

a, +b,]

Filaga, + byz) = F[
a]’bl

1
xjt“'*‘(l — ) le*dr,  (A6)
(o]

Filavaya, +byz) =T [al * b
a,b,
1
th““'(l — )
o
X1 —tz)~ * dt, (A7)
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3Fla,aza55a, + b,,052)

=r[“a:b U @] gy

X F(ay,a5;b,2t ) dt. (A8B)

A linear transformation formula for ,F, is*

c—a—b
JFiabicz) =T [z ¢ ba a] Fiabia+b—c+ 151 —2)

c,a+b—c]
a,b

X JFilc—ac—bec—a—b+1;1—2z),
larg(l —2)|<m, c—a—b# +m, m=0,123,-

+(1 —z)f—a*br[

(A9)
A combination of (A8) and (A9) gives for |z| = 1, provided
that the series converge:
3F5(a1,85,a5;01,b5;1)
_r[az—b2+ la;—b,+ 1
" lay+a;—b,+1,1-b,

X3Folby — a,,85,a3,0,,0, + a3 — b, + 151)

_r [bl,a, —b,+la,—b,+ la3—b,+ 1,b, — 1]

a,b, — b, + l,a,,a;

3F2(a] -_ b2 + l,az —_ b2 + 1,03 ot b2 ‘+‘ 1;

b, — b, + 1,2 — byl1). (A10)
Another linear transformation formula is useful for the ana-

lytic continuation of the function whose argument lies out-
side of the circle of convergence:

JFilab;c;z)
-—I“[b ](—z)_"zFl(aa—c—f-la-—b+1;1/z)
c__
ca—b b )
+I (—2) ", Fbb—c+ b —a+ 1;1/2),
ac—b

larg{ —z)| <m, a—b# +m, m=0,123. (All)

When the argument has a linear coefficient, the following
multiplication theorem is most helpful:

c—an
Filaezz) =€ (z—uza—cz ( )

% (1 _ %) Fila — me?) (A12)
= i @),z (z —1)",Fila + n;c + n;Z'). (A13)

= (c),n!

Next we will show that the analytic continuation formula
(A11) may be used even if the parameter a is a negative in-
teger. Consider a function ,F,( — m,b;c;z), where m is a posi-
tive integer. Formal application of (A11) yields

oF1( — m,bc;2)
Z’lc’im]( 2" F —ml—c—ml —b—m;l/z2)
L B B
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X Fbb —c+ b+ m + 1;1/2).
(A14)
This function, however, is nothing but the Jacobi polyno-
mial, which is defined in terms of the hypergeometric func-
tion ,F\( — n,n + a + B+ L;1 + a;2) as?
P, (a,B)(l — 2z
_{+a),
n!

Fil—nn+a+pB+ L1l +a;z).
(A15)

Therefore,?

=1
1 —x
XZFI( , ; — )
_(a+ﬂ+2n)(x—1)"
= . 5
XzFl(—n,—a——n;—Zn—a—,B;
)
1—x/

Settinga=c—1, f=b—c—n, 2/(1 —x)=z"",

-1
(") i - nbien

(A16)

b —1
=( i )(_z)" 2F,(—n,l P —b—n;i);
z
therefore,
_ ~feb+ n]
IFil—nbez)=T [b,c +n

1
X(—2)" zFl(—n,l —c—ml —b—";y)-

(A17)
This shows that the second term of the formal equation
(A14) should vanish for the Jacobi polynomial.

Finally we give a brief description of the addition and
the multiplication theorems of Kummer’s function. These
are based on Taylor’s theorem applied to Kummer’s func-
tion, which is analytic in the whole domain of its complex
variable.”” If an analytic function is convergent for |x| <p,?

Ef‘"’(x)y— for |y| <p.
n=0 n!

flx+y)= (A18)

Here p is the radius of the circle of convergence which is
infinity for Kummer’s function. A few examples of the addi-
tion theorem are®

Flacz + 2')

- Z ((a)) al Fila + mie + m;z) (A19)
Cm
(Y (=0t (2N
_(Z+Z') mz;'o m! (z) Filae —mz)
(A20)
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- (z -f— z’)a ,,,20 (_‘:n)';'_

X( z ,)m Fila + mie;z). (A21)
zZ4z
By replacing y with (y — 1)x, one gets from (A 18)*
o . 1 n..n
Fi)= 3 W#
n=0 n:
d n
(L) \F) for l— 1l <.
(A22)

A few applications of this formula have been shown as (A12)
and (A13).
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On the uniqueness of the energy-momentum tensor for electromagnetism

D. B. Kerrighan
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For the case of a space-time manifold we show that the metric tensor and the well-known energy—
momentum tensor for electromagnetism are the only symmetric, rank 2 tensor concomitants of an
arbitrary bivector, and the metric whose divergences vanish whenever the bivector satisfies the

source-free Maxwell equations.

PACS numbers: 41.10. — j, 04.20. — q

1. INTRODUCTION

In the general theory of relativity the energy—-momen-
tum tensor for electromagnetism is taken to be'

TY=F"F/, —\g'F®F,, (1.1)
where F,, is a bivector which represents the electromagnetic
field and g 7 is the inverse of the metric tensor g;. The ques-
tion of the uniqueness of (1.1) naturally arises. On the one
hand, Huggins? has proposed a possible modification to 7%
for the case of a Minkowski space-time. (A suitable general-
ization for curved space-times does not exist.?) On the other
hand, the uniqueness of ¥ among various classes of tensors
has been proved.* In particular, Lovelock® has shown the
following:

Theorem: The only tensors, C ¥, which are symmetric,
ie.,

Ci=C/’, (1.2)
and are tensor concomitants of g, and F, , i.e.,

C¥=CY gap:Fup), (1.3)
and which satisfy the divergence condition®

Ci,=a', F¥,; + B n"*F,,;, (1.4)

where a'h and B'h are tensor concomitants of g,, and F,,,

and 7"°® is the Levi—Civita tensor, are of the form
C'=aTV+pg" (1.5)

where a and £ are constants.

The purpose of (1.4} is to give C ¥ zero divergence when-
ever F satisfies the source-free Maxwell equations. These
equations may be written in the form

FUU =0
and
1"F oy = Fopy + Fp + Fpyo = 0. (1.60)

However, assumption (1.4) leaves open the possibility
that a C¥ exists which does not satisfy (1.4) or (1.5) and yet
does satisfy (1.2) and (1.3) identically, and also

whenever Egs. {1.6a) and (1.6b) hold. We shall show that this
is not the case. Specifically, we shall prove the following
theorem.

Theorem: Let C 7 satisfy (1.2) and (1.3). If, on a space~
time manifold, C'7 satisfies (1.7) whenever (1.6a) and (1.6b)
hold, then C 7is given by (1.5). The proof relies on the explicit

(1.6a)
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construction of all C¥ which satisfy (1.2). This has only re-
cently been accomplished.’

2. PROOF OF THE THEOREM

For a space-time manifold any tensor which satisfies
Egs. (1.2) and (1.3) must be of the form’

CY=Ag¥+ BF“F/_, (2.1)
where

A=A(g:Fa) (2.2a)
and

B = B(8u:Fu) (2.2b)

The divergence of C Y is
Ci, =A, g+ B, FeF/,

+ BF®, Fi, + BF“F/,. (2.3)
We also have®
JdA
A, =2 F,. 242
T n (2.4a)
and
JB
B,= 22 F,, 2.4b
J aF, bl ( )

Furthermore,® d4 /dF,, and dB /3F,, are bivector con-
comitants of g, and F,,. But all bivectors of this form are
known’:

04

=A,F° + Am"°F, 2.5a
oF., 1 27 d ( )
and
JB
=B F®+B ""‘ch R 2.5b
oF., 1 27 d { )

where 4,, A,, B,, B, are scalar concomitants of g, and F,,,
and 77°**? is the Levi—Civita tensor. By using Eqs. (2.4) and
(2.5) and the Maxwell equations [(1.6a) and (1.6b)] Eq. (2.3)
can be written as

CYy =A4"F,), (2.6)
where
A% = {4, + %B)Fab + Aznadech} g’
+ {BF + By™F | F“F,. 27)
Note that
AV =A% (g iF,). (2.8)
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The divergence requirement [i.e., (1.7) with (1.6a) and (1.6b)]
can now be written as

AV, , =0, (2.9a)
whenever

gjkEjIk =0 (2.9b)
and

Fyr + Fryy + Fyp =0. (2.9¢)

For an arbitrary bivector F,,, there are 24 independent com-
ponents of F, ;. A bivector which satisfies Eqgs. (2.9b) and
(2.9¢) has only 16 independent components of F,;, ; but these
are more than sufficient to guarantee that

A% =0, (2.10)
(This assertion is verified in the Appendix.) Now, evenif F,,
satisfied Eqs. (2.9b)and (2.9c¢), it still has the maximum num-
ber of independent components, namely, six. Therefore
{2.10} holds for a bivector F,, which is essentially arbitrary in
the sense that F\,, Fi3, F\4, F,3, Fp,, and F;, may vary inde-
pendently. One can easily establish that this situation ob-
tains only if

A, +1B=0 (2.11a)

and
A,=B,=B,=0. (2.11b)

[By contracting with quantities of the form F,, g; one ob-
tains a system of four equations in the unknowns (4, + } B),
A,, B,, and B,. This system has a nonzero determinant in
general.]
Equations (2.5b) and (2.11b) imply
B=B(g.)

but the only scalar satisfying {2.12) is a constant,’ i.e.,

(2.12)
B = const=4. (2.13)
Now Eq. (2.5a) becomes
04 | G

aabz"_EﬂFq
One easily sees that

AF“F4)

dF,,

therefore,

A= —1BF“F, +a,
where a is a constant.’

Now Egs. (2.1) and (2.14) together imply
CV=ag"+ BT

= 2F b,

(2.14)
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APPENDIX

We wish to establish that Eqs. (2.9) imply Eq. (2.10).
First we choose any point p in our space-time manifold.
Then we transform coordinates'® so that at p,

1980 J. Math. Phys., Vol. 23, No. 10, October 1982

gijz ﬂyEdiag[l-,l’l! - 1]'

Hence,

Fij|k = Fy,k
and

F‘,.j =0.

Then, from Eq. (2.9b) we have (at p),
Froo =Fpy, +F13.3»

Fra =Fy3 —Fpy, (Al)
Fyo= —Fy3) — Fa,,
Fyy = —Fiyy — Fo;.
From Eq. (2.9¢c) we obtain
Fi3 =Fy3, —Fy,,
F12,4 =F14,2 —F24,1’ (A2)

F13.4 =F14,3 _F34,|,

F23,4 = F24,3 —Fiys.
Thus, eight of the 24 quantities F,, . are dependent on the
other 16. We can differentiate Eq. (2.9a) with respect to any
one of these 16 independent quantities provided we use Eqgs.
(A1) and (A2). Among the 12 sets of equations we have (after
suitable simplifications) the following eight:

A1213_ ___Ai312_ _Ai123
- - b

A i212 - A 414 =A i313,
314 __ 413 __ i134
AP g g3

334 _ 4224 _ 4224
AT =4 =417

(A3)

where i can take on any one of the values 1, 2, 3, or 4in each

of the equations.
By using Egs. (A3) and (2.7) and the fact that

gl=n"
at p, we easily find that Eq. (2.10) holds at p. But p is arbitrary
50 (2.10) holds everywhere. This concludes the proof.

'Latin indices run from 1 to 4. The summation convention is used through-
out. Indices are lowered and raised using the metric and its inverse.
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Quantum tachyon in a Friedmann universe
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The scalar wave equation of a primordial tachyon is investigated in a Friedmann universe of
positive curvature containing different perfect fluids. Also the energy of a tachyon as well as the
rate of emission of energy from a primordial tachyon in different models has been discussed.

PACS numbers: 98.80. — k

1. INTRODUCTION

It is now generally accepted that the existence of ta-
chyons does not violate the theory of relativity, though so far
experiments to detect them have yielded null results. Re-
cently Narlikar and Sudarshan' have published a paper in
which they have assumed that tachyons were produced at or
just after the event of the big bang along with other particles
of ordinary matter or bradyons. This gives rise to a question
whether primordial tachyons survive up to the present epoch
and if they survive, why experiments fail to detect them.
Narlikar and Sudarshan have tackled this problem to some
extent in the context of a flat Friedmann universe.

In the present paper, we have tackled this problem in
Friedmann models of positive curvature containing different
perfect fluids such as dust, radiation, and superdense matter.
We have considered the Robertson—-Walker line element

ds*=dt> — St )[ —l—-‘if; + (d8? + sin®6 dqaz)].
(1.1)

Under coordinate transformations

= fSi(iI and o= .f-(l_—% =sin"'r, (1.2)
this line element is rewritten as
ds® = 2 *r)[dm* — do® — sin’0(d@? + sin*@ dg ?)),
(1.3)
where
2(r)=8(). (1.4)

Here, for simplicity, we shall discuss the case of spinless ta-
chyons with the help of relativistic quantum mechanics. The
tachyon scalar wavefunction satisfies the Klein—-Gordon
equation

O —-MYy =0, (1.5)
where we have chosen ¢ = 1,#% = 1 (#i is Planck’s constant
divided by 27), ¥(r,0,¢,t ) is the scalar wavefunction of a ta-

chyon, and M is the metamass® of a tachyon which is given
by

my=iM, (1.6)

(mg is the rest mass of a tachyon). The operator (1% is given by
1 a .

0= ———-——-—( —-g)'"? f————). 1.7

e U (17)

The plane wave solutions of (1.5) are of the form
exp(ik-F — ivt ), with k * — v* = m® where M = 27m and k

1981 J. Math. Phys. 23(10), October 1982

0022-2488/82/101981-03$02.50

and v are wavenumber and frequency, respectively. There-
fore the group velocity dv/dk = k /v is greater than unity.
The curvature of space-time is incorporated in the 0°
operator.

2. SOLUTION OF THE KLEIN-GORDON EQUATION

Under coordinate transformations {1.2) the Klein—-Gor-
don equation can be written as

(0 — M3y =0, (2.1)
where
¥ =02(r)y. (2.2)
On substituting g #s from (1.4) in (2.1) we have
3% 280 I 2
Rl cd S A YO Pl
a7 TR ar a0 o
— -
SN 0 U L AT
sin’o | sinf 30 a6 sin’@ dp*
—M202¥rY=0. (2.3)

1 can be expanded in terms of a complete set of eigenfunc-
tions of the angular momentum operator. Hence, setting

7= g Bpi(cosB) (2.4)

we have a partial differential equation of ¥, (c,7)

P 2900 I,
== — 2 cotg —
ar? 2 dr or do? do
+[ WD p2p3n|g =o. 2.5)
sin“c

Also we have
(1/02)(812 /37) = HN? = HS, (2.6)

where H is Hubble’s constant. After the epoch of the big
bang, we assume that at time ¢ = ¢, (say) the entire energy of
the universe comes into thermal equilibrium. Now approxi-
mating HS near r = ¢, we have

as JH
HS=HS, +(t—¢ [H(—-——) (—)S]
oSa ")"az :q+ a /i, ?
But S, may be approximated by zero, because up to the
event ¢ = ¢, expansion would have been very small; hence

HS=0. (2.7)
Moreover, the velocity of a tachyon is
S) dr do
= — ' __— =S(t)— 1, 2.8
(1 —-PA)2 dr ) dt > 2.8
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hence
dt
m.
This shows that o will increase rapidly. Hence there is
no harm is taking

o> (2.9)

cotc =0 and sino= 1.
Substituting (2.7) and (2.10) in (2.5) we get

(2.10)

Fy Y —

_— - I+ 1)—M? =0. (2.11

P 802+[(+) ()1 (2.11)

The plane wave solution of this equation can be written
as

¥, = ¢ (o) exp( — iv7), (2.12)
where v is a constant.

On substituting (2.12) in (2.11) we get

2

a¢ + [V 4+ MY -1+ 1)]¢ =0. (2.13)

do*
This equation yields the solution

¢ = Aexp[ +io(V? + M2Q %) — I(I+ 1)'?]. (2.14)

Hence
¥, = A exp[ — ivr + ig{v? + M2Q%7) — I(I + 1))7].
(2.15)

This gives the solution of the Klein—Gordon equation {2.1)
corresponding to the orbital angular momentum /.

3. SOLUTIONS OF THE KLEIN-GORDON EQUATION IN
WORLD MODELS CONTAINING DIFFERENT PERFECT
FLUIDS

A. Dust model of the Friedmann universe

If we consider the dust model of the universe we find
that the Einstein field equations yield?

2(r)=S(t)=t?*3 (3.1)
Connecting Eq. (3.1) with Egs. (1.2) and (2.8) we have

dt

f2/3

=33, (3.2)

We are considering free tachyons. Hence their velocity v will
be constant. This yields

o=3u'"3, (3.3)
Substituting 2,7, and o from Egs. (3.1), (3.2), and (3.3) in Eq.
(2.15) we have

¥, = A exp[ — 3ivt '3

+ 3t V32 + M2 7) = 1(1 + 1)"?]. (3.4)
Hence on substituting £2 (7} from Eq. (3.1) in (2.2) we have
W, = At 7?3 exp[ — 3ivt V3
+ 3ivt '3 + M2 ) — 1 + 1) {3.5)

This shows damping of the scalar tachyon wave with time.
The magnitude of energy associated with this wave is given
by
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E= ’ % [3ve '3 4 30t 32 4+ MU — 11 4 1)V?)

— —2/3[V+ vy + M43 — H+ 1)

2UM2t4/3
(VP + M2 1+ )2
where v and / are constants. Hence there is no harm in taking
V=I(l+1). (3.7
Now
E=t7[I(1+ 1)"* 4 3Mup *3). (3.8)

This expression of energy shows that the energy of the
tachyon is decreasing with time. This means that the ta-
chyon is emitting energy and the emitted energy is being
absorbed in the surroundings. We have the rate of emission
of energy as

_dE _ 2 (u+1)”
dt 3 33

(3.6)

(3.9)

B. Radiation model of the Friedmann universe
From the Einstein field equations,’® we find that
2(r)=S(t)=t"

Equations (3.10) and (1.2) yield

r= [ H _gn
112 ’

Also we have

(3.10)

(3.11)

o=2wt'"2 (3.12)

Substituting 7 and o from Eqgs. (3.11) and (3.12) in Eq. {2.15)
we have

¥, = A exp[ — 2ivt /2
+ 2ivt "W+ M — (14 1)'?]. (3.13)
Hence substituting £2 (7) from Eq. (3.10) in (2.2) we have
¥, = At ~ "2 exp[ — 2ivt '/?
+ 2wt VA M2 — 11+ 1)) (3.14)

This equation again shows damping of scalar tachyon waves
with time. The magnitude of energy associated with this
wave is given by

E=

% [2ve M2 4 2061202 + M2 — 1(1 + 1))'/?]

=t“'/2[v+v(v2+M2t—I(l+ 1)'2

2M pt ]
. 3.15
* WP 4+Mu—1{+ 1) G.13)
Connecting Egs. (3.7) and {3.15) we have
E=1""?y+ 3uMt "), (3.16)

This equation also shows that energy of the tachyon is de-
creasing with time. The rate of emission of energy in this case
is given by
1/2
I U ) (3.17)
dr 2 372
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C. Superdense model of the Friedmann universe

When the Friedmann model is in a superdense state,
from the Einstein field equation® we have

R)=8(¢)=t"2 (3.18)
Connecting Egs. (3.18) and (1.2) we have
_ d 3 .3
T = m‘ = —2- t 2 . (3.19)
Also
a=3wt?. (3.20)

Substituting 7 and o from Eqgs. (3.19) and (3.20) we have
¥ =Aexp| —3vt??
+ Jut 230+ MR — 1+ 1)) (3.21)
Now substituting £2 (7) from Eq. (3.18) in Eq. (2.2) we have
¥ =At ~"exp| —jivt??
+ 3wt 2302 + MR — 11+ 1))

This equation also shows damping of scalar tachyon waves
with time. The magnitude of energy associated with this
wave is given by

(3.22)

d[3 3
E=| % |2 023 4 202302 4 M223 _ (1 11/2]
‘dt[ZV T+ r+1)

=t —”3[v+ v(v? + M2 — (1 4+ 1)V?

1 M3
— . 3.23
3 (W + M2 1+ 1)? 329
Connecting Egs. (3.7) and (3.23) we have
E=t"/3[v+gth”3]. (3.24)

This equation also shows that the energy of the tachyon is
decreasing with time. The rate of emission of energy in this

case is given by
dE 1 ([ + 1)

4. DISCUSSION

From Egs. (3.5), (3.14), and (3.22) we note that the scalar
wave of a tachyon is damped with time. But in the case of the
dust model damping is fastest, and in the case of the super-
dense model damping is slowest. We have the order of damp-
ing as

Dy>D. >D,,
where D stands for damping and the subscripts d, r, and s
denote dust, radiation, and superdense models, respectively.

Also, the graph sketched in Fig. 1 for rate of emission of
energy against time shows that, at a particular time, the rate
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FIG. 1. Rate of emission of energy from a tachyon against time.

of emission of energy is fastest in the superdense model and
slowest in the radiation model. But as time increases the
graphical curves in the cases of the radiation and dust mod-
els come closer and closer faster than in the case of the super-
dense model.

However, in all cases, we find that the primordial
tachyon loses its energy with time. Hence from the above
investigations we are in a position to say that there would be
a very narrow possibility of survival of a primordial tachyon
up to the present epoch. Even if they survive, owing to very
low energy, their experimental detection seems difficult..
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We consider the initial value problem and the short-time evolution of a system consisting of two
Euclidean-homogeneous (Bianchi type I) cosmologies, each containing a homogeneous scalar
field @ or a homogeneous electric field, abutted at the plane z = 0, We show that a matching is
possible, and discuss the evolution for a vacuum (@ = 0) cosmology abutted to one with nonzero

scalar field @.
PACS numbers: 98.80. — k, 04.20. — q.

I. INTRODUCTION

Centrella"? has developed a technique for explicitly
solving the initial data problem of one-dimensionally inho-
mogeneous cosmologies. Her technique consisted of abut-
ting three-dimensional slices of two different anisotropic
type I cosmologies:

t \%
¢8=._m2+(—) dx?
tO
+(Lthﬂ+(l)%d£, (L.1)
tO tO
at a 2-plane (taken to be z = 0). We label the constants ¢, and
P, in the two different regions by 4 and B, i.e., t,,, p,, €tc.
The Hamiltonian constraint® contains no derivatives for
vacuum or for perfect fluid sources [since (1.1) can be made
explicitly flat at any particular time ¢ ], hence the abutted
half-slices automatically satisfy the Hamiltonian constraint.
The momentum constraint’, 7/ ; = 0, reduces in the vacuum
or fluid case to

(1 — ps)/t, = const. (1.2)

Centrella’s matching procedure is carried out by fixing z,,,
P34, and 1,5 (say) at the initial time and then using the con-
straint (1.2) to determine p; ;. In vacuum we need not specify
P, and p, because the p; obey

Prtpatpi=1 (1.3)
and

A+p+pi=1 (1.4)
but these equations are modified if matter is present. Thus
for a vacuum, the matching as described completely deter-
mines the models on the two sides of the 2-surface z = 0.
When matter is present, there are still other parameters
needed to describe the solution on each side: schematically,
the deviation of the sum of the p;, and/or of the sum of the
squares of the p; from unity.

* Supported in part by NSF grants PHY 77-07619, PHY 81-07381, and
INT 78-22583 and by Grant No. 955 from CONACyT de Mexico, one
from the SERC, and one from the National Geographic Society.

% Permanent address: Center for Relativity, University of Texas, Austin,
Texas 78712 .
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Once initial data have been set, the Einstein equations
can be solved either by numerical computation, or in the
vacuum case—and the scalar field case—by analytic techni-
ques. The models that result are examples (perhaps nonva-
cuum) of Gowdy* inhomogeneous cosmologies. The discon-
tinuous data just described are of substantial interest from
the viewpoint of the evolution of shocks in the early universe.
For short times away from the “initial” data slice an ap-
proach based on a Green’s function is the most reasonable,
because the short-time Green function is especially simple.
For longer-time evolution Fourier-Bessel decomposition**
of the dynamical variable [cf. Eq. (6.2) below], although
complicated, does allow analytical evolution of this data for
large times. Of course the numerical approach allows solu-
tion of a wider class of problems than can be treated analyti-
cally.

In this paper we consider an extension of the Centrella
initial-value technique to the case of inhomogeneous plane-
symmetric cosmologies whose only matter content is a mass-
less scalar field or an electromagnetic field sharing the plane
symmetry, and we use the analytical techniques just outlined
to describe the evolution of data corresponding to an instan-
taneously homogeneous universe containing an inhomogen-
eous (discontinuous) plane-symmetric scalar field.

Il. SCALAR-FIELD INITIAL DATA

The massless scalar field obeys

¢+, =0. (2.1)
The stress tensor associated with this field is
Tpv = ¢,y ¢.v - %guv¢.a¢ o (22)

Spatially homogeneous solutions of the scalar-field Ein-
stein equations

G,.=T, (2.3)
may be written in the metric form (1.1), with a scalar field’

@ = rn{t /t;) + @,lr, @, const) (2.4)

and with constant exponents p, satisfying (1.3) but with (1.4)
replaced by

PP +p=1-r. (2.5)
In carrying out the Centrella procedure, one first uses
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coordinate freedom to adjust 7, on the two sides of the join so
thatt, =1,,, ty = t,3, and the 3-metric on each side of the
join is thus explicitly §;. One might anticipate difficulty be-
cause the stress tensor involves gradients of . A4 priori this
contradicts the assumption we want to make in solving the
Hamiltonian constraint, that no spatial gradients enter.
However, Eq. (2.4) shows that if ¢, = O then @ vanishes on
thesslicez = t,and we henceforth make that choice. Then the
argument, that the Hamiltonian constraint is a pointwise
algebraic identity, holds on the initial slice, and by picking
half slices that are scalar wave cosmologies with ¢, = 0 on
the ¢, slice, the Hamiltonian constraint is identically satisfied
everywhere.
Additionally, the initial data require the satisfaction of
the momentum constraint
T°= —(K™,—K"," (2.6)
— g‘ 1/2 7Tim
where K ™ is the extrinsic curvature of the surfaces being
matched, g is the 3-space metric determinant, and 7 is the
ADM (Arnowitt-Deser—-Misner) momentum. The symbol
|m denotes the spatial covariant derivative, in the m direc-
tion, which is here equal to the ordinary derivative since the
3-surfaces are explicitly flat. Further, from the form of the
stress tensor (2.2), the energy current vanishes in each half-
slice. We thus suppose 7°°|,_, = 0, and the match condi-
tion becomes

1=pld) _ const, (2.7)
tl2)
as in the vacuum case.
Valid inhomogeneous data on a 3-slice then consist of
the choices (which may be made smoothly, i.e., not necessar-
ily discontinuously)

[m>

2ol2), (2.8a)
p3(2), (2.8b)
rz), (2.8¢)

with Eqs. (2.5) and (2.7). Because of the presence of the scalar
field, there is greater freedom to choose the variables than in
the vacuum case. The number of variables is increased by
one with the presence of @, but the number of constraints
remains unity, cf. Eq. (2.7).

lli. ELECTROMAGNETIC INITIAL DATA

The scalar-field initial data set is a very simple general-
ization of the vacuum one, in part because there is no con-
straint (i.e., no initial-value) problem for the scalar field.
However, for the electromagnetic situation there is a con-
straint equation, namely’

?a”“i =0, (3.1
where
&' =1[ijk 1[ jkuv]( —g)'/%8"°g"*F, 4 (3:2)

with [jjk ] and [a By8 ] the alternating symbols defined by
[123] =[0123] = 1.
Jacobs® has given some electric field-containing homo-
geneous cosmologies of Bianchi type I. These models have
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the electric field along one of the principal axes of the metric.
His solution for a field along the 1-direction is

ds’ = —dt? + e*e* P dx'dx), (3.3)

with a, B functions of time [ §;(t) is a diagonal traceless
matrix] satisfying

3a¢° =4 B, B, +Pe e *rpe?ry,, (3.4)
(B2 — Bys)e™ = const, (3.5)
Bii+ 3@ B, =3B e e 2P, (3.6)
By + 3 By =L Be~ 26 ~2Ppe 2Py, (3.7)

The parametrization in terms of the p;, i = 1,2,3, is not espe-
cially useful now because they are not time independent. The
metric can, however, be made explicitly flat at any particular
time.

Matching conditions for abutted homogeneous cosmo-
logies, so far as the electromagnetic field is concerned, re-
quire from (3.1) only that

&* = const (3.8)
or, since as before, the metric may be set instantaneously
equal to §;:

Fy; = const. (3.9

Bianchi type I cosmologies demand T,,; = 0. This
means that the gravitational matching conditions also are

easily carried out; since T% = 0 in each homogeneous cos-
mology, we have'? only

™, =0 (3.10)
i.e., again, 7°> = const.

In the metric form of Eq. (3.3) this is

(2¢ —AB,,), =0. (3.11)

Furthermore, since the electromagnetic stress tensor
contains no derivatives of the field, the Hamiltonian con-
straint is, as before, pointwise satisfied.

Hence, consistent data may be set by abutting slices
from solutions of the Jacobs class that

(a) have a nonvanishing 3-component of the electric

field [in which case the electric field is in fact homo-
geneous via (3.8) and the homogeneity is contained
entirely in the geometrical variables}—or

(b) have a nonvanishing, and z-variable, electric field

always lying along the x axis (or always lying along
the y axis), truly inhomogeneous data—or

(c) have abutted half a 3-slice with a nonzero x-direct-

ed electric field against half a 3-slice with a nonzero
y-directed electric field—step discontinuous data
which cannot be continuously connected to homo-
geneous solutions within the class of Jacobs solu-
tions.

Subsequent evolution of the electrovac field equations
in general must be done numerically, since the electromag-
netic field equations do not decouple in the simple way that
the scalar ones do (see Sec. IV).

Work in progress by Waller concerns homogeneous
type I cosmologies in which the electric field is not con-
strained to lie along a principal-axis direction. In that case,
data which combine features of {a) and (b) with a constant z
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field but variable x or y field, will be feasible. Also, data in
which a field rotates from the x to the y direction over a finite
range in z will be possible, smoothing out the jump in case (c)
above.

IV. CANONICAL COORDINATE SYSTEMS

The “canonical” Gowdy representation of a plane-sym-
metric cosmology is a modification of the Rosen'® form

ds’ =e" " Y —dT* +dZ* + (edX* + T’ ¥dY?),
4.1)
where y and ¢ are functions of T’and Z. For the remainder of
this paper we will concentrate on the scalar-field case. We do
point out, however, that the form (4.1} which has g, g,,
= T'? can hold only if'' T2 — TZ = 0, which means E,
= B, = 0. Hence data of type (a) in the preceding section
are excluded by this form of the metric; said otherwise, Sec.
I describes the statement of data that lead to more general
plane-symmetric cosmologies than the usually considered
canonical ones.
Given (4.1), ¢ *, = 0 reduces to

o+ ¢/T—@"=0 (4.2)

(here - =8 /AT and '=4 /dZ ), while the Einstein equation
G,, =T,, becomes

b+ T—y¢" =0, (4.3)
P=TI@" +¢” + & + ¢, (4.4)
v =TR¢g' +y¥). 4.5)
If we rewrite the homogeneous solutions of Sec. II we have’
Y= (1 4+ ay)in(T/T,), (4.6)
@ =B, In(T /T,), (4.7)
er =¥ = (T /Ty) " 821, (4.8)

For the homogeneous cosmologies, the relation
between the coordinates of Eq. (1.1) and the canonical co-
ordinates of (4.1) is fixed by

T = (t /1P (4.9)
hence
y (&)p‘ (4.10)
1—py \ ¢t
and
To=Tll2) = < o _ _ const, (4.11)

3
where the constancy holds by the matching conditions of
Sec. II.
The complete correspondence with the p; form of Eq.
{1.1) becomes

1+ a,
pi= , (4.12)
24+ (Bi 1l )

1—a,
P, = , (4.13)
T2+ (BE 4R —Y)

2 1 2

p=_Potia —} (4.14)

24 (B4R -y
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and

r= 28, .

2+ (B3 +4ai—))

The entire content of the matching procedure of Sec. I1
is contained in the relationship between Egs. (2.7) and (4.11).
The “constants” ¢, and 3, may be varied arbitrarily as func-
tions of Z so long as they are set on a 3-surface T'= T,

= const. Notice that the correspondence between the two
formulations requires

NI =To)=YT=To)=@(T=Ty)=0.

In order to see why in general the electromagnetic evo-
lution equations must be integrated numerically, we will give
them in a form due to Charach. For the metric (4.1), and the
condition £, = B, =0, the only two nonvanishing com-
ponents of the electromagnetic potential are 4 y =y, 4 y=w,
and the field equations are

(4.15)

oy =o'y’ (4.16)
b+ (/T — " =Ty —x?)
—e Mo’ —w?, (4.17)
o+ (/T — 0" =200 — '), (4.18)
x—WTy—x"=-2Ax¢—x'¥), (4.19)
¥ =TW + ¢+ Te”¥0* + ")
+ (/T x* + X (4.20)
Y = 2Ty + 2Te~ Yoo’ + (2/T)e* 'y’ 4.21)

As before, Eqgs. (4.16)—4.19) determine the solution, and
(4.20)and (4.21) can be solved by quadratures. It is easy to see
that only in special cases will the equations decouple suffi-
ciently to yield easy analytical solutions.

V. THE GREEN-FUNCTION FORMULATION

The dynamical equations (4.2) and (4.3) admit a Green
function. For instance, if a general field point is labeled (Z, T')
then, since ¢ = 0 at T, we have

D, )
¢(Z,T)=J | R} dZ, (5.1)
D,
where R is the Green function'?
R=(TyT)Fl}, 5 1; —q) (5.2)

where F is a hypergeometric function,

_ Z-Dyz-D)
AT, T

and the integration is over the portion of the T = T, surface

within the intersection of the planes T+ Z =T + Z with
the T = T, surface (see Fig. 1). From Eq. (4.6)

>0, (5.3)

q=

Pz, = (1 +ao)/T, (5.4)
and from Eq. (4.7)
@lr, =Bo/To (5.5)

The free variables @, ¥ determine the longitudinal part
y of the metric, but otherwise do not interact.

The situation with ¢=0 (i.e., ¢ = 0 everywhere on the
initial slice) corresponds to the vacuum Gowdy* model, and
has been extensively studied by Centrella and Matzner.!> We
will first consider the complementary case in which the data
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FIG. 1. The field at the point (Z, T') is evaluated by the Green-function
integral (5.1) over the region of the initial data surface 7= 7, between the
intersections D, and D, with the null planes passing through (Z, T'}.

for 1 is homogeneous, but that for ¢ has a step at Z = O being
denoted @, for Z <0, and @, fore Z > 0. [Note that =0
corresponds to a particular axisymmetric model, and there is
a slight generalization by taking a homogeneous ¥|,.

= (1 + ay)/T,, corresponding via (4.6) to a general anisotro-
pic cosmology. The behavior of ¥ then persists as

(1 4+ a)In(T /T,).]

The behavior of the Green function has been elaborated

by Centrella and Matzner.'* For small time AT =T — T,
R ~1.For larger ratios |4 T /T, | the contribution to the inte-
gral involves the more complicated behavior of the Green
function. Let us first concentrate on a small interval centered
on Ty, i.e., |AT /Ty €1. We assume T, >0 always. We take
the appropriate expansion from Ref. 14 and find R = 1 in the
integration interval. Then

BOB BOA
~oB o4 AT
p= AT{TO 0(Z—AT)+ T, 60— (Z+AT))
BOA Z BOB Z
o, (1_ ﬁ)+ 27, (Hﬁ)
xo(Z+AT)e(AT—Z)] (1»>4T /T,>0) (5.6)
and
BOB BOA
=4T Z Foa
. [TO< +a7)+ 5t ur-2)

Bu (i 2\ Pu(_ Z

+2T0(1+AT)+2T0(1 AT)

XG(Z-AT)G(—(Z+AT))} (—1€4T /T, <0).
(5.7)

The stress tensor associated with the @ field is probably the
most physically appropriate object to consider. From Eq.
(2.2) we have

Trr=Tzz=l(¢+‘P’2)

=_;_[( 03)9(2 AT)+(°‘) 6(—(Z+4T))

“\(57) + (57 oz +arwar-2)]

(5.8)
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T, =99’

= [(f‘z)z_ (f‘;o )2]9(Z+AT)6{AT—Z), (5.9)

T¥=Ty=—1g"¢’— 9"

=% [( ;B) 8(Z — AT)+(;:) 8(—(Z +A4T))

BOA BOB

O

(5.10)

O(Z+ AT)0 (AT — Z)]

These expressions are written for To»A T > 0; similar equa-
tions hold for negative 4 T. Outside the causal past and fu-
ture of the T'= T, discontinuity, the expressions for the sca-
lar field and for the stress energy take on their
homogeneous-cosmology form.

As a specific example, suppose we take B,; = 0. Then
the solution represents at the “initial” time T, a region con-
taining the homogeneous scalar field 8, up to the boundary,
with its subsequent “expansion” into the vacuum region.

It is interesting to note that the value of T, is homo-
geneous in the “interaction” region (with the signature used
here, our T, indicates that the flux is directed toward the
vacuum region B ). In fact all the orthonormal frame com-
ponents of the stress tensor are alsoc homogeneous, to the
order we are considering, in this interaction region, suffering
jumps at the null surfaces AT + Z = 0 to their homogen-
eous-cosmology values. It may be verified that for AT <0,
T’y has a similar form but the flux is in the opposite direc-
tion. The particular initial data set at T = T, is thus achieved
by the expected process of having a flux toward region 4, up
to the initial instant T, whereupon the flux reverses and the
scalar field re-expands into the vacuum region.

VI. SEPARABLE SOLUTIONS

As was pointed out in Ref. 13, Eqs. (4.2) and (4.3) are
easily soluble by separation of variables. For example, (4.2)
has solutions of the form

@ <2 Z (kT), (6.1)

where Z ; is a zero-order Bessel function. The major prob-
lem with this approach is that our data set demands
@(T = T,) = 0. This implies that @ must have the form

=r dk [A (k Jsin kZ + B (k jcos kZ ]

X [JokTo)No(kT'} — Nolk Tolok T )]
+CIn(T/Ty) (6.2)

An integral such as this, a product of three Bessel functions
[since sin(x) ~J, ,,(x)] times a weighting function such as

A (k),isatthe very limit of known analytic integrals for all but
the simplest 4 (k ). There are, however, a number of devices
for reducing expressions such as {6.2) to a more tractable
form. As an example we will consider the initial conditions
of Sec. V with ¢(T,) = 0, ¢|, = B/T, with astep at Z = 0.
The exact solution becomes'
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sin kZ

= 3 Bo (T /T + Y Bos — Bos) f

X [Nk ToWo(kT') — Jo(kTo)N, {kT)} dk,  (6.3)

where B,= B, + B, . First note that we need only consider
Z > 0, since the solution for Z < 0 can be obtained by symme-
try. For simplicity we will take T'> T,. The opposite case
follows analogously.

In the particular case of (6.3) we can use the identity
Ny(x) = (2/7)lim,_, 3/, (x)/dA, the fact that
sin kZ = (wkZ /2)"/%J, ,(kZ ), and the integral (Gradshteyn
and Rhyzik ")

Jw x# =\ (ax\, (bx\J, (cx) dx

_ 2Pk T ATy + 4 v +p))
Fly+ )0 (p+ )M =4y +p—v+p)
(7+#—V+P ytu+vtp
X F, ;

b

2 2

2 b 2
rrlp+ s, ) (6.4
¢ c
where F, is one of Appell’s hypergeometric functions of two
variables,'>'¢ to find

2 Z2

pZ<T)= %180 In(T/T) + %(oBOA —ﬂos)’;_
z? Tj

X [ln(T/4T0)F4(§, ERE—2 —T—‘;)

- Z? T3
+F4(%)%;%)1’—)_0 ’

5 (6.5)

PIZ> T) = 4 Boln (T/T5) + Y Bos — Boa)| —In(T /Ty

9 A 144 T2 T%)
lim-Z F s L1+Ad—,—=
T “(2 2 th Tz
3 A 144 i T%)]
—lim-ZF AP T P |
ey “(2 2 + AW A
(6.6)
where
= z? T3
F4(%, L3 L T T3
.4 (1+/1 14+4 zZ? Té)
=lim — | F, — 4 1+ A =, —
s '\ y v AT T
_F(l—,{ 144 . 27 T_é)]
N2 2 P rrirf

The difficulties with this solution lie in the definition of F.
This function is defined as a convergent series,

F4(ar B’; ¥ 71; X, y)
_ @ Bl n XM ph (6.7)

(Vo (')l ’

only for |v/x| + |V/y]| < 1, that is, for Z < T — T, Note,
however, that for Z > T — T, the Green function discussion
of Sec. V means that for Z> T — T, (6.6) reduces to

m=0n=0
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PZ>T — To) = Bop In(T /T),

because in that case the point Z, T'is causally connected only
to the B-homogeneous region of the solution. Hence (6.7)
provides the complete solution of the problem. [In Eq. (6.7),
the notation (y),, is Pochhammer’s symbol '’

V)m =T @+ m)/T (a),
where

I'(n)=(n— 1)1}

Because explicit behavior of (6.7) is difficult to extract
from the power series, we now discuss another method that
can be used for handling integrals of the type of (6.3): the
method of convolutions. This method may be more fruitful
in cases that are less simple than (6.3}, as it involves integrat-
ing a weighting function against trigonometric functions and
one Bessel function, and there is ample literature on this type
of integral. In our case we make use of'’

Fs (Fk)G (k)

= (2,”.1)1/2 J:Q g(§)[}(z —¢£) —}(Z + &) dE, (6.8)

where
S Flk )= Y2 J Fk )sin kZ dk (6.9)
and
gl&, a)= 2 f G (k, a)sin k£ dk, (6.10)
7l ap= Y2 Jw Fk, a)cos k& dk. (6.11)
For (6.3) we have
F(k, a) = Nolka), Gk, a)=Jy(ka)/k, (6.12)
s0 (6.3) becomes
¢ = iBo In(T/To) + %( Bos — Bos)
x| tale T - £ T~ 712 + £ )
— g, TIFIZ—& T)—FIZ+& T)) dé.
(6.13)
Since
5 0, O<é<a
f& a) :\/; - 1 o O0cace’ (614
_ §>a
8- a) = \/‘ [arcsm (&/a), €<a’ (6.15)

we find that there are six regions of Z (we again have T'> T,
and again we take Z > 0 and can find Z <0 by symmetry),
each with a different form of . They are R1: 0 < Z < T,
Z<T—TuR2Z<Ty<T,Z>T—Tu;R3:Ty<Z<T,
Z<T—TuR&T < Z<T,Z>T—TyR5:Ty<T<Z,
Z<T+ Ty R6:Ty<T<Z,Z>T+ T, The functions in-
volved in the integral (6.13) turn out to be relatively simple in
each of these regions, and are explicitly written out for all six
regions in the Appendix. However, it is easy to verify that
only regions R1 and R3 lie within the region causally con-
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FIG. 2. The solid line is arcsin{x), while the dashed line is {7 — 2)x.

nected to the inhomogeneous data. Hence they are the only
ones we need to consider. As a paradigm we will take region
R1, and we find

Pri =£Bo In(T'/T) + Y Boa — Bos)
o[ (L DTy T2
[(T—ZP-T3}'*+T-Z

2 (T (£ 3 2
t To_zamsm(T) [(Z+EF—T2]7

T (€ d&
xL”o arcsm( T) . Tf,]’“]' (6.16)

Unfortunately, the last two integrals above do not seem to

2r—4

Pr1 = %Bo In(T/T,) + Y Bou — Bos) X [(
1

- yn([g[(l —Z/TP-T3/T*]"? + 5

Z 2 a2 27172
«AE;]X[HU-FZ/T) T2/T?]

[(M+Z/TY-T3/T)'?+1+2Z/T

—gln[
__1_(21717—4

2
(T>Ty0<Z<T—Ty)

) ([l + Z/T) — T2/T*]"[(1

The leading linear term here is (Z /T )27 — 4/m)[In(T/

T} — In(2) + 1] — 1, while the most obvious leading term in
(6.5)is (Z /T )(2/m)[In(T,/T) — In(4)), which differ by about
20%, but there are other terms in (6.5) proportional to sum
of (T,/T)*" that would have to be evaluated before the two
leading terms could be directly compared.

In Fig. 3 we present a graph of ¢ for T= 10, T, = 1,
and By, = 0, where we have included the approximation for
the acausal region. Note that even in our crude approxima-
tion the curve reflects the features of the numerical integra-
tion reported in Fig. 3 of Ref. 13.

The main deviation from accuracy occurs at and be-
yond the causal boundary, where ¢—0. While the scale of
the graph is too small to show it there is, for example, infinite
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[(1—Z/TP-T}/T*)"?+1-2Z/T

10

FIG. 3. The graph of the function ¢(Z, T') via Eq. (6.17), which uses the
linear approximation to arcsin(x). Here we have taken T, = 1, T = 10, By,

=0, and f,, arbitrary.

have a representation in terms of known functions. How-
ever, since they are over a finite range, they could be done
numerically or approximated by some analytic scheme. For
example, there is a polynomial approximation to arcsin(x)
given in Ref. 18 which might be useful. For the purposes of
this paper we will present only the crudest possible approxi-
mation, arcsin(x)~ (7 — 2)x (see Fig. 2), where the constant
has been chosen to give the same area under the two curves
between zero and one. We calculate @y, ; to this order of
approximation (at least) the only other relevant form of ¢,
@r3, has exactly the same form. Hence, for the region T'> T,
Z > 0, of the spacetime causally connected to the inhomo-
geneous data,

Z
)7 [In(To/2T)]

L, 2))
277

|

_ Z/T)2 _ T(Z)/TZ] 1/2)]

(6.17)

I

slope at Z = 9, presumably due to our approximation of arc-
sin(x). The numerical results of Ref. 13 do not show this
effect, and the Green-function analysis of Ref. 13 shows that
@ should be linear as it approaches zero. Although this error
is small in the potential @, it leads to substantial errors in the
stress tensor [based on derivatives of @; cf. Egs. (5.8)(5.10)]
and more accurate approximations are being sought.

VIil. ON THE RELATION TO GOWDY MODELS

If ¢ = 0, these models correspond to the Gowdy* mod-
el, except that we have not imposed any closure on the mod-
el. Had we done so, the usual restriction would arise: Only
certain periodic functions of Z are permitted, and the net Z
momenturmn due to gravitational waves (and other waves, if
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the model is in fact nonvacuum) must vanish, in order for the
nonlinear Eqs. (4.4) and (4.5) defining y to admit a periodic
solution.” Our models require no such restriction so, for in-
stance, there is a net momentum flux in the example of Sec.
IV. This poses absolutely no problem since, as we now show,
our initial data are easily fitted into a periodic-in-Z data set.

Consider any data which for Z < Z, are homogeneous-
cosmological data (cosmology 4 ), for some interval
Z, < Z < Zy is inhomogeneous, and become homogeneous
again (a new cosmology, B ) for Z > Z ;. Our example of Sec.
IV is a special case of such data. Now suppose Z->Z,. We
can begin another inhomogeneous region, in the interval Z,,
>Z > Z such that for Z > Z,, the data are again those for
the homogeneous cosmology 4. Then any plane Z < Z, can
be chosen to be identified with a plane Z > Z,, and the result
is periodic data, which a priori will yield periodic solutions
for all the metric variables.

The periodicity can be chosen so that each homogen-
eous region extends over much more than a horizon size at
the time T,. Hence the different regions, with their apparent

APPENDIX

net momentum, can evolve freely (as our Sec. I'V model does)
for a long time until eventually the horizons overlap and it
becomes locally more apparent that the total momentum of
the solution vanishes. This also shows that it is dangerous to
apply arguments based on linearization stability (the de-
mand for periodicity of  is the full-field version of a lineari-
zation stability argument) to categorize models for the real
universe. Such arguments are global, but there is hopefully
most of the universe we have not yet seen, and it is thus
invalid to invoke global arguments to restrict our local ge-
ometry. Linearization stability does not, for instance, pre-
vent a local flux of gravitational radiation in a closed uni-
verse; it only demands that the net momentum be somehow
balanced elsewhere.
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In this Appendix we present the convolution solution to (6.3) in the regions of Z mentioned in the text. In the approxima-
tion arcsin(x) = (7 — 2)x the expressions reduce to ones similar to that given for ¢, in Sec. VI. The expression for gy, is given

in Sec. VI. The others are

w2 =15 n(T/To)H(ﬁM—BOB)[—ln([[((ZZ:;:);j ;]],/:; :i) n(T /T,
+—72;- Tj_zarcsm(% [(z+§)(21§— Tf)]”z' '72? msm( )[(Z+s“)2 ISRt
gvm=IBoln(T/To)+:{(ﬂo,a—ﬂoa)[—ln({gi;;z ; ey
- __JZ s ( )[(Z g)fg T2]'? _% zT+z,arCSin(£T> [(Z—§)‘21§— T3]1'"?
+%J arcs‘“(g) [(z+§)§§ ]”2]’
Pra =3 Bo In(T /Ty) + Y Boa —Bos)[ In(T'/To) —In ([[((TT:?;:iél]://::;izz)
—J arsinf £ )[(Z+§)‘21§ T3] —_Jz Toarcsm(§)[(2 g)‘jg T
N % TTizarcsm( §) [(Z+§;§ Tz]"z]’

Prs = %Bo In(T/T,) + 4 Boa —ﬂos)[ —In(T/T,) — ln(

+ = J arcsin ( )[(Z+§)‘:§ T2]'? .
+ = Jz Tarcs1n(§) [(Z— é_){:g B —
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T2 [(Z+T) -

Pre =£Boln(T/To)+§(BOA _BOB)[ —ln( [Z-T-(Z- T)? -
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Erratum: Finite subgroups of SU(3) [J. Math. Phys. 22, 1543 (1981)]
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PACS numbers: 02.20.Df, 02.20.Rt, 99.10. + g

In the theorem on page 1544 we claimed that the groups
G (3" PQ,3,a) are finite subgroups of SU(3) for all positive inte-
gers I. As has been pointed out by W. M. Fairbairn and T.
Fulton (University of Lancaster preprint, 1981), this state-
ment is in fact only true for i = 0 and / = 1. The reason why
our proofis erroneous in the cases / > 1 is that the representa-
tion [0,a — 1], used in Lemma 3 of the appendix, is not faith-
ful.

1992 J. Math. Phys., Vol. 23, No. 10, October 1982

While this reduces the number of new finite SU(3) sub-
groups, the main result of Sec. II of our paper, namely, the
existence of a series of “trihedral” groups as subgroups of
SU(3), analogous to the dihedral groups in SU(2), still re-
mains valid.

Section III is unafflicted by this error.

We wish to thank Professor W. M. Fairbairn for com-
municating his results to us prior to publication.
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